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Czech Technical University in Prague

Dept. of Computer Science and Engineering
tarek@felk.cvut.cz, janecek@cs.felk.cvut.cz

Abstract

The heterogeneous computing environment is an interest-
ing computing platform due to the fact that a single parallel
architecture may not be adequate for exploiting all of a pro-
gram’s available parallelism. In some cases, heterogeneous
systems have been shown to produce higher performance
for lower cost than a single large machine. Task schedul-
ing is the key issue when aiming at high performance in
this kind of environment. A large number of scheduling
heuristics have been presented in the literature, most of
them target only homogeneous computing systems. In this
paper we present a simple scheduling algorithm based on
list-scheduling and task-duplication on a bounded number
of heterogeneous machines called Heterogeneous Critical
Parents with Fast Duplicator (HCPFD). The analysis and
experiments have shown that HCPFD outperforms on aver-
age all other higher complexity algorithms.

Keywords:
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1. Introduction

A heterogeneous computing system is defined as a dis-
tributed suite of computing machines with diverse capabil-
ities interconnected by diverse high speed links utilized to
execute parallel programs[1]. However, the performance of
the parallel program execution on such platforms is highly
dependent on the scheduling of the parallel program tasks
onto these machines [1], [2]. The main objective of the
scheduling mechanism is to map the multiple interacting
program tasks onto machines and order their execution so
that precedence requirements are satisfied and minimum
overall completion time is achieved [3], [4]. When the char-
acteristics of the parallel program in terms of task execution
times, task dependencies and amount of communicated data

are known a priori, scheduling can be accomplished at the
compile-time and the parallel program can be represented
by the static model [3-5]. In the general form of a static
task scheduling problem, the application is represented by
a directed acyclic graph (DAG), in which nodes represent
application tasks and edges represent inter-task data depen-
dencies. Each node is labeled by the computation cost (the
expected computation time) of the task and each edge is
labeled by the communication cost (the expected communi-
cation time) between tasks [3-5].

Task scheduling problem in general is NP-complete [2-
6]. Therefore, heuristics can be used to obtain a sub-optimal
scheduling rather than parsing all possible schedules. Task
scheduling has been extensively studied, and various heuris-
tics have been proposed in the literature [6-18]. In static
scheduling, these heuristics are classified into a variety of
categories (such as list-based, clustering and duplication-
based).

List-scheduling basically consists of two phases: a task
prioritization phase, where a certain priority is computed
and is assigned to each node of the DAG, and a machine
assignment phase, where each task (in order of its priority)
is assigned to machine that minimizes a suitable cost func-
tion. List-scheduling is generally accepted as an attractive
approach since it pairs low complexity with good results [3-
5], [7-13]. The basic idea of task-duplication is to try to du-
plicate the parent nodes of the current selected task onto the
selected machine or onto another machine(s), aiming to re-
duce or optimize the task starting or finishing time [14-18].
The main weakness of duplication-based algorithms is their
high complexity and that they mainly target an unbounded
number of computing machines.

In this paper we propose a compile-time task-scheduling
algorithm based on list-scheduling and task-duplication.
The algorithm is called Heterogeneous Critical Parents
with Fast Duplicator (HCPFD). The algorithm works for
a bounded number of fully connected heterogeneous ma-
chines and aims to introduce a simple list-scheduling
heuristic for the prioritization phase and a low complexity
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duplication-based mechanism for the machine assignment
phase. The remainder of this paper is organized as follows:
the next section introduces the static scheduling problem
in the heterogeneous environment and provides definitions
of some parameters utilized in the algorithm. The HCPFD
scheduling algorithm is presented in the third section. The
fourth section contains a brief overview of other frequently
used heterogeneous scheduling algorithms that we apply for
performance comparison. A performance evaluation based
on a large number of randomly generated application graphs
and two real-world applications, is presented in the fifth sec-
tion.

2. Problem Definition

This section presents: the model of the application used for
static scheduling, the model of the heterogeneous comput-
ing environments, and the scheduling objective.

The application can be represented by a directed acyclic
graph G(V,E) where:

V is the set of v nodes, each node vi ∈ V represents an
application task, which is a sequence of instructions
that must be executed serially on the same machine,

E is the set of communication edges. The directed
edge ei,j joins nodes vi and vj , where node vi is
called the parent node and node vj is called the child
node. This also implies that vj cannot start until vi

finishes and sends its data to vj .
A task without any parent is called an entry task and a task
without any child is called an exit task. If there is more than
one exit (entry) task, they may be connected to a zero-cost
pseudo exit (entry) task with zero-cost edges, which do not
affect the schedule.

The heterogeneous computing environment model is a
set P of p heterogeneous machines (processors) connected
in a fully connected topology. It is also assumed that:

- any machine (processor) can execute the task and com-
municate with other machines at the same time.

- once a machine (processor) has started task execution,
it continues without interruption, and after completing
the execution it immediately sends the output data to
all children tasks in parallel.

W is a v × p computation costs matrix in which each wi,j

gives the estimated time to execute task vi on machine pj .
The communication costs per transferred byte between any
two machines are stored in matrix R of size p × p. The
communication startup costs of the machines are given in a
p-dimensional vector S. The communication cost of edge
ei,j for transferring µ bytes of data from task vi (scheduled
on pm) to task vj (scheduled on pn), is defined as:

ci,j = Sm + Rm,n · µi,j .

where:

Sm is pm communication startup cost (in secs),
µi,j is the amount of data transmitted from task vi

to task vj (in bytes),
Rm,n is the communication cost per transferred byte

from pm to pn (in sec/byte).

Before scheduling, each task is labeled with the average
execution cost, which is defined as follows:

wi =
p∑

j=1

wi,j

p
,

and each edge ei,j is labeled with the average communica-
tion cost, which is defined as follows:

ci,j = S + R · µi,j .

where: S is the average machines communication startup
cost and R is the average machines communication cost per
transferred byte.

The average earliest start time AEST (vi) of node vi

can be computed recursively by traversing the DAG down-
ward, starting from the entry node ventry

AEST (vi) = max
vm∈pred(vi)

{
AEST (vm) + wm + cm,i

}
,

where: pred(vi) is the set of immediate predecessors of vi

and AEST (ventry) = 0.

The average latest start time ALST (vi) of node vi can
be computed recursively by traversing the DAG upward,
starting from the exit node vexit

ALST (vi) = min
vm∈succ(vi)

{
ALST (vm) − ci,m

} − wi ,

where: succ(vi) is the set of immediate successors of vi

and ALST (vexit) = AEST (vexit).

The main objective of the scheduling process is to de-
termine the assignment of tasks of a given application to a
given machine (processor) set P such that the scheduling
length (makespan) is minimized satisfying all precedence
constraints.

3. Proposed Algorithm

Recently, a list-scheduling heuristic for homogeneous
computing environments, called CNPT, has been presented
[10]. This heuristic achieved the lower bound complexity
of list-scheduling heuristics and has a performance compa-
rable to or even better than the higher complexity heuristics.
This section presents an algorithm based on list-scheduling
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and task-duplication on a bounded number of fully con-
nected heterogeneous machines called Heterogeneous
Critical Parents with Fast Duplicator (HCPFD) which
aims to achieve high performance and low complexity. The
algorithm consists of two phases, a listing phase which is a
simplified version of the CNPT heuristic for heterogeneous
environments and a suggested low complexity duplication
mechanism as a machine assignment phase.

3.1. Listing Phase

In the listing phase (Figure 1), the simplified heuristic
divides the task graph into a set of unlisted parent-trees. The
root of each parent-tree is a critical-node (CN). A CN is de-
fined as the node that has zero difference between its AEST
and ALST . The algorithm starts with an empty queue L
and an auxiliary stack S that contains the CNs pushed in
decreasing order of their ALST s, i.e. the entry node is on
the top of S (top(S)). Consequently, top(S) is examined.
If top(S) has an unlisted parent (i.e. has a parent not in L),
then this parent is pushed on the stack. Otherwise, top(S)
is popped and enqueued into L. For the DAG in Figure 3a,
the critical nodes are shown by the thick edges connecting
them, which are (v1, v2, v9, and v10). Figure 3b indicates
each CN parent tree and the order of all nodes in L.

traverse the graph downward and compute AEST for
each node,

traverse the graph upward and compute ALST for each
node,

push CNs on the stack S in reverse order of their ALST ,

while S is not empty do

if there is an unlisted parent of top(S)

then

push the parent node on S

else

pop the top(S) and enqueue it to L

Figure 1. The Listing Heuristic.

3.2. Machine Assignment Phase

In the machine assignment phase (Figure 2), the
following definitions should be given to clarify the mecha-
nism:

while not the end of L do

dequeue vi from L

for each machine pq in the machine set P do

compute TFT (vi, pq)

select the machine pm that minimizes TFT of vi

select vcp and vcp2 of vi

if the duplication condition is satisfied

if TST (vcp, pm) ≤ RT (pm)

duplicate vcp on pm at RT (pm)

RT (pm) = RT (pm) + wcp,m

else

duplicate vcp on pm at TST (vcp, pm)

RT (pm) = TFT (vcp, pm)

if DAT (vcp2, pm) > RT (pm)

assign vi to pm at DAT (vcp2, pm)

RT (pm) = DAT (vcp2, pm) + wi,m

else

assign vi to pm at RT (pm)

RT (pm) = RT (pm) + wi,m

else

assign task vi to pm at TST (vi, pm)

RT (pm) = TFT (vi, pm)

Figure 2. The Duplication Mechanism.

Definition 1: The Task Finish Time on a machine (TFT ) is
defined as:

TFT (vi, pq) = max
vn∈pred(vi)

{
RT (pq), FT (vn)+

k.cn,i

}
+ wi,q,

where:
RT (pq) is the time when pq is available,
FT (vn) is the finishing time of the scheduled parent

vn, and
k = 1 if the machine assigned to parent vn is not

pq and, k = 0 otherwise.

Definition 2: The Task Start Time on a machine (TST ) is
defined as:

TST (vi, pq) = TFT (vi, pq) − wi,q

Definition 3: The Duplication Time Slot:

DTS(vi, pm) = TST (vi, pm) − RT (pm).
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Definition 4: The Critical Parent (CP ) is the parent vcp

(scheduled on pq) of node vi (tentatively scheduled on pm)
whose data arrival time at vi is the latest.

Definition 5: DAT (vcp2, pm) is the data arrival time of the
second critical parent vcp2 on pm.

Definition 6: the duplication condition is :

DTS(vi, pm) > wcp,m

and

TFT (vcp, pm) < TST (vi, pm).

The mechanism simply selects the machine pm that min-
imizes the TFT of vi and duplicates its critical parent at
the idle time between vi and the previous task on pm, if this
time slot is enough and this duplication will reduce the TST
of vi on pm. For the nodes list generated by the algorithm in
Figure 3b for the the task graph in Figure 3a, the schedules
produced using the non-duplication and duplication mecha-
nisms are shown in Figure 4a and 4b, respectively where the
gray tasks in Figure 4b are the duplicated tasks. As an ex-
planation example of the duplication mechanism, the TST
(v4, p2) using the non-duplication mechanism is 18. The
duplication mechanism duplicated the critical parent of v4

which is v1 at the idle time slot before v4. This duplication
reduced the TST (v4, p2) to be 16.
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Task P1 P2 P3
1 14 16 9
2 13 19 18
3 11 13 19
4 13 8 17
5 12 13 10
6 13 16 9
7 7 15 11
8 5 11 14
9 18 12 20
10 21 7 16
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Figure 3. Algorithm Heuristic Explanatory Example.

4. Task Scheduling Heuristics for Heteroge-
neous Environments

This section briefly overviews the list scheduling algo-
rithms that we will use for the comparison with HCPT.
These algorithms are: Fast Load Balancing (FLB-f) [7],
Heterogeneous Earliest Finish Time (HEFT) [8], and Criti-
cal Path on a Processor (CPOP) [8].

4.1. Fast Load Balancing (FLB-f) Algorithm

The FLB-f algorithm [7] utilizes a list called the ready-
list that contains all ready-nodes to be scheduled at each
step. The ready-node is defined as the node that has all its
parents scheduled. In each step, the execution finish time
for each ready-node at the ready-list is computed in all ma-
chines and the node-machine pair that minimizes the earli-
est execution finish time is selected. The complexity of the
FLB-f algorithm is O(vlogv + e).

4.2. Heterogeneous Earliest Finish Time (HEFT)
Algorithm

The HEFT algorithm [8] has two phases: the task prior-
itizing phase, where the upward rank attribute is computed
for each task and a task list is generated by sorting the tasks
in decreasing order of the upward rank. The second phase
is the machine assignment phase, in which, tasks are se-
lected in order of their priorities and are scheduled to the
best machine that minimizes the finish time of the task in
an insertion based manner. The complexity of the HEFT
algorithm is (pv3)
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Figure 4. Scheduling of the Task Graph in Fig-
ure 2.a with: (a) The Non-Duplication Mech-
anism (makespan = 76), and (b) The Duplica-
tion Mechanism (makespan = 73).

4.3. Critical Path on a Processor (CPOP) Algorithm

The CPOP algorithm [8] has two phases: task prioritiz-
ing and machine assignment. In the task prioritizing phase,
two attributes are used which are the upward and downward
ranks. Each task is labeled with the sum of its upward rank
and downward ranks. A priority queue is used to maintain
the ready tasks at a given instant (initially, it contains the
entry node). At any instant, the ready task with the highest
priority is selected for machine assignment. In the machine
assignment phase, it defines the critical path machine as the
machine that minimizes the cumulative computation cost of
the tasks on the critical path. If the selected task is on the
critical path, it is assigned to the critical path machine; oth-
erwise, it is assigned to a machine that minimizes the finish-
ing execution time of the task. The complexity of the CPOP
algorithm is O(pv2).

5. Experimental Results and Discussion

This section presents a performance comparison of the
HCPFD algorithm with the algorithms presented above.
For this purpose, we consider two sets of graphs as the
workload: random generated application graphs and the
graphs that represent some of the numerical real world
problems. Several metrics were used for the performance
evaluation. As an example, the scheduling produced by
each algorithm for the application graph in Figure 3a is
given in Figure 5, where the gray tasks in the HCPFD

schedule are the duplicated tasks.

5.1. Comparison Metrics

The comparisons of the algorithms are based on the
following metrics:

Makespan
The makespan, or scheduling length, is defined as:

makespan = FT (vexit) ,

where: FT (vexit) is the finishing time of the scheduled
exit node.

Scheduling Length Ratio (SLR)
The main performance measure is the makespan. Since a
large set of application graphs with different properties is
used, it is necessary to normalize the schedule length to
the lower bound, which is called the Schedule Length Ratio
(SLR). The SLR is defined as:

SLR =
makespan∑

vi∈CPMIN
minpj∈P {wi,j} .

The denominator is the sum of the minimum computation
costs of the tasks on a critical path CPMIN . The SLR of
a graph cannot be less than one, since the denominator is
the lower bound. We utilized average SLR values over the
number of generated task graphs in our experiments.

Speedup
The speedup value is defined as the ratio of the sequen-
tial execution time (i.e., cumulative computation costs of
all tasks) to the parallel execution time (i.e., the makespan).
The sequential execution time is computed by assigning all
tasks to a single machine, which minimizes the cumulation
of the computation costs.

speedup =
minpj∈P {

∑
vi∈V wi,j}

makespan

Quality Results of Schedules
The percentage number of times that an algorithm produced
better, worse, and equal quality of schedules compared to
every other algorithm is counted in the experiments.

5.2. Random Graph Generator

The random graph generator was implemented to generate
application graphs with various characteristics. The gener-
ator requires the following input parameters:
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Figure 5. Scheduling of the Task Graph in Figure 2.a with: (a) HCPFD (makespan = 73), (b) FLB-f
(makespan = 76), (c) HEFT (makespan = 80), and CPOP (makespan = 86).

- number of tasks in the graph v,
- graph levels l,
- heterogeneity factor β, where wi is generated ran-

domly for each task and (using a randomly selected
β from β set for each pj) wi,j = β · wi∀vi on pj ,

- communication to computation ratio CCR, which is
defined as the ratio of the average communication cost
to the average computation cost.

In all experiments, only graphs with a single entry and a sin-
gle exit node were considered. The input parameters were
restricted to the following values:

v ∈ {20, 40, 60, 80, 100, 120} ,
0.2v ≤ l ≤ 0.8v ,
β ∈ {0.5, 1, 2},
CCR ∈ {0.5, 1.0, 2.0} .

We generated sets of 1000 application graphs with ran-
domly selected l, β and CCR for each v from the above
list.

5.3. Performance Results

The performances of the algorithms were compared with re-
spect to the graph size. We used 16 machines for all exper-
iments. The machine computing capability was generated
using randomly selected β (from the β set given above) for
each machine.

The average SLR values for each set of application
graphs (with a selected v and random l, β and CCR) are
shown in Figure 6, and the average speedup is shown in
Figure 7.
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Figure 6. Average SLR (p=16).
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Table 1: Quality Results of the HCPFD Algorithm
(p=16).

FLB-f HEFT CPOP
Better 74.4% 84.08% 95.07%

HCPFD Equal 3.33% 3.08% 1.88%
Worse 22.27% 12.84% 3.05%
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Figure 8. Average SLR (p=8).

The number of occurrences of better, equal, and worse
results (quality results) of HCPFD compared with the other
algorithms is given in Table 1.

When the number of machines was reduced to one half
(p = 8), the average SLR was as shown in Figure 8 and the
quality results are as shown in Table 2.

The results indicate that HCPFD outperforms the other
algorithms in terms of SLR, Speedup and number of better
results. Even when the number of machines was reduced to
one half, HCPFD still outperforms.

Table 2: Quality Results of the HCPFD Algorithm
(p=8).

FLB-f HEFT CPOP
Better 69.2% 78.25% 91.3%

HCPFD Equal 4.02% 2.93% 2.28%
Worse 26.78% 18.82% 6.42%

5.4. Applications

Finally, we compared the performance of the scheduling al-
gorithms based on two real-world applications: Gaussian
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Figure 9. Average SLR for Gaussian Elimina-
tion (p=16).

Table 3: Quality Results of the HCPFD Algorithm
for Gaussian Elimination (p=16).

FLB-f HEFT CPOP
Better 93.33% 88% 92%

HCPFD Equal 3.33% 8.67% 6%
Worse 3.34% 3.33% 2%

Elimination [12] and Molecular Dynamics Code [19]. six-
teen heterogeneous machines were used for both experi-
ments. The machine computing capability was generated
using random selected β for each machine from the β set
given above.

5.4.1. Gaussian Elimination

The structure of the application graph is defined in Gaussian
Elimination [12]. The number of tasks v, and the number
of graph levels l depends on the matrix size m. Therefore,
only CCR was selected randomly for each m. The total
number of tasks v in a Gaussian Elimination graph is equal
to m2+m−2

2 . Figure 9 presents the average SLR of 100 gen-
erated graphs for each matrix size m ∈ {4, 8, 16}, and the
quality results are as shown in Table 2.

5.4.2. Molecular Dynamic Code

Molecular Dynamic Code [19] is an irregular application
since it has a fixed number of tasks (v = 41) and a known
graph structure. Hence, we varied only CCR and β in our
experiments. Figure 10 presents the average SLR of 100
graphs generated for each CCR ∈ {0.5, 1, 2}, and Table 4
presents the quality results.
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Figure 10. Average SLR for Molecular Dy-
namic Code (p=16).

Table 4: Quality Results of the HCPFD Algorithm
for Molecular Dynamic Code (p=16).

FLB-f HEFT CPOP
Better 93% 88.67% 96.67%

HCPFD Equal 0.33% 2% 0%
Worse 6.67% 9.33% 3.33%

6. Conclusion

In this paper, we presented the HCPFD algorithm for
scheduling tasks onto a bounded number of heterogeneous
machines. The algorithm consists of two phases: a simple
listing heuristic for task selection instead of the classical
prioritization phase of list-scheduling and a fast duplication
mechanism works for a bounded number of heterogeneous
machines. Based on the experimental study using a large
set of randomly generated application graphs with various
characteristics and application graphs of real world prob-
lems (such as Gaussian Elimination, and Molecular Dy-
namic Code), HCPFD outperformed the other algorithms
in terms of performance and complexity.
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