
MREclat: an Algorithm for Parallel Mining Frequent Itemsets

Zhigang Zhang, Genlin Ji*, Mengmeng Tang
School of computer Science and Technology

 Nanjing Normal University
 Nanjing, China

zzg22936@sina.com, glji@njnu.edu.cn, dreamtang1016@gmail.com

Abstract—Algorithm Eclat is a classical algorithm for mining
frequent itemsets, which is based on vertical layout databases. It
is greatly different from those algorithms based on horizontal
layout databases, such as algorithm Apriori and FP-Growth. In
order to improve the efficiency of mining frequent itemsets from
massive datasets, parallel algorithm MREclat based on
Map/Reduce framework is presented. The algorithm also
overcomes the problem of memory and computational capability
insufficient when mining frequent itemsets from massive
datasets. In this paper, the idea of MREclat is introduced and the
performance of the algorithm is studied. The experimental
results show that algorithm MREclat has high scalability and
good speedup.

Keywords-Frequent Itemset Mining; Parallel Mining
Algorithm; Map/Reduce; Eclat

I. INTRODUCTION
The mining of frequent itemsets is a fundamental and

essential problem in many data mining applications [1].
Algorithms for mining frequent itemsets can be basically
classified into two types: one is algorithms based on horizontal
layout dataset such as algorithm Apriori [2] and FP-Growth
[3]; the other is algorithms based on vertical layout database
such as Eclat [4]. Eclat takes advantage over algorithms based
on horizontal layout database. It saves much time as it doesn’t
need to over scanning the whole database [4-6].

Facing with the “Big Data” problem [7], using parallel or
distributed algorithms to mine frequent itemsets from massive
data is feasible and practical. Currently proposed parallel
algorithms are CD (Count Distribution), CaD (Candidate
Distribution) and DD (Data Distribution) [8]. These algorithms
are based on Apriori and suffer major weaknesses at some
respects of communication and synchronization [9]. However,
these algorithms are instructive to the parallel frequent itemsets
mining. Zaki [10] has proposed four parallel algorithms based
on DEC Memory Channel technology, but, they are not suit for
mining massive data sets because we can not put so much data
into the shared memory. Except Zaki’s work, as far as we
know, there is little other work about how to parallelize Eclat
algorithm. In this paper, we describe a new parallel algorithm
based on Map/Reduce framework [11]. Experimental results
show that our algorithm has high scalability and good speedup.

The rest of the paper is organized as follows: Section 2
introduces background knowledge. Section 3 discusses our
design idea about MREclat algorithm. We present our
experimental results in section 4. Section 5 concludes this
paper.

II. BACKGROUND KNOWLEDGE

A. Frequent Itmeset
The concept of frequent itemsets mining was introduced

by Agrawal in 1993. It can be formally stated as: Let I = {i1,
i2,…,in} be a set of n distinct items. Let D = {t1, t2,…, tm} be a
set of m transactions, each transaction consists of a unique
transaction identifier and a set of items, called itemset, which
is a subset of set I.

Definition 1: Let I1 I, the support of I1 is the ratio of
transactions which contain I1. So, support(I1) = ||{t D| I1

t}|| ||D||.
 Definition 2: If the support of I1 is larger than a minimum

support threshold—min_sup which is set by user, then I1 is
frequent itemset.

The task of frequent Itemset mining is to find all the
frequent itemsets from database. And it is the first and key step
of association rule mining. With the help of frequent itemsets,
we can generate rules to find useful information between items.

B. Database Layout
There are two layout formats of the target dataset for

association mining: the horizontal and the vertical layout. The
horizontal layout database is also called the transactional
database. It consists of a list of transactions, each transaction
has an identifier (TID) followed by a list of items in that
transaction. This format imposes some computation overhead
during the support counting step [4]. In the vertical (or
inverted) layout, database consists of a list of items, each item
followed by the list of tids (also called tid-list). So, in the
vertical layout database, it is quite easy to find frequent
itemsets, because we just need to count the number of tids of
each item.

C. Algorithms Eclat
Algorithm Eclat has two search approaches [4]: Bottom-up

and Hybrid-Traversal. As Hybrid-Traversal is restrict to only
identifying the maximal frequent subsets, so in this paper, we
only introduce the Bottom-up approach which can be used to
find all frequent itemsets.

Input: Fk = {I1, I2, ..., In} // cluster of frequent k-itemsets.
Output: Frequent l-itemsets, l k.
Bottom-Up (Fk) {
1. for all Ii Fk
2. Fk+1 = ∅;
3. for all Ij Fk , i < j
4. N = Ii Ij;
5. if N .sup min_sup then This work is supported by Key Programs of Natural Science Foundation

of Jiangsu Province of China (No.BK2011005).
Correspondence Author: Genlin Ji ; email: glji@njnu.edu.cn

2013 International Conference on Advanced Cloud and Big Data

978-1-4799-3261-0/14 $31.00 © 2014 IEEE

DOI 10.1109/CBD.2013.22

177

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on November 12,2020 at 02:38:08 UTC from IEEE Xplore. Restrictions apply.

6. Fk+1 = Fk+1 N;
7. end
8. end
9. end
10. if Fk+1 ∅ then
11. Bottom-Up(Fk+1);
12. end
13. }

This process looks extremely like algorithm Apriori, but it

differs from Apriori in step 5. In Apriori, we need to scan the
whole database to compute the support of itemset N. However,
Eclat just counts the number from tid-list of N.

D. Map/Reduce Framework
Map/Reduce [11] is proposed to support distributed

computing. It’s a typical implement of share-nothing
architecture that can efficiently process massive dataset.
Map/Reduce framework firstly partitions user’s data into
equal sized blocks with some replicas and distributes these
blocks evenly to the distributed file system automatically.
Then, Map/Reduce runs a same Map task on each of these
blocks and automatically collects the outputs. Then, it uses a
partition task to send these outputs to different computing
nodes and runs a same Reduce task on these nodes. Finally, it
collects the output of all Reduce tasks, the whole output is the
result we need. Map/Reduce framework frees users from data
distributing, task scheduling, fault tolerating and task
communicating. Users only need to implement the map and
reduce functions which are the key points of Map and Reduce
task.

III. IMPLEMENT OF MRECLAT
Algorithm MREclat consists of three steps: The first is the

initial step, we get all frequent 2-itemsets and their tid-lists
from transaction database in this part; the second is the
balanced group step, we partition frequent 1-itemsets into
groups; the third is the parallel mining step, the data got in the
first step redistributed to different computing nodes according
to the group their prefix belong to. Each node run a improved
Eclat to mine frequent itemsets. Finally, MREclat collects all
the output from each computing node and formats the final
result.

A. The Initial Step
The vertical layout, however, has a drawback. Examination

of small itemsets tends to be costlier than when the horizontal
layout is employed [10]. For example, a database with
1,000,000(1M) transactions, 1,000 items and a average of 10
items per transaction has tid-list of average size 10,000. To find
frequent 2-itmsets, we have to intersect each pair of items,
which requires 2 9

1000 (2 10,000) 10C × × ≈ operations. On
the other hand, in the horizontal format we simply need to form
all pairs of the items appearing in a transaction and increment
their count, require only 2 7

10 1,000,000 4.5 10C × = ×
operations. So, in this step, we take a Map/Reduce job to
gather the occurrence count of all 2-itemsets directly from
original transactional database. Its pseudo-code is described as
follows:

// Input: key is the identifier of the transaction and value is
the items of the transaction.

map (key, value) {

1. Get all items from value and sort them by lexicographic
order, the sorted items are put into an array called items
and the length of items is n.

2. for (i = 0; i < n-1; i++)
3. for (j = i+1; j < n; j++)
4. output(items[i] items[j], key); // form a new 2-

itemset and out it with the tid
5. end
6. end
7.}

In case that this map function outputs too much

intermediate data, we may a use a additional Map/Reduce job
to static the frequent 1-itemsets, and in the line 1, we only
keep those items who are frequent.

The input of reduce function is a 2-itemset and the list of
transaction ids which contain this 2-itemset. After the reduce
task, we get all frequent 2-itemsets and their tid-lists. The
results are stored in the inverted layout database.

reduce (key, value) {
1. tid_list = ∅;
2. sum = 0;
3. for each tid in value

 4. sum++;
 5. tid_list = tid_list tid;
 6. end
 7. if sum transnum min_sup then

 8. output (key, tid_list);
// only output frequent 2-itemsets

9. end
}

B. Balanced Group
In order to achieve a good load balance, we partition the

items into balanced groups. Considering that the only
computation in Eclat algorithm is intersection, and the number
of intersect operations between frequent itemset a and b
equals to the length of tid_list of a plus the length of tid_list of
b. we use wi (w means weight) to denote the operation
complexity of getting all frequent itemsets prefixed (prefix
means the first item in a itemset) by the item A (i is the index
of A in frequent 1-itemset), which is defined as:

0
log(1) log()

j n

i j
j

w n len
<

=

= − + � (1)

Where n is the number of frequent 2-items prefixed by A.
we sort those frequent 2-itemsets prefixed by A in the
lexicographic order, and use lenj to denote the length of list of
the j-th frequent 2-itemset.

After we compute all the w for each frequent 1-itemset, we
sort the tuple consisted by the frequent 1-itemset and its
weight by the value of weight in a descending order. Then
MREclat uses a greedy strategy to divide the tuples into

178

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on November 12,2020 at 02:38:08 UTC from IEEE Xplore. Restrictions apply.

groups, each group associated with an id. The group strategy
is shown as follows:

// Input: a is the array of tuple which consisted with <item,
weight>; M is the number of topples; N is the number of
groups.

// Output: each item of groups is a group of frequent 1-
itemset

divide (a[], groups[], M, N)
1. if (M<=N) then
2. for each tuple t in a
3. add t.item to groups[i];
4. end
5. else
6. Initial array sum[] of length N with 0
7. for (i=0; i<M; i++)
8. add the item of a[i] to groups[i];
9. sum[i]+= a[i].weight;
10. end
11. for (i=M; i<N;i++)
12. find the index from sum with the minimum value

and assign the index value to k;
13. add the item of a[i] to groups[k];
14. sum[k]+= a[k].weight;
15. end
16. end

C. The Redistribution and Parallel Ecalt Step
In this step, firstly, we want to redistribute 2-itemsets with

the same prefix into a same computing node. For example, a
2-itemset set “ab, ac, ad, bc, bd, cd…” and their tid-lists, “ab”,
”ac” , ”ad” have the same prefix “a”. “bc”, “bd” have the same
prefix “b”. Then, we will send “ab”, ”ac” , ”ad” accompany
with their tid-lists to one computing node A, “bc”, “bd”
accompany with their tid-lists to the computing node B.
Secondly, we compute frequent itemsets on different nodes
separately.

This step takes a Map/Reduce job. The redistribution work
is done in the map stage and its pseudo-code is described as
follows:

// Input: key is a 2-itemset; value is the tid-list of the 2-
itemset.

map (key, value) {
1. Get the prefix p from key;
2. output (a, <key, value>);
3.}

In addition, between the Map and Reduce stage, we take

the Shuffle procedure to send the output of Map stage to
assigned nods with the help of group strategy. The partition
function in the procedure is designed as follows:

// The input <key, value >is the output of map function;
key is the prefix.

getPartition(key, value){
1. for (i=0; i< N; i++)

 2. if key is in groups[i] then
 3. return i; // we use the index as the id of the group

the key belong to here.
 4. end
 5. end

}

In the getPartition function, we associate the prefix with
the group it belongs to. After the Shuffle procedure, all the
2-itemsets with their prefix will certainly go to the computing
node.

In the reduce function, we get all frequent items with the
prefix a. Its pseudo-code described as follows:

//Input: key is the prefix; value is the 2-itemsets with its
prefix.
 reduce (key, value) {
 1. a =key;
 2. Get all Ca2 from value; //Ca2are 2-itemsets prefixed by a
 3. Bottom-Up (Ca2)
 4. Output all the frequent itemsets with the prefix a;
5.}
We collect all the output of reduce function, and get all

the frequent itemsets.

IV. PERFORMANCE EVALUATION
Extensive experiments were conducted to assess the

performance of the proposed algorithms. All the experiments
were performed on a Hadoop cluster of 0.20.2 cluster of 10
nodes, where each node contains a Intel(R) Xeon(R) E5620
2.40GHz CPU, 32GB RAM, and a 500GB hard disk running
CentOS 6.4. The algorithm is implemented in Java and the
JDK version is 1.6.0_23. Both synthetic and real datasets were
used in the experiments. The synthetic datasets were generated
by the IBM Dataset Generator. The number of distinct items is
1,000 and the average length of transactions is 10. Real
datasets WebDocs from FIMI were used [13]. It is a collection
of web html documents which contains exactly 1,692,082
transactions with 5,267,656 distinct items. The maximal length
of a transaction is 71,472.

Figure 1. Scalability in different size of datasets

The result of varying minimum supports on mining
synthetic datasets is shown in Figure 1. We use four datasets
with size of 560MB, 1126MB, 1740MB and 2356MB. To test
the performance of MREclat, we assign 3 relatively small
values to min_sup which are 0.01%, 0.015% and 0.02%. The
experiences were run on 10 computing nodes. Figure 1 shows
that with the increase of size on each node, the execution time
increase in a linear way; and with the decrease of minimum
support threshold, the running time also increase accordingly.

179

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on November 12,2020 at 02:38:08 UTC from IEEE Xplore. Restrictions apply.

We may conclude that MREclat has a performance on the
synthetic dataset.

Figure 2. Execution time on different number of nodes

Figure 2 shows the execution time of another group of
datasets with size of 186MB, 374MB, 560MB, these datasets
separately have the amount of transactions of 1M, 2M and 3M.
the experiments choose a minimum support value of 0.01%.
From Figure 2, we can see that with the increase of numbers of
computing node, execution time on three datasets decreases
accordingly. The run time on dataset with 1M transactions can
not decrease any more when the computing node number
reaches 8, because the communication time will increase with
the increase of computing nodes.

 Figure 3 shows that MREclat achieves near linear speedup
ratio on real dataset.

Figure 3. Speedup on WebDocs dataset

V. CONCLUSION
We proposed a parallel algorithm MREclat which based on

Map/Reduce framework in this paper. MREclat converts the
transactional dataset firstly, and divide the frequent 1-itemsets
into balanced groups, then redistribute records of converted
dataset according to their prefixes. Records with prefixes in
the same group will be distributed to the same computing
node. MREclat uses the improved Eclat to process data with
the same prefix. As shown in the experimental results,
MREclat has high scalability and good speedup ratio.

ACKNOWLEDGMENT
This work is supported by Key Programs of Natural

Science Foundation of Jiangsu Province of China
(No.BK2011005).

REFERENCES
[1] R. Agrawal, T. Imieli�ski,and A. Swami, “Mining association rules

between sets of items in large databases,” Proceedings of the ACM
SIGMOD International Conference on Management of Data, ACM, Vol.
22. No. 2, 1993, pp. 207-216.

[2] R. Agrawal, R. Srikant, “Fast algorithms for mining association rules,”
Proceedings of the 20th International Conference on Very Large Data
Bases, VLDB. Vol. 1215, 1994, pp. 487-499.

[3] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” ACM SIGMOD Record. ACM, Vol. 29, No. 2, 2000, pp.
1-12.

[4] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New algorithms
for fast discovery of association rules,” Proceedings of the 3th
International Conference Knowledge Discovery and Data Mining,
vol.97, 1997, pp. 283-286.

[5] Z. F. Li, X. F. Liu, andX. Cao. “A study on improved Eclat data mining
algorithm,” Advanced Materials Research, vol. 328, 2011. pp. 1896-
1899.

[6] B. Kotiyal, A. Kumar, B. Pant, R. H. Goudar, S. Chauhan, and S. Junee,
“User behavior analysis in web log through comparative study of Eclat
and Apriori,” Proceedings of 7th International Conference on Intelligent
Systems and Control (ISCO). IEEE, pp. 421-426, 2013.

[7] D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick, and W. Hide,
et al., “Big data: The future of biocuration”, Nature, Vol. 455, No. 7209,
2008, pp. 47-50.

[8] M. Ashrafi, T. Zaman, S. David, and S. Kate, “ODAM: an optimized
distributed association rule mining algorithm,” Distributed Systems
Online 1541-4922, IEEE, Vol. 5, No. 3, 2004, pp. 1-18.

[9] X. Y. Yang, Z. Liu, and Y. Fu, “MapReduce as a programming model
for association rules algorithm on Hadoop,” Proceedings of 3rd
International Conference on Information Sciences and Interaction
Sciences (ICIS). IEEE, pp. 99-102, 2010.

[10] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “Parallel
algorithms for discovery of association rules,” Data Mining and
Knowledge Discovery, Vol. 1, No. 4, 1997, pp. 343-373.

[11] J. Dean, S. Ghemawat,”MapReduce: simplified data processing on large
clusters,” Communication of ACM, Vol. 51, No. 1, 2008, pp. 107-113.

[12] M. J. Zaki, K. Gouda, “Fast vertical mining using diffsets,” Proceedings
of the 9th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2003, PP. 326-335.

[13] L. Claudio, O. Salvatore, P. Raffaele, et al. WebDocs: a real-life huge
transactional dataset. http://fimi.ua.ac.be/data/webdocs.pdf.

180

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on November 12,2020 at 02:38:08 UTC from IEEE Xplore. Restrictions apply.

