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Abstract—Algorithm Eclat is a classical algorithm for mining 
frequent itemsets, which is based on vertical layout databases. It 
is greatly different from those algorithms based on horizontal 
layout databases, such as algorithm Apriori and FP-Growth. In 
order to improve the efficiency of mining frequent itemsets from 
massive datasets, parallel algorithm MREclat based on 
Map/Reduce framework is presented. The algorithm also 
overcomes the problem of memory and computational capability 
insufficient when mining frequent itemsets from massive 
datasets. In this paper, the idea of MREclat is introduced and the 
performance of the algorithm is studied. The experimental 
results show that algorithm MREclat has high scalability and 
good speedup. 
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I. INTRODUCTION  
The mining of frequent itemsets is a fundamental and 

essential problem in many data mining applications [1]. 
Algorithms for mining frequent itemsets can be basically 
classified into two types: one is algorithms based on horizontal 
layout dataset such as algorithm Apriori [2] and FP-Growth 
[3]; the other is algorithms based on vertical layout database 
such as Eclat [4]. Eclat takes advantage over algorithms based 
on horizontal layout database. It saves much time as it doesn’t 
need to over scanning the whole database [4-6].  

Facing with the “Big Data” problem [7], using parallel or 
distributed algorithms to mine frequent itemsets from massive 
data is feasible and practical. Currently proposed parallel 
algorithms are CD (Count Distribution), CaD (Candidate 
Distribution) and DD (Data Distribution) [8]. These algorithms 
are based on Apriori and suffer major weaknesses at some 
respects of communication and synchronization [9]. However, 
these algorithms are instructive to the parallel frequent itemsets 
mining. Zaki [10] has proposed four parallel algorithms based 
on DEC Memory Channel technology, but, they are not suit for 
mining massive data sets because we can not put so much data 
into the shared memory. Except Zaki’s work, as far as we 
know, there is little other work about how to parallelize Eclat 
algorithm. In this paper, we describe a new parallel algorithm 
based on Map/Reduce framework [11]. Experimental results 
show that our algorithm has high scalability and good speedup. 

The rest of the paper is organized as follows: Section 2 
introduces background knowledge. Section 3 discusses our 
design idea about MREclat algorithm. We present our 
experimental results in section 4. Section 5 concludes this 
paper. 

II. BACKGROUND KNOWLEDGE 

A. Frequent Itmeset 
The concept of frequent itemsets mining was introduced 

by Agrawal in 1993. It can be formally stated as: Let I = {i1, 
i2,…,in} be a set of n distinct items. Let D = {t1, t2,…, tm} be a 
set of m transactions, each transaction consists of a unique 
transaction identifier and a set of items, called itemset, which 
is a subset of set I. 

Definition 1: Let I1 I, the support of I1 is the ratio of 
transactions which contain I1. So, support(I1) =  ||{t D| I1

t}|| ||D||. 
 Definition 2: If the support of I1 is larger than a minimum 

support threshold—min_sup which is set by user, then I1 is 
frequent itemset. 

The task of frequent Itemset mining is to find all the 
frequent itemsets from database. And it is the first and key step 
of association rule mining. With the help of frequent itemsets, 
we can generate rules to find useful information between items. 

B. Database Layout 
There are two layout formats of the target dataset for 

association mining: the horizontal and the vertical layout. The 
horizontal layout database is also called the transactional 
database. It consists of a list of transactions, each transaction 
has an identifier (TID) followed by a list of items in that 
transaction. This format imposes some computation overhead 
during the support counting step [4]. In the vertical (or 
inverted) layout, database consists of a list of items, each item 
followed by the list of tids (also called tid-list). So, in the 
vertical layout database, it is quite easy to find frequent 
itemsets, because we just need to count the number of tids of 
each item. 

C. Algorithms Eclat 
Algorithm Eclat has two search approaches [4]: Bottom-up 

and Hybrid-Traversal. As Hybrid-Traversal is restrict to only 
identifying the maximal frequent subsets, so in this paper, we 
only introduce the Bottom-up approach which can be used to 
find all frequent itemsets. 

Input: Fk = {I1, I2, ...,  In}  //  cluster of frequent k-itemsets. 
Output: Frequent l-itemsets, l k. 
Bottom-Up (Fk ) { 
1. for all Ii Fk  
2. Fk+1  =  ∅; 
3.    for all Ij Fk , i < j 
4.       N = Ii Ij; 
5.        if  N .sup  min_sup then This work is supported by Key Programs of Natural Science Foundation 
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6.             Fk+1 = Fk+1 N; 
7.         end 
8.    end 
9. end 
10.  if Fk+1  ∅ then 
11.     Bottom-Up(Fk+1); 
12.  end 
13. } 

 
This process looks extremely like algorithm Apriori, but it 

differs from Apriori in step 5. In Apriori, we need to scan the 
whole database to compute the support of itemset N. However, 
Eclat just counts the number from tid-list of N. 

D. Map/Reduce Framework 
Map/Reduce [11] is proposed to support distributed 

computing. It’s a typical implement of share-nothing 
architecture that can efficiently process massive dataset. 
Map/Reduce framework firstly partitions user’s data into 
equal sized blocks with some replicas and distributes these 
blocks evenly to the distributed file system automatically. 
Then, Map/Reduce runs a same Map task on each of these 
blocks and automatically collects the outputs. Then, it uses a 
partition task to send these outputs to different computing 
nodes and runs a same Reduce task on these nodes. Finally, it 
collects the output of all Reduce tasks, the whole output is the 
result we need. Map/Reduce framework frees users from data 
distributing, task scheduling, fault tolerating and task 
communicating. Users only need to implement the map and 
reduce functions which are the key points of Map and Reduce 
task. 

III. IMPLEMENT OF MRECLAT 
Algorithm MREclat consists of three steps: The first is the 

initial step, we get all frequent 2-itemsets and their tid-lists 
from transaction database in this part; the second is the 
balanced group step, we partition frequent 1-itemsets into 
groups; the third is the parallel mining step, the data got in the 
first step redistributed to different computing nodes according 
to the group their prefix belong to. Each node run a improved 
Eclat to mine frequent itemsets. Finally, MREclat collects all 
the output from each computing node and formats the final 
result. 

A. The Initial Step 
The vertical layout, however, has a drawback. Examination 

of small itemsets tends to be costlier than when the horizontal 
layout is employed [10]. For example, a database with 
1,000,000(1M) transactions, 1,000 items and a average of 10 
items per transaction has tid-list of average size 10,000. To find 
frequent 2-itmsets, we have to intersect each pair of items, 
which requires 2 9

1000 (2 10,000) 10C × × ≈  operations. On 
the other hand, in the horizontal format we simply need to form 
all pairs of the items appearing in a transaction and increment 
their count, require only 2 7

10 1,000,000 4.5 10C × = ×  
operations. So, in this step, we take a Map/Reduce job to 
gather the occurrence count of all 2-itemsets directly from 
original transactional database. Its pseudo-code is described as 
follows: 

// Input: key is the identifier of the transaction and value is 
the items of the transaction. 

map (key, value) { 

1.   Get all items from value and sort them by lexicographic 
order, the sorted items are put into an array called items 
and the length of items is n. 

2. for (i = 0; i < n-1; i++) 
3.     for (j = i+1; j < n; j++) 
4.          output(items[i] items[j], key);  // form a new 2-

itemset and out it with the tid 
5. end 
6. end 
7.} 
 
In case that this map function outputs too much 

intermediate data, we may a use a additional Map/Reduce job 
to static the frequent 1-itemsets, and in the line 1, we only 
keep those items who are frequent. 

The input of reduce function is a 2-itemset and the list of 
transaction ids which contain this 2-itemset. After the reduce 
task, we get all frequent 2-itemsets and their tid-lists. The 
results are stored in the inverted layout database. 

reduce (key, value) {  
1. tid_list = ∅; 
2. sum = 0; 
3. for each tid in value 

    4.     sum++; 
    5.    tid_list = tid_list tid; 
    6. end 
    7. if sum transnum  min_sup then 

      8.    output (key, tid_list); 
// only output frequent 2-itemsets 

9. end 
} 
 

B. Balanced Group 
In order to achieve a good load balance, we partition the 

items into balanced groups. Considering that the only 
computation in Eclat algorithm is intersection, and the number 
of intersect operations between frequent itemset a and b 
equals to the length of tid_list of a plus the length of tid_list of 
b. we use wi (w means weight) to denote the operation 
complexity of getting all frequent itemsets prefixed (prefix 
means the first item in a itemset) by the item A (i is the index 
of A in frequent 1-itemset), which is defined as: 

0
log( 1) log( )

j n

i j
j

w n len
<

=

= − + �  (1) 

Where n is the number of frequent 2-items prefixed by A. 
we sort those frequent 2-itemsets prefixed by A in the 
lexicographic order, and use lenj to denote the length of list of 
the j-th frequent 2-itemset. 

After we compute all the w for each frequent 1-itemset, we 
sort the tuple consisted by the frequent 1-itemset and its 
weight by the value of weight in a descending order. Then 
MREclat uses a greedy strategy to divide the tuples into 
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groups, each group associated with an id. The group strategy 
is shown as follows: 

// Input: a is the array of tuple which consisted with <item, 
weight>; M is the number of topples; N is the number of 
groups. 

// Output: each item of groups is a group of frequent 1-
itemset 

divide (a[], groups[], M, N) 
1.  if (M<=N) then  
2.     for each tuple  t in a  
3.         add t.item to groups[i]; 
4.      end 
5.  else 
6.      Initial array sum[] of length N with 0 
7.      for (i=0; i<M; i++) 
8.           add the item of a[i] to groups[i]; 
9.           sum[i]+= a[i].weight; 
10.    end 
11.   for (i=M; i<N;i++) 
12.       find the index from sum with the minimum value 

and assign the index value to k; 
13.         add the item of a[i] to groups[k]; 
14.         sum[k]+= a[k].weight; 
15.    end 
16. end 

C. The Redistribution and Parallel Ecalt Step 
In this step, firstly, we want to redistribute 2-itemsets with 

the same prefix into a same computing node. For example, a 
2-itemset set “ab, ac, ad, bc, bd, cd…” and their tid-lists, “ab”, 
”ac” , ”ad” have the same prefix “a”. “bc”, “bd” have the same 
prefix “b”. Then, we will send “ab”, ”ac” , ”ad” accompany 
with their tid-lists to one computing node A, “bc”, “bd” 
accompany with their tid-lists to the computing node B. 
Secondly, we compute frequent itemsets on different nodes 
separately. 

This step takes a Map/Reduce job. The redistribution work 
is done in the map stage and its pseudo-code is described as 
follows: 

// Input: key is a 2-itemset; value is the tid-list of the 2-
itemset. 

map (key, value) { 
1. Get the prefix p from key; 
2.  output (a, <key, value>);   
3.} 
 
In addition, between the Map and Reduce stage, we take 

the Shuffle procedure to send the output of Map stage to 
assigned nods with the help of group strategy. The partition 
function in the procedure is designed as follows: 

// The input <key, value >is the output of map function; 
key is the prefix. 

getPartition(key, value){ 
1. for ( i=0; i< N; i++) 

 2.   if  key is in groups[i] then  
  3.         return i;  // we use the index as the id of the group 

the key belong to here. 
  4.     end 
  5. end 

} 

In the getPartition function, we associate the prefix with 
the group it belongs to. After the Shuffle procedure, all the    
2-itemsets with their prefix will certainly go to the computing 
node. 

In the reduce function, we get all frequent items with the 
prefix a. Its pseudo-code described as follows: 

//Input: key is the prefix; value is the 2-itemsets with its 
prefix. 
 reduce (key, value) { 
 1. a =key; 
 2. Get all Ca2 from value; //Ca2are 2-itemsets prefixed by a 
 3. Bottom-Up (Ca2) 
 4. Output all the frequent itemsets with the prefix a; 
5.} 
We collect all the output of reduce function, and get all 

the frequent itemsets. 

IV. PERFORMANCE EVALUATION 
Extensive experiments were conducted to assess the 

performance of the proposed algorithms. All the experiments 
were performed on a Hadoop cluster of 0.20.2 cluster of 10 
nodes, where each node contains a Intel(R) Xeon(R) E5620 
2.40GHz CPU, 32GB RAM, and a 500GB hard disk running 
CentOS 6.4. The algorithm is implemented in Java and the 
JDK version is 1.6.0_23. Both synthetic and real datasets were 
used in the experiments. The synthetic datasets were generated 
by the IBM Dataset Generator. The number of distinct items is 
1,000 and the average length of transactions is 10. Real 
datasets WebDocs from FIMI were used [13]. It is a collection 
of web html documents which contains exactly 1,692,082 
transactions with 5,267,656 distinct items. The maximal length 
of a transaction is 71,472. 

 

Figure 1. Scalability in different size of datasets 

The result of varying minimum supports on mining 
synthetic datasets is shown in Figure 1. We use four datasets 
with size of 560MB, 1126MB, 1740MB and 2356MB. To test 
the performance of MREclat, we assign 3 relatively small 
values to min_sup which are 0.01%, 0.015% and 0.02%. The 
experiences were run on 10 computing nodes. Figure 1 shows 
that with the increase of size on each node, the execution time 
increase in a linear way; and with the decrease of minimum 
support threshold, the running time also increase accordingly.  
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We may conclude that MREclat has a performance on the 
synthetic dataset. 

 

Figure 2. Execution time on different number of nodes 

Figure 2 shows the execution time of another group of 
datasets with size of 186MB, 374MB, 560MB, these datasets 
separately have the amount of transactions of 1M, 2M and 3M. 
the experiments choose a minimum support value of 0.01%. 
From Figure 2, we can see that with the increase of numbers of 
computing node, execution time on three datasets decreases 
accordingly. The run time on dataset with 1M transactions  can 
not decrease any more when the computing node number 
reaches 8, because the communication time will increase with 
the increase of computing nodes.  

 Figure 3 shows that MREclat achieves near linear speedup 
ratio on real dataset. 

 

Figure 3. Speedup on WebDocs dataset 

V. CONCLUSION 
We proposed a parallel algorithm MREclat which based on 

Map/Reduce framework in this paper. MREclat converts the 
transactional dataset firstly, and divide the frequent 1-itemsets 
into balanced groups, then redistribute records of converted 
dataset according to their prefixes. Records with prefixes in 
the same group will be distributed to the same computing 
node. MREclat uses the improved Eclat to process data with 
the same prefix. As shown in the experimental results, 
MREclat has high scalability and good speedup ratio. 
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