
Information Processing Letters 118 (2017) 78–82
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On pattern matching with k mismatches and few don’t cares

Marius Nicolae ∗, Sanguthevar Rajasekaran

Department of Computer Science and Engineering, University of Connecticut, 371 Fairfield Way Unit 4155, Storrs, CT 06269, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 April 2016
Received in revised form 17 October 2016
Accepted 18 October 2016
Available online 27 October 2016
Communicated by Ł. Kowalik

Keywords:
Algorithms
Pattern matching with k mismatches and
don’t cares
k Mismatches with wild cards
k Mismatches with don’t cares in the
pattern

We consider the problem of pattern matching with k mismatches, where there can be
don’t care or wild card characters in the pattern. Specifically, given a pattern P of length
m and a text T of length n, we want to find all occurrences of P in T that have no more
than k mismatches. The pattern can have don’t care characters, which match any character.
Without don’t cares, the best known algorithm for pattern matching with k mismatches
has a runtime of O (n

√
k log k). With don’t cares in the pattern, the best deterministic

algorithm has a runtime of O (nk polylog m). Therefore, there is an important gap between
the versions with and without don’t cares.
In this paper we give an algorithm whose runtime increases with the number of don’t
cares. We define an island to be a maximal length substring of P that does not contain
don’t cares. Let q be the number of islands in P . We present an algorithm that runs in
O (n

√
k log m + n min{ 3

√
qk log2 m,

√
q log m}) time. If the number of islands q is O (k) this

runtime becomes O (n
√

k log m), which essentially matches the best known runtime for
pattern matching with k mismatches without don’t cares. If the number of islands q is
O (k2), this algorithm is asymptotically faster than the previous best algorithm for pattern
matching with k mismatches with don’t cares in the pattern.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The problem of string matching can be defined as
follows. Given a text T = t1t2 · · · tn and a pattern P =
p1 p2 · · · pm , with letters from an alphabet �, find all the
occurrences of the pattern in the text. This problem can be
solved in O (n + m) time by using well known algorithms
(e.g., KMP [1]).

A more general formulation allows “don’t care” or “wild
card” characters in the text and/or the pattern. Pattern
matching with don’t cares can be solved in
O (n log |�| logm) as shown in [2]. A more recent result
[3] gives a deterministic O (n log m) time algorithm.

* Corresponding author.
E-mail addresses: marius.nicolae@engr.uconn.edu (M. Nicolae),

rajasek@engr.uconn.edu (S. Rajasekaran).
http://dx.doi.org/10.1016/j.ipl.2016.10.003
0020-0190/© 2016 Elsevier B.V. All rights reserved.
Yet another enhancement is to allow for mismatches.
We can formulate two versions of this problem: 1) pattern
matching with mismatches: find the distance between
the pattern and the text for every alignment between the
pattern and the text or 2) pattern matching with k mis-
matches: find only alignments for which the distance is
no more than a given threshold k.

The distance metric used can be the Hamming distance,
the edit distance or other criteria such as the number of
non-overlapping inversions (e.g. [4]). In this paper we fo-
cus on the Hamming distance. The Hamming distance be-
tween two strings A and B is defined as the number of
positions where the two strings differ and is denoted by
Hd(A, B).

Pattern matching with mismatches can be solved,
naively, by computing the Hamming distance for every
alignment of the pattern in the text, in time O (nm).

http://dx.doi.org/10.1016/j.ipl.2016.10.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:marius.nicolae@engr.uconn.edu
mailto:rajasek@engr.uconn.edu
http://dx.doi.org/10.1016/j.ipl.2016.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.10.003&domain=pdf

M. Nicolae, S. Rajasekaran / Information Processing Letters 118 (2017) 78–82 79
However, the fastest known exact algorithm is Abraham-
son’s algorithm [5] that runs in O (n

√
m log m) time.

Pattern matching with k mismatches can be solved in
O (nk) time (see [6] and [7]). These algorithms are based
on a technique called the Kangaroo method (see sec-
tion 2.1.4). This method computes the Hamming distance
for every alignment in O (k) time by “jumping” from one
error to the next. A faster algorithm for pattern matching
with k mismatches runs in O (n

√
k log k) [8]. A simpler ver-

sion of this algorithm was given in [9].
Recent work has also addressed the online version of

pattern matching, where the text is received in a streaming
model, one character at a time, and it cannot be stored in
its entirety (see e.g., [10–12]). Another version of this prob-
lem matches the pattern against multiple input streams
(see e.g., [13]). Yet another interesting problem is to sam-
ple a representative set of mismatches for every alignment
(see e.g., [14]). A survey of string matching with mis-
matches is given in [15]. A description of practical on-line
string searching algorithms can be found in [16].

Yet another formulation allows for don’t care or wild
card characters. Pattern matching with mismatches and
don’t cares can be solved in O (n

√
g log m) time, where g is

the number of non-wild card positions in the pattern (see
[9]). This is done by a simple extension of Abrahamson’s
algorithm.

Pattern matching with k mismatches and don’t cares
can be solved in time O (nk2 log2 m) as shown in [17]. The
runtime can be improved to O (nk polylogm) as shown in
[17,18] If we allow don’t cares only in the pattern, the

problem can be solved in O (n 3
√

mk log2 m) time as shown
in [19]. This is also the problem we discuss in this paper.

Notation. Let Ti denote titi+1, . . . ti+m−1 for all i = 1..n −
m + 1.

Pattern matching with k mismatches and don’t cares
in the pattern: Given a text T = t1t2 . . . tn and a pattern
P = p1 p2 . . . pm from an alphabet �, with |�| ≤ n, and
an integer k. Output all i, 1 ≤ i ≤ n − m + 1, for which
Hd(P , Ti) ≤ k. The pattern may contain don’t care charac-
ters, that match any character.

Given a pattern P , with don’t cares, a maximal length
substring of P that has no don’t cares is called an “island”.
We will denote the number of islands in P as q. In this
paper we give two algorithms for pattern matching with
k mismatches where there are don’t cares in the pattern.
The first one runs in O (n

√
(q + k) log m) time. The sec-

ond one runs in time O (n 3
√

qk log2 m + n
√

k log m) where
q is the number of islands in P . By combining the two,
we show that pattern matching with k mismatches and
don’t cares in the pattern can be solved in O (n

√
k log m +

n min{ 3
√

qk log2 m,
√

q log m}) time. If the number of islands
is O (k) our runtime becomes O (n

√
k log m), which essen-

tially matches the best known runtime for pattern match-
ing with k mismatches without don’t cares (O (n

√
k log k)).

Since q is always less than m, our algorithm outperforms

the O (n 3
√

mk log2 m) algorithm of [19]. For q = O (k2), our
algorithm outperforms the best known O (nk polylog m) al-
gorithms of [17,18].

2. Methods

Both algorithms in this paper have the same basic
structure (see section 2.2). The difference is in how fast
we can answer the single alignment verification question:

Question 1. Given i, is the Hamming distance between P and
Ti no more than k?

In the first algorithm (section 2.3), we can answer
this question in O (q + k) time. In the second algo-
rithm (section 2.4), we can answer this question in
O (

3
√

k2q2 log m + k) time.

2.1. Background

We start by reviewing a number of well known tech-
niques used in the literature for pattern matching with k
mismatches (e.g., see [8]), namely: convolution, marking,
filtering and the Kangaroo method.

2.1.1. Convolution
Given two arrays T = t1t2 . . . tn and P = p1 p2 . . . pm

(with m ≤ n), the convolution of T and P is a sequence
C = c1, c2, . . . , cn−m+1 where ci = ∑m

j=1 ti+ j−1 p j , for 1 ≤
i ≤ (n − m + 1).

Convolution can be applied to pattern matching with
mismatches, as follows. Given a string S and a character
α define string Sα as Sα[i] = 1 if S[i] = α and 0 other-
wise. Let Cα = convolution(T α, Pα). Then Cα[i] gives the
number of matches between P and Ti where the match-
ing character is α. Therefore, one convolution gives us the
number of matches contributed by a single character to
each of the alignments. Then

∑
α∈� Cα[i] is the total num-

ber of matches between P and Ti .
One convolution can be computed in O (n log m) time

by using the Fast Fourier Transform. If the convolutions
are applied on binary inputs, as is often the case in pat-
tern matching applications, some speedup techniques are
presented in [20].

2.1.2. Marking
Marking is an algorithm that counts the number of

matches of every alignment, as follows. The algorithm
scans the text one character at a time and “marks” all the
alignments that would produce a match between the cur-
rent character in the text and the corresponding character
in the pattern. The marking algorithm is generally used
only on a subset of the pattern. That is, given a set A of
positions in P the marking algorithm counts matches be-
tween the text and the subset of P given by A. The pseu-
docode of the marking algorithm is given in Algorithm 1.

2.1.3. Filtering
Filtering is a method for reducing the number of align-

ments to look at. Filtering is based on the following prin-
ciple. If we restrict our pattern to only 2k positions, any
alignment that has no more than k mismatches, must

80 M. Nicolae, S. Rajasekaran / Information Processing Letters 118 (2017) 78–82
Algorithm 1: Mark(T , P , A).
input : Text T , pattern P and a set A of positions in P
output: An array M where M[i] gives the number of matches

between Ti and P , on the subset of positions of P given
by A

for i ← 1 to n do M[i] = 0;
for i ← 1 to n do

for j ∈ A s.t. P [j] = T [i] do
if i − j + 1 > 0 then M[i − j + 1]++ ;

return M;

have at least k matches among the 2k positions. To count
matches among the 2k positions selected, for every align-
ment, we use the marking algorithm. If the total number
of marks generated is B then there can be no more than
B/k positions that have at least k marks. Therefore, instead
of n −m + 1 alignments we only have to look at B/k align-
ments. Each alignment is then verified using other meth-
ods.

2.1.4. The Kangaroo method
The Kangaroo method allows us to check if the num-

ber of mismatches for a particular alignment is no more
than k, in O (k) time. The Kangaroo method constructs a
generalized suffix tree of T + P , where + means concate-
nation. This suffix tree can be enhanced to answer Lowest
Common Ancestor (LCA) queries in O (1) time [21]. LCA
queries give us the longest common prefix between any
portion of the text and any portion of the pattern, essen-
tially telling us where the first mismatch appears. Specifi-
cally, to count mismatches between P and Ti , first perform
an LCA query to find the position of the first mismatch
between P and Ti . Let this position be j. Then, perform
another LCA to find the first mismatch between P j+1..m
and Ti+ j+1..i+m−1, which gives the second mismatch of
alignment i. Continue to “jump” from one mismatch to the
next, until the end of the pattern is reached or we have
found more than k mismatches. Therefore, after O (k) LCA
queries we will either find all the mismatches or deter-
mine that there are more than k of them. The Kangaroo
pseudocode is given in Algorithm 2.

Algorithm 2: Kangaroo(P , Ti, k).
input : A pattern P , an alignment Ti and an integer k
output: true if the pattern matches the alignment with no more

than k mismatches, false otherwise
j = 0;
d = 0;
while d ≤ k do

j = j + LCA(Ti+ j , P j+1) + 1;
if j > m then

return true;

d = d + 1;

return false;

2.2. General algorithm

We are now ready to present the main algorithms given
in this paper. The general structure of both the algorithms
is given in Algorithm 3.
Algorithm 3: K -Mismatches with Wild Cards.
Let Fa be the number of occurrences of character a in T for all
a ∈ �;
Let Cost(A) = �i∈A F P [i];
Let A be a set of positions in P such that |A| ≤ 2k and
Cost(A) ≤ B;
M = Mark(T , P , A);
if |A| == 2k then

R = {};
for i = 1 to n do

if Mi ≥ k and DistNoMoreT hanK (Ti , P , k) then
R = R ∪ {i};

else
for a ∈ � s.t. a �= P [i], ∀i ∈ A do

M ′ = Convolution(T , P , a);
M+=M ′;

R = {i ∈ [1..n]|Mi ≥ m − k};

return R;

Algorithm and analysis: For each position i in P such
that P [i] = a, we assign a cost Fa where Fa is the number
of occurrences of a in T . The algorithm starts by choosing
up to 2k positions from the pattern such that the total cost
does not exceed a “budget” B . The positions are chosen by
a simple greedy strategy: sort all the characters by their
cost Fa . Start choosing positions equal to the “cheapest”
character, then choose positions equal to the next cheapest
character, and so on until we have chosen 2k positions or
we have exceeded the budget B .

Case 1: If we can find 2k positions that cost no more
than B , then we call the marking algorithm with those
2k positions. Any position in T that receives less than k
marks, has more than k mismatches, so we now focus
on positions in T that have at least k marks. If the total
number of marks is B , then there will be no more than
B/k positions that have at least k marks. We verify each
of these positions to see if they have more than k mis-
matches. Let the time for a single verification be O (V).
Then, the runtime is O (B V /k).

Case 2: If we cannot find 2k positions that cost no more
than B , then we compute marking for the positions that
we did choose before we ran out of budget. Then, for each
of the characters that we did not choose, we compute one
convolution to count how many matches they contribute
to each alignment. It is easy to see that each of the charac-
ters not chosen for marking must have Fa > B/(2k). There-
fore, the total number of such characters is no more than
n/(B/(2k)). Therefore, the runtime of the convolution stage
is O (nk/B ∗ n log m). The runtime of the marking stage is
O (B), therefore the total runtime is O (B + nk/B ∗ n log m).

If we make the runtime of the two cases equal, we can
find the optimal value of B .

B V /k = B + n2k/B log m ⇒ B = nk

√
log m

V

This gives an asymptotic runtime of O (B V /k) =
O (n

√
V log m). Therefore, the runtime of the algorithm de-

pends on V , which is the time it takes to verify whether a
given single alignment has no more than k mismatches.

M. Nicolae, S. Rajasekaran / Information Processing Letters 118 (2017) 78–82 81
2.3. Single alignment distance in O (q + k) time

We can answer the single alignment question in O (q +
k) time where q is the number of islands in the pattern
as shown in Algorithm 4. The algorithm uses Kangaroo
jumps [6] to go to the next mismatch within an island
in O (1) time. If there is no mismatch left in the island,
the algorithm goes to the next island also in O (1) time.
Therefore, the runtime is O (q + k). With V = O (q + k),
Algorithm 3 does pattern matching with k mismatches in
O (n

√
(q + k) log m) time.

Algorithm 4: DistNoMoreT hanK _V 1(Ti, P , k).

d = 0;
j = 1;
while d ≤ k and j ≤ q do

r = no. of mismatches between island j and corresponding
region of Ti (use Kangaroo jumps);
d+=r;
j+=1;

return d ≤ k

2.4. Single alignment distance in O (k2/3q2/3 log1/3 m + k)

time

This idea is based on splitting the pattern into sec-
tions. We know that no more than k sections can have
mismatches. The remaining sections have to match exactly.
Consider exact pattern matching with don’t cares. We can
check where a pattern matches the text exactly by using a
constant number of convolutions. This is true because we
can compute the values Ci = �m−1

j=0 (Ti+ j − P j)
2Ti+ j P j us-

ing a constant number of convolutions (see [3]). If Ci = 0
then the pattern matches the text at position i.

Using this result, we will split the pattern into S sec-
tions. In each section we include q/S islands. For each of
the S sections, we use a constant number of convolutions
to check where the section matches the text. If P has no
more than k mismatches at a particular alignment, then at
least S − k sections have to match exactly. Each of the at
most k sections that do not match exactly are verified us-
ing Kangaroo jumps as seen earlier. One section takes at
most O (q/S + k′) time, where k′ is the number of mis-
matches discovered in that section. Over all the sections,
the k′ terms add up to no more than k, therefore the en-
tire alignment can be verified in time O (S + k + kq/S).

If we make V = O (S + k + kq/S) in Algorithm 3, then
its runtime becomes

O (n
√

V log m) = O (n
√

(S + k + kq/S) logm).

The preprocessing time for the S sections is O (Sn log m).
The optimal value of S is such that the preprocessing
equals the main runtime:

n
√

(S + k + kq/S) logm = Sn log m

⇒ S + k + kq/S = S2 log m

⇒ S2/ log m + kS/ log m + kq/ log m = S3

⇒ S ≈ O (
3
√

kq/ log m)
This makes V = O (S + k + kq/S) = O (k + 3
√

k2q2 logm).
This gives a runtime for pattern matching with k mis-
matches of:

O (nS log m + n
√

V log m)

= O

(
n

3
√

kq log2 m + n

√
(k + 3

√
k2q2 log m) log m

)

= O

(
n

3
√

kq log2 m + n
√

k log m

)

2.5. Combined result

If q < k2 then we can use the algorithm of section 2.3,
which runs in O (n

√
(q + k) log m) time. Otherwise, if

q > k2, we use the algorithm of section 2.4, which runs

in O (n 3
√

qk log2 m +n
√

k log m) time. Thus we have the fol-
lowing:

Theorem 1. Pattern matching with k mismatches, with don’t
care symbols in the pattern, can be solved in O

(
n
√

k log m +
n min{√q log m, 3

√
qk log2 m}

)
time.

3. Conclusions

In this paper we have offered efficient algorithms for
the problem of pattern matching with k mismatches.
Specifically, we have presented an algorithm that runs in

O (n
√

k log m + n min{ 3
√

qk log2 m,
√

q log m}) time, where q
is the number of islands. If the number of islands q is o(m),
this algorithm is asymptotically faster than the previous
best algorithm for pattern matching with k mismatches
with don’t cares in the pattern.

Acknowledgements

This work has been supported in part by the following
grants: NSF 1447711 and NIH R01-LM010101.

References

[1] D.E. Knuth, James H. Morris Jr., V.R. Pratt, Fast pattern matching
in strings, SIAM J. Comput. 6 (2) (1977) 323–350, http://dx.doi.org/
10.1137/0206024.

[2] M.J. Fischer, M.S. Paterson, String-Matching and Other Products, Tech.
Rep. MAC-TM-41, Massachusetts Institute of Technology Cambridge
Project MAC, Cambridge, MA, USA, 1974.

[3] P. Clifford, R. Clifford, Simple deterministic wildcard matching,
Inf. Process. Lett. 101 (2) (2007) 53–54, http://dx.doi.org/10.1016/
j.ipl.2006.08.002.

[4] D. Cantone, S. Cristofaro, S. Faro, Efficient string-matching allow-
ing for non-overlapping inversions, Theor. Comput. Sci. 483 (2013)
85–95, http://dx.doi.org/10.1016/j.tcs.2012.06.009.

[5] K. Abrahamson, Generalized string matching, SIAM J. Comput. 16 (6)
(1987) 1039–1051, http://dx.doi.org/10.1137/0216067.

[6] G.M. Landau, U. Vishkin, Efficient string matching in the presence
of errors, in: Foundations of Computer Science, 1985., 26th Annual
Symposium, IEEE, 1985, pp. 126–136.

[7] Z. Galil, R. Giancarlo, Improved string matching with k mismatches,
SIGACT News 17 (4) (1986) 52–54, http://dx.doi.org/10.1145/8307.
8309.

http://dx.doi.org/10.1137/0206024
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib46503734s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib46503734s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib46503734s1
http://dx.doi.org/10.1016/j.ipl.2006.08.002
http://dx.doi.org/10.1016/j.tcs.2012.06.009
http://dx.doi.org/10.1137/0216067
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib4C563835s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib4C563835s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib4C563835s1
http://dx.doi.org/10.1145/8307.8309
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1016/j.ipl.2006.08.002
http://dx.doi.org/10.1145/8307.8309

82 M. Nicolae, S. Rajasekaran / Information Processing Letters 118 (2017) 78–82
[8] A. Amir, M. Lewenstein, E. Porat, Faster algorithms for string match-
ing with k mismatches, J. Algorithms 50 (2) (2004) 257–275, http://
dx.doi.org/10.1016/S0196-6774(03)00097-X.

[9] M. Nicolae, S. Rajasekaran, On string matching with mismatches, Al-
gorithms 8 (2) (2015) 248–270, http://dx.doi.org/10.3390/a8020248.

[10] R. Clifford, K. Efremenko, B. Porat, E. Porat, A black box for online
approximate pattern matching, in: Combinatorial Pattern Matching,
Springer-Verlag, 2008, pp. 143–151.

[11] B. Porat, E. Porat, Exact and approximate pattern matching in
the streaming model, in: Foundations of Computer Science, 2009,
FOCS ’09, 50th Annual IEEE Symposium, 2009, pp. 315–323.

[12] E. Porat, O. Lipsky, Improved sketching of hamming distance with
error correcting, in: Combinatorial Pattern Matching, Springer, 2007,
pp. 173–182.

[13] R. Clifford, K. Efremenko, E. Porat, A. Rothschild, k-Mismatch with
don’t cares, in: L. Arge, M. Hoffmann, E. Welzl (Eds.), Algorithms–
ESA 2007, in: Lecture Notes in Computer Science, vol. 4698, Springer,
Berlin, Heidelberg, 2007, pp. 151–162.

[14] R. Clifford, K. Efremenko, B. Porat, E. Porat, A. Rothschild, Mismatch
sampling, Inf. Comput. 214 (2012) 112–118, http://dx.doi.org/10.
1016/j.ic.2012.02.007.

[15] G. Navarro, A guided tour to approximate string matching, ACM
Comput. Surv. 33 (1) (2001) 31–88, http://dx.doi.org/10.1145/
375360.375365.
[16] G. Navarro, M. Raffinot, Flexible Pattern Matching in Strings – Prac-
tical On-Line Search Algorithms for Texts and Biological Sequences,
Cambridge University Press, 2002, http://www.dcc.uchile.cl/~
gnavarro/FPMbook/.

[17] R. Clifford, K. Efremenko, E. Porat, A. Rothschild, Pattern matching
with don’t cares and few errors, J. Comput. Syst. Sci. 76 (2) (2010)
115–124, http://dx.doi.org/10.1016/j.jcss.2009.06.002, http://www.
sciencedirect.com/science/article/pii/S0022000009000567.

[18] R. Clifford, K. Efremenko, E. Porat, A. Rothschild, From cod-
ing theory to efficient pattern matching, in: Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’09, Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2009, pp. 778–784, http://dl.acm.org/citation.cfm?id=
1496770.1496855.

[19] R. Clifford, E. Porat, A filtering algorithm for k-mismatch with don’t
cares, in: String Processing and Information Retrieval, Springer, 2007,
pp. 130–136.

[20] K. Fredriksson, S. Grabowski, Combinatorial algorithms, in: Fast Con-
volutions and Their Applications in Approximate String Matching,
Springer-Verlag, Berlin, Heidelberg, 2009, pp. 254–265.

[21] A.V. Aho, J.E. Hopcroft, J.D. Ullman, On finding lowest common an-
cestors in trees, SIAM J. Comput. 5 (1) (1976) 115–132, http://dx.
doi.org/10.1137/0205011.

http://dx.doi.org/10.1016/S0196-6774(03)00097-X
http://dx.doi.org/10.3390/a8020248
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib434B503038s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib434B503038s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib434B503038s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib50503039s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib50503039s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib50503039s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib504C3037s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib504C3037s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib504C3037s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib4345502B3037s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib4345502B3037s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib4345502B3037s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib4345502B3037s1
http://dx.doi.org/10.1016/j.ic.2012.02.007
http://dx.doi.org/10.1145/375360.375365
http://www.dcc.uchile.cl/~gnavarro/FPMbook/
http://www.dcc.uchile.cl/~gnavarro/FPMbook/
http://dx.doi.org/10.1016/j.jcss.2009.06.002
http://www.sciencedirect.com/science/article/pii/S0022000009000567
http://www.sciencedirect.com/science/article/pii/S0022000009000567
http://dl.acm.org/citation.cfm?id=1496770.1496855
http://dl.acm.org/citation.cfm?id=1496770.1496855
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib43503037s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib43503037s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib43503037s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib46473039s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib46473039s1
http://refhub.elsevier.com/S0020-0190(16)30144-2/bib46473039s1
http://dx.doi.org/10.1137/0205011
http://dx.doi.org/10.1016/S0196-6774(03)00097-X
http://dx.doi.org/10.1016/j.ic.2012.02.007
http://dx.doi.org/10.1145/375360.375365
http://dx.doi.org/10.1137/0205011

	On pattern matching with k mismatches and few don't cares
	1 Introduction
	2 Methods
	2.1 Background
	2.1.1 Convolution
	2.1.2 Marking
	2.1.3 Filtering
	2.1.4 The Kangaroo method

	2.2 General algorithm
	2.3 Single alignment distance in O(q+k) time
	2.4 Single alignment distance in O(k2/3q2/3 log1/3m+k) time
	2.5 Combined result

	3 Conclusions
	Acknowledgements
	References

