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We consider the problem of pattern matching with k mismatches, where there can be 
don’t care or wild card characters in the pattern. Specifically, given a pattern P of length 
m and a text T of length n, we want to find all occurrences of P in T that have no more 
than k mismatches. The pattern can have don’t care characters, which match any character. 
Without don’t cares, the best known algorithm for pattern matching with k mismatches 
has a runtime of O (n

√
k log k). With don’t cares in the pattern, the best deterministic 

algorithm has a runtime of O (nk polylog m). Therefore, there is an important gap between 
the versions with and without don’t cares.
In this paper we give an algorithm whose runtime increases with the number of don’t 
cares. We define an island to be a maximal length substring of P that does not contain 
don’t cares. Let q be the number of islands in P . We present an algorithm that runs in 
O (n

√
k log m + n min{ 3

√
qk log2 m, 

√
q log m}) time. If the number of islands q is O (k) this 

runtime becomes O (n
√

k log m), which essentially matches the best known runtime for 
pattern matching with k mismatches without don’t cares. If the number of islands q is 
O (k2), this algorithm is asymptotically faster than the previous best algorithm for pattern 
matching with k mismatches with don’t cares in the pattern.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The problem of string matching can be defined as 
follows. Given a text T = t1t2 · · · tn and a pattern P =
p1 p2 · · · pm , with letters from an alphabet �, find all the 
occurrences of the pattern in the text. This problem can be 
solved in O (n + m) time by using well known algorithms 
(e.g., KMP [1]).

A more general formulation allows “don’t care” or “wild 
card” characters in the text and/or the pattern. Pattern 
matching with don’t cares can be solved in
O (n log |�| logm) as shown in [2]. A more recent result 
[3] gives a deterministic O (n log m) time algorithm.
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Yet another enhancement is to allow for mismatches. 
We can formulate two versions of this problem: 1) pattern 
matching with mismatches: find the distance between 
the pattern and the text for every alignment between the 
pattern and the text or 2) pattern matching with k mis-
matches: find only alignments for which the distance is 
no more than a given threshold k.

The distance metric used can be the Hamming distance, 
the edit distance or other criteria such as the number of 
non-overlapping inversions (e.g. [4]). In this paper we fo-
cus on the Hamming distance. The Hamming distance be-
tween two strings A and B is defined as the number of 
positions where the two strings differ and is denoted by 
Hd(A, B).

Pattern matching with mismatches can be solved, 
naively, by computing the Hamming distance for every 
alignment of the pattern in the text, in time O (nm). 
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However, the fastest known exact algorithm is Abraham-
son’s algorithm [5] that runs in O (n

√
m log m) time.

Pattern matching with k mismatches can be solved in 
O (nk) time (see [6] and [7]). These algorithms are based 
on a technique called the Kangaroo method (see sec-
tion 2.1.4). This method computes the Hamming distance 
for every alignment in O (k) time by “jumping” from one 
error to the next. A faster algorithm for pattern matching 
with k mismatches runs in O (n

√
k log k) [8]. A simpler ver-

sion of this algorithm was given in [9].
Recent work has also addressed the online version of 

pattern matching, where the text is received in a streaming 
model, one character at a time, and it cannot be stored in 
its entirety (see e.g., [10–12]). Another version of this prob-
lem matches the pattern against multiple input streams 
(see e.g., [13]). Yet another interesting problem is to sam-
ple a representative set of mismatches for every alignment 
(see e.g., [14]). A survey of string matching with mis-
matches is given in [15]. A description of practical on-line 
string searching algorithms can be found in [16].

Yet another formulation allows for don’t care or wild 
card characters. Pattern matching with mismatches and 
don’t cares can be solved in O (n

√
g log m) time, where g is 

the number of non-wild card positions in the pattern (see 
[9]). This is done by a simple extension of Abrahamson’s 
algorithm.

Pattern matching with k mismatches and don’t cares 
can be solved in time O (nk2 log2 m) as shown in [17]. The 
runtime can be improved to O (nk polylogm) as shown in 
[17,18] If we allow don’t cares only in the pattern, the 

problem can be solved in O (n 3
√

mk log2 m) time as shown 
in [19]. This is also the problem we discuss in this paper.

Notation. Let Ti denote titi+1, . . . ti+m−1 for all i = 1..n −
m + 1.

Pattern matching with k mismatches and don’t cares 
in the pattern: Given a text T = t1t2 . . . tn and a pattern 
P = p1 p2 . . . pm from an alphabet �, with |�| ≤ n, and 
an integer k. Output all i, 1 ≤ i ≤ n − m + 1, for which 
Hd(P , Ti) ≤ k. The pattern may contain don’t care charac-
ters, that match any character.

Given a pattern P , with don’t cares, a maximal length 
substring of P that has no don’t cares is called an “island”. 
We will denote the number of islands in P as q. In this 
paper we give two algorithms for pattern matching with 
k mismatches where there are don’t cares in the pattern. 
The first one runs in O (n

√
(q + k) log m) time. The sec-

ond one runs in time O (n 3
√

qk log2 m + n
√

k log m) where 
q is the number of islands in P . By combining the two, 
we show that pattern matching with k mismatches and 
don’t cares in the pattern can be solved in O (n

√
k log m +

n min{ 3
√

qk log2 m, 
√

q log m}) time. If the number of islands 
is O (k) our runtime becomes O (n

√
k log m), which essen-

tially matches the best known runtime for pattern match-
ing with k mismatches without don’t cares (O (n

√
k log k)). 

Since q is always less than m, our algorithm outperforms 

the O (n 3
√

mk log2 m) algorithm of [19]. For q = O (k2), our 
algorithm outperforms the best known O (nk polylog m) al-
gorithms of [17,18].

2. Methods

Both algorithms in this paper have the same basic 
structure (see section 2.2). The difference is in how fast 
we can answer the single alignment verification question:

Question 1. Given i, is the Hamming distance between P and 
Ti no more than k?

In the first algorithm (section 2.3), we can answer 
this question in O (q + k) time. In the second algo-
rithm (section 2.4), we can answer this question in 
O (

3
√

k2q2 log m + k) time.

2.1. Background

We start by reviewing a number of well known tech-
niques used in the literature for pattern matching with k
mismatches (e.g., see [8]), namely: convolution, marking, 
filtering and the Kangaroo method.

2.1.1. Convolution
Given two arrays T = t1t2 . . . tn and P = p1 p2 . . . pm

(with m ≤ n), the convolution of T and P is a sequence 
C = c1, c2, . . . , cn−m+1 where ci = ∑m

j=1 ti+ j−1 p j , for 1 ≤
i ≤ (n − m + 1).

Convolution can be applied to pattern matching with 
mismatches, as follows. Given a string S and a character 
α define string Sα as Sα[i] = 1 if S[i] = α and 0 other-
wise. Let Cα = convolution(T α, Pα). Then Cα[i] gives the 
number of matches between P and Ti where the match-
ing character is α. Therefore, one convolution gives us the 
number of matches contributed by a single character to 
each of the alignments. Then 

∑
α∈� Cα[i] is the total num-

ber of matches between P and Ti .
One convolution can be computed in O (n log m) time 

by using the Fast Fourier Transform. If the convolutions 
are applied on binary inputs, as is often the case in pat-
tern matching applications, some speedup techniques are 
presented in [20].

2.1.2. Marking
Marking is an algorithm that counts the number of 

matches of every alignment, as follows. The algorithm 
scans the text one character at a time and “marks” all the 
alignments that would produce a match between the cur-
rent character in the text and the corresponding character 
in the pattern. The marking algorithm is generally used 
only on a subset of the pattern. That is, given a set A of 
positions in P the marking algorithm counts matches be-
tween the text and the subset of P given by A. The pseu-
docode of the marking algorithm is given in Algorithm 1.

2.1.3. Filtering
Filtering is a method for reducing the number of align-

ments to look at. Filtering is based on the following prin-
ciple. If we restrict our pattern to only 2k positions, any 
alignment that has no more than k mismatches, must 
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Algorithm 1: Mark(T , P , A).
input : Text T , pattern P and a set A of positions in P
output: An array M where M[i] gives the number of matches 

between Ti and P , on the subset of positions of P given 
by A

for i ← 1 to n do M[i] = 0;
for i ← 1 to n do

for j ∈ A s.t. P [ j] = T [i] do
if i − j + 1 > 0 then M[i − j + 1]++ ;

return M;

have at least k matches among the 2k positions. To count 
matches among the 2k positions selected, for every align-
ment, we use the marking algorithm. If the total number 
of marks generated is B then there can be no more than 
B/k positions that have at least k marks. Therefore, instead 
of n −m + 1 alignments we only have to look at B/k align-
ments. Each alignment is then verified using other meth-
ods.

2.1.4. The Kangaroo method
The Kangaroo method allows us to check if the num-

ber of mismatches for a particular alignment is no more 
than k, in O (k) time. The Kangaroo method constructs a 
generalized suffix tree of T + P , where + means concate-
nation. This suffix tree can be enhanced to answer Lowest 
Common Ancestor (LCA) queries in O (1) time [21]. LCA 
queries give us the longest common prefix between any 
portion of the text and any portion of the pattern, essen-
tially telling us where the first mismatch appears. Specifi-
cally, to count mismatches between P and Ti , first perform 
an LCA query to find the position of the first mismatch 
between P and Ti . Let this position be j. Then, perform 
another LCA to find the first mismatch between P j+1..m
and Ti+ j+1..i+m−1, which gives the second mismatch of 
alignment i. Continue to “jump” from one mismatch to the 
next, until the end of the pattern is reached or we have 
found more than k mismatches. Therefore, after O (k) LCA 
queries we will either find all the mismatches or deter-
mine that there are more than k of them. The Kangaroo 
pseudocode is given in Algorithm 2.

Algorithm 2: Kangaroo(P , Ti, k).
input : A pattern P , an alignment Ti and an integer k
output: true if the pattern matches the alignment with no more 

than k mismatches, false otherwise
j = 0;
d = 0;
while d ≤ k do

j = j + LCA(Ti+ j , P j+1) + 1;
if j > m then

return true;

d = d + 1;

return false;

2.2. General algorithm

We are now ready to present the main algorithms given 
in this paper. The general structure of both the algorithms 
is given in Algorithm 3.
Algorithm 3: K -Mismatches with Wild Cards.
Let Fa be the number of occurrences of character a in T for all 
a ∈ �;
Let Cost(A) = �i∈A F P [i];
Let A be a set of positions in P such that |A| ≤ 2k and 
Cost(A) ≤ B;
M = Mark(T , P , A);
if |A| == 2k then

R = {};
for i = 1 to n do

if Mi ≥ k and DistNoMoreT hanK (Ti , P , k) then
R = R ∪ {i};

else
for a ∈ � s.t. a �= P [i], ∀i ∈ A do

M ′ = Convolution(T , P , a);
M+=M ′;

R = {i ∈ [1..n]|Mi ≥ m − k};

return R;

Algorithm and analysis: For each position i in P such 
that P [i] = a, we assign a cost Fa where Fa is the number 
of occurrences of a in T . The algorithm starts by choosing 
up to 2k positions from the pattern such that the total cost 
does not exceed a “budget” B . The positions are chosen by 
a simple greedy strategy: sort all the characters by their 
cost Fa . Start choosing positions equal to the “cheapest” 
character, then choose positions equal to the next cheapest 
character, and so on until we have chosen 2k positions or 
we have exceeded the budget B .

Case 1: If we can find 2k positions that cost no more 
than B , then we call the marking algorithm with those 
2k positions. Any position in T that receives less than k
marks, has more than k mismatches, so we now focus 
on positions in T that have at least k marks. If the total 
number of marks is B , then there will be no more than 
B/k positions that have at least k marks. We verify each 
of these positions to see if they have more than k mis-
matches. Let the time for a single verification be O (V ). 
Then, the runtime is O (B V /k).

Case 2: If we cannot find 2k positions that cost no more 
than B , then we compute marking for the positions that 
we did choose before we ran out of budget. Then, for each 
of the characters that we did not choose, we compute one 
convolution to count how many matches they contribute 
to each alignment. It is easy to see that each of the charac-
ters not chosen for marking must have Fa > B/(2k). There-
fore, the total number of such characters is no more than 
n/(B/(2k)). Therefore, the runtime of the convolution stage 
is O (nk/B ∗ n log m). The runtime of the marking stage is 
O (B), therefore the total runtime is O (B + nk/B ∗ n log m).

If we make the runtime of the two cases equal, we can 
find the optimal value of B .

B V /k = B + n2k/B log m ⇒ B = nk

√
log m

V

This gives an asymptotic runtime of O (B V /k) =
O (n

√
V log m). Therefore, the runtime of the algorithm de-

pends on V , which is the time it takes to verify whether a 
given single alignment has no more than k mismatches.
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2.3. Single alignment distance in O (q + k) time

We can answer the single alignment question in O (q +
k) time where q is the number of islands in the pattern 
as shown in Algorithm 4. The algorithm uses Kangaroo 
jumps [6] to go to the next mismatch within an island 
in O (1) time. If there is no mismatch left in the island, 
the algorithm goes to the next island also in O (1) time. 
Therefore, the runtime is O (q + k). With V = O (q + k), 
Algorithm 3 does pattern matching with k mismatches in 
O (n

√
(q + k) log m) time.

Algorithm 4: DistNoMoreT hanK _V 1(Ti, P , k).

d = 0;
j = 1;
while d ≤ k and j ≤ q do

r = no. of mismatches between island j and corresponding 
region of Ti (use Kangaroo jumps);
d+=r;
j+=1;

return d ≤ k

2.4. Single alignment distance in O (k2/3q2/3 log1/3 m + k)

time

This idea is based on splitting the pattern into sec-
tions. We know that no more than k sections can have 
mismatches. The remaining sections have to match exactly. 
Consider exact pattern matching with don’t cares. We can 
check where a pattern matches the text exactly by using a 
constant number of convolutions. This is true because we 
can compute the values Ci = �m−1

j=0 (Ti+ j − P j)
2Ti+ j P j us-

ing a constant number of convolutions (see [3]). If Ci = 0
then the pattern matches the text at position i.

Using this result, we will split the pattern into S sec-
tions. In each section we include q/S islands. For each of 
the S sections, we use a constant number of convolutions 
to check where the section matches the text. If P has no 
more than k mismatches at a particular alignment, then at 
least S − k sections have to match exactly. Each of the at 
most k sections that do not match exactly are verified us-
ing Kangaroo jumps as seen earlier. One section takes at 
most O (q/S + k′) time, where k′ is the number of mis-
matches discovered in that section. Over all the sections, 
the k′ terms add up to no more than k, therefore the en-
tire alignment can be verified in time O (S + k + kq/S).

If we make V = O (S + k + kq/S) in Algorithm 3, then 
its runtime becomes

O (n
√

V log m) = O (n
√

(S + k + kq/S) logm).

The preprocessing time for the S sections is O (Sn log m). 
The optimal value of S is such that the preprocessing 
equals the main runtime:

n
√

(S + k + kq/S) logm = Sn log m

⇒ S + k + kq/S = S2 log m

⇒ S2/ log m + kS/ log m + kq/ log m = S3

⇒ S ≈ O (
3
√

kq/ log m)
This makes V = O (S + k + kq/S) = O (k + 3
√

k2q2 logm). 
This gives a runtime for pattern matching with k mis-
matches of:

O (nS log m + n
√

V log m)

= O

(
n

3
√

kq log2 m + n

√
(k + 3

√
k2q2 log m) log m

)

= O

(
n

3
√

kq log2 m + n
√

k log m

)

2.5. Combined result

If q < k2 then we can use the algorithm of section 2.3, 
which runs in O (n

√
(q + k) log m) time. Otherwise, if 

q > k2, we use the algorithm of section 2.4, which runs 

in O (n 3
√

qk log2 m +n
√

k log m) time. Thus we have the fol-
lowing:

Theorem 1. Pattern matching with k mismatches, with don’t 
care symbols in the pattern, can be solved in O

(
n
√

k log m +
n min{√q log m, 3

√
qk log2 m}

)
time.

3. Conclusions

In this paper we have offered efficient algorithms for 
the problem of pattern matching with k mismatches. 
Specifically, we have presented an algorithm that runs in 

O (n
√

k log m + n min{ 3
√

qk log2 m, 
√

q log m}) time, where q
is the number of islands. If the number of islands q is o(m), 
this algorithm is asymptotically faster than the previous 
best algorithm for pattern matching with k mismatches 
with don’t cares in the pattern.
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