
An Independent Task Scheduling Algorithm in
Heterogeneous Multi-core Processor Environment

Lindong Liu1,2 , Deyu Qi1

1.Research Institute of Computer Systems at South China University of Technology, Guangzhou,China
2.Department of Computer Science, Guangdong University of Education,Guangzhou,China

hongox@163.com

Abstract—Multi-core processor architecture is increasingly being used

in high-performance computing.Task scheduling problem for performance

heterogeneous multi-core processor is a well-known NP-complete problem.
Based on heterogeneous multi-core processor environment, independent

online task scheduling is studied in this paper. In this paper, a scheduling
model of heterogeneous multi-core processors based on weighted earliest finish

time is proposed, and the wEFT algorithm is proposed. The wEFT algorithm
selects the processor core to execute task with the minimum earliest

completion time or the minimum weighted links of every processor core.
Experiments show that compared with RR, wRR, LC and wLC algorithms

under the environment of different number of tasks and processor cores, the
makespan for the complete schedule of all tasks and average waiting time in

wEFT algorithm is superior to other four algorithms.

Keywords—Processor core;task scheduling;independent task;

makespan;average waiting time

I. INTRODUCTION
Multi-core processor[1-4] integrates multiple fully functional

processor cores in the same chip, and each processor core can be
homogenous or heterogeneous. Multi-core processor architecture has
become the mainstream microprocessor architecture and is widely
used in high-performance computing environment. Heterogeneous
multi-core processors can be divided into two types,they are
functional heterogeneous multi-core and performance heterogeneous
multi-core. Functional heterogeneous multi-core processor means
different processor cores process different instruction sets, and
performance heterogeneous multi-core processor means that all of the
processor cores support the same instruction sets, but they differ in
their performance.Performance heterogeneous multi-core processor
have become a hot spot in academic and industrial research.

In multi-core processor environment,task scheduling depends on
whether there are dependencies between the tasks that are scheduled.
It can be divided into independent task scheduling and related task
scheduling.Related task scheduling is often referred to as dependent
task scheduling[5-6]. There is no dependency relationship and data
communication among tasks in independent task scheduling[7-9].The
tasks in the dependent task scheduling have some dependence,and
there is data communication among tasks. Independent task
scheduling is a study of how independent tasks set are scheduled on a
heterogeneous multi-core processors set, the best performance of the
whole scheduling system or a specific scheduling goal is required. In
order to allocate the most appropriate processor core for the selected
task, various constraints of the task are considered of the task
scheduling strategy. Independent task scheduling is also divided into
two strategies: online task scheduling and batch task scheduling. The
common online task scheduling algorithms include Round-Robin
scheduling algorithm, weighted Round-Robin scheduling algorithm,
minimum Link-Counter scheduling algorithm and weighted minimum
Link-Counter scheduling algorithm. The batch task scheduling include
Min-Min[10] algorithm、Min-Max[10] algorithm, Sufferage algorithm,
Genetic algorithm(GA) and Particle Swarm Optimization
algorithm(PSO).

II. ONLINE TASK SCHEDULING ALGORITHMS
The common online task scheduling algorithms include Round-

Robin scheduling algorithm[11], weighted Round-Robin scheduling
algorithm, minimum Link-Counter scheduling algorithm and
weighted minimum Link-Counter scheduling algorithm. For
example ,there are 4 processor cores in the heterogeneous multi-core
processors environment, we introduce the basic idea and task
scheduling process of 4 online task scheduling algorithms
respectively.

A. Round-Robin scheduling algorithm

Round-Robin scheduling algorithm is an online scheduling
algorithm. Its basic idea is to schedule a selected task to different
processor cores in turn. The advantages of the algorithm are simple
and easy, but the disadvantage is that the processor core with
heterogeneous performance is inefficient. As shown in Fig. 1, 4 task
queues Q1,Q2,Q3 and Q4 are used to store the task scheduling queues
of 4 processor cores(c0,c1,c2,c3). Scheduling tasks in sequence from c0
firstly, and when scheduling to c3, the next processor core is c0. In the
algorithm, the loop scheduling is handled by
(core_ID+1)%total_core, where core_ID is the ID of current
shceduled processor core and total_core is the number of the
processor cores.

c0

Q0

t1

t5

c1

Q1

t2

t6 t7

c2

Q2

t3

t8

c3

Q3

t4

Fig. 1. RR task scheduling algorithm

B. Weighted Round-Robin scheduling algorithm

In order to overcome the disadvantages in the rotation scheduling
algorithm, the computing performance of every processor core is
represented by the corresponding weights w0,w1,w2 and w3, and the
processor core with large weights will be assigned more task requests.
Finally, the number of links of each processor core tends to the
weight proportion corresponding to each node. The task scheduling
algorithm is shown in Fig. 2. According to the idea of weighted
Round-Robin scheduling algorithm, the number of tasks allocated on
each processor core is Tj，Tj= 4

0
(* _) /j i

i

w total task w

, variable j is the

number of a processor core between 0 and 3, and variable total_task
is the number of tasks scheduled. Obviously Tj is not an integer.

978-1-5386-4509-3/18/$31.00 ©2018 IEEE 142

2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference(IAEAC 2018)

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 21,2020 at 02:27:36 UTC from IEEE Xplore. Restrictions apply.

c0

Q0

t1

w0

t5

c1

Q1

t2

w1

t6

t8

c2

Q2

t3

w2

c3

Q3

t4

w3

t7

Fig. 2. wRR task scheduling algorithm

C. Minimum Link-Counter scheduling algorithm

The minimum Link-Counter algorithm is an online task scheduling
algorithm, as shown in Fig. 3. The algorithm registers the number of
scheduled tasks in each processor core by a load balancer. The number
of scheduled tasks in each processor core is ts0,ts1,ts2 and ts3
respectively. When a task arrives, the load balancer assigns the early
arrival time to the least connected processor core. Obviously, when
the processor core has not been scheduled, the minimum Link-Counter
scheduling algorithm is similar to the Round-Robin scheduling
algorithm. In order to solve this problem, if there are more than two
processor cores with minimum scheduled tasks, select the processor
core with the minimum execution time to be scheduled.

c0 c1 c2 c3

TS

t1

t2

ts0

...

tn

ts1 ts2 ts3

Fig. 3. LC task scheduling algorithm

D. Weighted minimum Link-Counter scheduling algorithm

Because LC algorithm does not consider the inconsistent
processing power of the processor core, the weighted minimum Link-
Counter algorithm can overcome this problem. The weighted
minimum Link-Counter algorithm uses the corresponding weights to
represent the computing power of each processor core, and assigns
task to the processor core with the smallest connections to the weight
ratio, as shown in Fig. 4. The number of tasks assigned on each
processor core is Tj, Tj= 4

0
((/)* _) / (/)j j j j

i

ts w total task ts w

,variable j is

the number of a processor core between 0 and 3, and variable
total_task is the number of tasks scheduled.

c0 c1 c2 c3

TS

t1

t2

ts0/w0

...

tn

ts1/w1 ts2/w2 ts3/w3

Fig.4. wLC task scheduling algorithm

III. TASK SCHEDULING MODEL AND ALGORITHM

A. Definitions

Definition 1. The task set T refers to the set of scheduled tasks,
including the set of n tasks{t1,t2,…,tn},each task ti has the
corresponding arrival time

 ()iAT t .

Definition 2. The processor core set C, including the set of m
processor cores{c0,c1,…,cm-1},each processor core cj has a
corresponding weight of wj.

Definition 3. Scheduling time TC(ti,cj) refers to the execution time
of task ti on processor core cj.

Definition 4. Arrival time of task ti ()iAT t refers to the time that
each task reaches the set of processor cores.

Definition 5. Makespan or scheduling length represents the
completion time of the last task in the task set T with a certain
scheduling algorithm based on the task set T, as shown in (1). ()iAFT t
represents the actual finish time of task ti (Actual Finish Time).
Makespan is the maximum value of the actual finish time in all
scheduled tasks.

max{ ()}iMakespan AFT t (1)
Definition 6. Earliest start time (,)i jEST t c refers to the earliest

start time of task ti on processor core cj. (,)i jEST t c take the larger

value between
 ()iAT t

and ()jEFT c , as shown in (2).

()
(,)

()
i

i j

j

AT t
EST t c

EFT c

 (2)

Definition 7. Earliest finish time (,)i jEFT t c refers to the earliest
finish time of task ti on processor core cj. The value of earliest finish
time is equal to the earliest start time of the task ti on the processor
core cj, plus the scheduling time of ti on the processorcj, as shown in
(3).

(,) (,) (,)i j i j i jEFT t c EST t c ET t c

(3)
Definition 8. Average waiting time AWT. Suppose the start time of

the task ti is STi, and the arrival time of task is ATi during the

scheduling process, AWT=
1
() /

n

j j

j

ST AT n

 .

B. Task scheduling model

wEFT task scheduling model is as shown in Fig. 5. The task
scheduling model mainly include three modules: earliest finish time
module, weighted link counter module and task scheduling module.
The earliest finish time module calculates the minimum earliest finish
time based on the task set T and the processor core set C. Weighted
link counter module calculates the minimum value of the number and
weight of the task being scheduled on the process core set. Based on
the results of the first two modules, task scheduling module chooses
the appropriate processor core from the core set C to schedule the
corresponding task.

core set C

minimun
nwc[j]

task set T

minimun
EFT[j]

wEFT

task
scheduling

Fig. 5. wEFT task scheduling model

C. Task scheduling algorithm

The wEFT algorithm takes the earliest finish time (EFT) of tasks
on each processor core and the weighted minimum link counter as the
main parameters of task scheduling. Firstly, the algorithm finds the

143

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 21,2020 at 02:27:36 UTC from IEEE Xplore. Restrictions apply.

minimum earliest finish time of the scheduled task on each processor
core. Secondly, if there are multiple processors cores with the same
earlisest finish time, we further find the processor core of the
weighted minimum link counter, and schedule the task to the
processor core. Otherwise, the task is directly scheduled to the
process core with the smallest earliest finish time. wEFT algorithm is
shown in Table I. n tasks to be scheduled with m processor cores, and
the time complexity of wEFT algorithm is O(n*m).

TABLE I. WEFT ALGORITHM

Input：task set TS,w[j],TC[][];
Output：tc[s];
int i,ts[],nwc[],total_core,counter,core_ID;
double min_EFT,
select a task ti with the minimum arrive time from TS;
for(int j=0;j<total_core;j++){

ts[j]=0;
read w[j] of every process core;

}
while (TS is not empty){
 for(int j=0;j<total_core;j++){

nwc[j]=ts[j]/w[j];
calculate EFT[j];

}
 find minimum EFT[j] min_EFT;
 if min_EFT=EFT[j]

counter++;
 if counter>1{

select minimum nwc[j];
core_ID=j;

}
assign task ti to core core_ID;
tc[core_ID]=1;
ts[core_ID]++;

}

IV. ANALYSIS OF TASK SCHEDULING PROCESS
(1) Initialization of task set and processor core set

It is assumed that the task set T includes 8 tasks, that is n=8. There
are 4 processor cores in core set C, and those processor cores are
performance heterogeneity. The weights of the 4 processor cores are
as follows: w0=1.0,w1=4.0,w2=2.0,w3=1.33. The greater the weight
value, the stronger the computing power of the processor core.On
contrary, the smaller the weight value, the weaker the computing
power of the processor core. The scheduling time of the task set on
the processor core set is shown in Table II.

TABLE II. THE SCHEDULING TIME OF THE TASK SET ON THE PROCESSOR CORE
SET

task c0 c1 c2 c3
t1 200 50 100 150
t2 40 11 21 32
t3 21 5 11 16
t4 35 9 18 27
t5 60 14 31 43
t6 100 26 49 77
t7 120 31 62 90
t8 150 38 75 112
t9 90 22 44 68
t10 110 28 56 85

(2)Arrival time of every task ()iAT t .
The arrival time of each task is generated through a random

program, and the arrival time of each task is taken as an integer.
Arrival time of each task as shown in Table III.

TABLE III. ARRIVAL TIME OF EACH TASK

task arrival time
t1 20
t3 0
t4 15
t5 11
t6 35
t7 21
t8 22
t9 23

(3) Scheduling tasks
RR, wRR, LC, wLC, and wEFT algorithms are used to schedule

the task set to generate the scheduling relationship between the task
set T and the processor core set C, as shown in Fig. 6, Fig. 7 and Fig.
8.

t3

c00

20

c1

40

60

c2 c3

80

t5
t4

t1

100

120

140

160

180

200

220

240

260

t9

t6

t7

t8

t3

c0
0

20

c1

40

60

c2 c3

80

t5
t4

t1100

120

140

160

180

200

220

240

260

t7

t9

t8t6

(a) RR (b) wRR

Fig.6. (a) RR algorithm task scheduling diagram (b) wRR algorithm task
scheduling diagram

t3
c0

0

20

c1

40

60

c2 c3

80

t5 t4

100

120

140

160

180

200

220

240

260

t7

t1

t8

280

300

t6

320

t9

t3

c0
0

20

c1

40

60

c2 c3

80

t5
t4

t1100

120

140

160

180

200

220

240

260

t9

t7

t8

280

300

t6

(b) wLC320(a) LC
Fig. 7. (a)LC algorithm task scheduling diagram (b) wLC algorithm task scheduling
diagram

t3
c0

0

20

c1

40

60

c2 c3

80

t4

t9

100

120

140

160

t5

t6

t7

t1

t8

Fig. 8. wEFT algorithm task scheduling diagram
(4)Calculating the Makespan and AWT values

According to the scheduling relationship between the task set and
the processor core set, as well as the Definition 5, the Definition 8,
the corresponding Makespan and AWT values of the 5 algorithms are
shown in Table IV.

TABLE IV. COMPARISON BETWEEN MAKESPAN AND AWT

Algorithms RR wRR LC wLC wEFT

144

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 21,2020 at 02:27:36 UTC from IEEE Xplore. Restrictions apply.

Makespan 247 238 320 170 135
AWT 18.5 22.88 28 13.8 8.75

V. SIMULATION EXPERIMENT AND RESULT ANALYSIS

A. Experimental purpose

In order to verify we proposed wEFT algorithm, the performance
of the wEFT algorithm is compared with the existing task scheduling
algorithms RR, wRR, LC and wLC algorithms under the same
experimental conditions. The Makespan and the AWT of task set are
compared.

B. Simulated environment

Based on the simulator toolkit provided by SimGrid[12-14], a
simulation environment of heterogeneous multi-core processors is
built in this paper.

(1)Interprocessor cores are interconnected through high speed
networks.

(2)Each processor core can perform task execution at the same
time and communicate with other processor cores without
competition.

(3)Every task is not preempted on the processor core.
(4)The processor cores are heterogeneous,there are some

difference between the same task is scheduled on the different
processor core.

The computer used in the experiment is configured as:Intel Core
i5-3210M@2.5GHz dual core pen processor, 8GB memory. The
number of the processor cores in the experiment is 4 and 6.

C. Test Data Set

The input data of wEFT algorithm include task scheduling time
two-dimensional array, task set and weights on processor cores. The
task scheduling time array includes the execution time of 10 tasks
and 4 processor cores, another case is 10 tasks and 6 processor cores.
The number of tasks in the test task set starts from 50, increments 50
tasks each time until to 500 tasks, and the arrival time of each task

()iAT t
is generated by a random program.

D. Analysis of Experimental Results

(1)Result analysis under 4 processor cores

Fig. 9. comparison of Makespan

Fig. 10. Comparison of average waiting time

Fig. 9 and Fig. 10 compare the value of Makespan and AWT of 5
algorithms under various tasks. Obviously, for Makespan, the wEFT
algorithm is better than the other 4 algorithms. When the number of
tasks is less, the Makespan value is at least 16.3% lower than other 4
algorithms. When the number of tasks is more, the Makespan value is
at least 28.5% lower than other 4 algorithms. That is, as the number
of tasks increases, the performance of wEFT algorithm is better than
other algorithms. In terms of average waiting time, the wEFT
algorithm is close to the RR and LC algorithm, and the average
waiting time of wRR and wLC is the shortest in the experiments.

(2) Result analysis under 6 processor cores

Fig. 11. comparison of Makespan

Fig. 12. Comparison of average waiting time

145

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 21,2020 at 02:27:36 UTC from IEEE Xplore. Restrictions apply.

When the number of processor core is increased to 6, Fig. 11 and
Fig. 12 compare the value of Makespan and AWT of the 5 algorithms.
For the value of Makespan, wEFT algorithm is better than the other 4
algorithms. By comparing Fig. 9 and Fig. 11, with the increase of the
processor cores, the Makespan will be reduced accordingly. The
wEFT algorithm has better Makespan value under 6 processor cores
environment than under 4 processor cores environment. When the
number of tasks is small, the Makespan value is at least 46.3% lower
than the other 4 algorithms, and when the number of tasks is more,
the Makespan value is at least 45.6% lower than the other 4
algorithms. As the number of tasks increases, the performance of
wEFT algorithm is not changed significantly. In terms of average
waiting time, RR and LC algorithms are close, the average waiting
time of the wRR is the shortest, the average waiting time of the
wEFT algorithm is not better, and the average waiting time of the
wLC algorithm is the largest.

VI. CONCLUSION
In this paper, 4 common task scheduling algorithms are analyzed

for task scheduling in heterogeneous multi-core processor
environment, and an online task scheduling model and a wEFT
scheduling algorithm are proposed. Through simulation experiments,
the Makespan value of wEFT algorithm is obviously better than that
of RR, wRR, LC and wLC algorithms.

wEFT algorithm is not dominant in the average waiting time of
task set. In the future research work, we need to further optimize and
improve the algorithm.

ACKNOWLEDGMENT
This work was supported by the National Natural Science

Foundation of China (Grant No.61070015), Guangdong Province
Natural Science Foundation Team Project (Grant No.
2014B010110004), Guangdong Province Advanced and Key
Technology Creative Research Project (Grant No. 2014B010110004)
and the Industry-University-Academy Collaborative Innovation Key
Project of Guangzhou (Grant No. 201604016074).

REFERENCES
[1] H. F. Sheikh, I. Ahmad, and D. R. Fan, “An evolutionary technique for

performance-energy-t emperature optimized scheduling of parallel tasks on
multi-core processors,” IEEE Transactions on Parallel and Distributed
System, vol. 27,issue 3, pp. 668-681, 2016.

[2] G. Y. Jia, G. J. Han, J. F. Jiang, N. Sun, and K. Wang, “Dynamic
resource partitioning for heterogeneous multi-core-based cloud
computing in smart cities,” IEEE Access, vol. 4, pp. 108-118, 2016.

[3] Y. J. Chen, W. W. Chang, C. Y. Liu, C. E. Wu, B. Y. Chen,and M. Y.
Tsai, “Processors allocation for MPSoCs with single ISA heterogeneous
multi-core architecture,” IEEE Access, vol. 5, pp. 4028-4036, 2017.

[4] C. W. Chang, J. J. Chen, T. W. Kuo, and H. Falk, “Real-time task
scheduling on island-based multi-core platforms,” IEEE Transactions on
Parallel and Distributed System, vol. 26, issue 2, pp. 538-550, 2015.

[5] N. Q. Zhou, D. Y. Qi, and X. Y. Wang, “A list scheduling algorithm for
heterogeneous systems based on a critical node cost table and
pessimistic cost table,” Concurrency & Computation Practice &
Experience, in press.

[6] K. Chronaki, A. Rico, M. Casas, M. Moreto, R. M. Badia,E. Ayguade, et
al, “Task scheduling techniques for asymmetric multi-core systems,”
IEEE Transactions on Paralle and Distributed System, vol. 28, issue 7,
pp. 2074-2085, 2017.

[7] G. Lucarelli, F. Mendonca, and D. Trystram, “A new on-line method for
scheduling independent tasks,” 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, Spain, pp.140-149,
2017.

[8] J. Wu, and X. J. Hong, “Energy-efficient task scheduling and
synchronization for multicore real-time systems,” 2017 IEEE 3rd
International Conference on Big Data Security on Cloud. China, pp.
179-184, 2017.

[9] I. Yamazaki, J. Kurzak, P. R. Wu, M. Zounon, and J. Dongarra,
“Symmetric indefinite linear solver using OpenMP task on multicore
architectures,” IEEE Transactions on Parallel and Distributed Systems.
in press.

[10] T. D. Braun, H. J. Siegel, N. Beck, “A comparison of eleven static
heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems,” Journal of Parallel & Distributed
Computing, vol.61, issue 6, pp.810-837, 2001.

[11] X. L. Zhang, “Study on scheduling algorithm of the independent and
associated tasks for cloud computing,” Chongqing University,2014.

[12] C. A. R. L. Brennand, J. M. Duarte, A. P. Silva, “SimGrid:a simulator of
network monitoring topologies for Peer-to-Peer based computational
grids,” in press.

[13] A. Degomme, A. Legrand, G. S. Markomanolis, M. Quinson, M.
Stillwell, and F. Suter, “Simulating MPI applications:the SMPI
approach,” IEEE Transactions on Parallel and Distributed Systems, vol.
28, issue 8, pp.2387-2400, 2017.

[14] A. Mohammed, A. Eleliemy, and F. M. Ciorba, “Towards the
reproduction of selected dynamic loop scheduling experiments using
SimGrid-SimDag,” IEEE 19th International Conference on High
Performance Computing and Communications; IEEE 15th International
Conference on Smart City; IEEE 3rd International Conference on Data
Science and Systems, Thailand, pp. 623-626, 2017.

146

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 21,2020 at 02:27:36 UTC from IEEE Xplore. Restrictions apply.

