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Abstract—Multi-core processor architecture is increasingly being used 

in high-performance computing.Task scheduling problem for performance 

heterogeneous multi-core processor is a well-known NP-complete problem.  
Based on heterogeneous multi-core processor environment, independent 

online task scheduling is studied in this paper. In this paper, a scheduling 
model of heterogeneous multi-core processors based on weighted earliest finish 

time is proposed, and the wEFT algorithm is proposed. The wEFT algorithm 
selects the processor core to execute task with the minimum earliest 

completion time or the minimum weighted links of every processor core.  
Experiments show that compared with RR, wRR, LC and wLC algorithms 

under the environment of different number of tasks and processor cores, the 
makespan for the complete schedule of all tasks and average waiting time in 

wEFT algorithm is superior to other four algorithms. 

Keywords—Processor core;task scheduling;independent task; 

makespan;average waiting time 

I.  INTRODUCTION 
Multi-core processor[1-4] integrates multiple fully functional 

processor cores in the same chip, and each processor core can be 
homogenous or heterogeneous. Multi-core processor architecture has 
become the mainstream microprocessor architecture and is widely 
used in high-performance computing environment. Heterogeneous  
multi-core processors can be divided into two types,they are 
functional heterogeneous multi-core and performance heterogeneous  
multi-core. Functional heterogeneous multi-core processor means  
different processor cores process different instruction sets, and 
performance heterogeneous multi-core processor means that all of the 
processor cores support the same instruction sets, but they differ in 
their performance.Performance heterogeneous multi-core processor 
have become a hot spot in academic and industrial research. 

In multi-core processor environment,task scheduling depends on 
whether there are dependencies between the tasks that are scheduled. 
It can be divided into independent task scheduling and related task 
scheduling.Related task scheduling is often referred to as dependent 
task scheduling[5-6]. There is no dependency relationship and data 
communication among tasks in independent task scheduling[7-9].The 
tasks in the dependent task scheduling have some dependence,and 
there is data communication among tasks. Independent task 
scheduling is a study of how independent tasks set are scheduled on a 
heterogeneous multi-core processors set, the best performance of the 
whole scheduling system or a specific scheduling goal is required. In 
order to allocate the most appropriate processor core for the selected 
task, various constraints of the task are considered of the task 
scheduling strategy. Independent task scheduling is also divided into 
two strategies: online task scheduling and batch task scheduling. The 
common online task scheduling algorithms include Round-Robin 
scheduling algorithm, weighted Round-Robin scheduling algorithm, 
minimum Link-Counter scheduling algorithm and weighted minimum 
Link-Counter scheduling algorithm. The batch task scheduling include 
Min-Min[10] algorithm、Min-Max[10] algorithm, Sufferage algorithm, 
Genetic algorithm(GA) and Particle Swarm Optimization 
algorithm(PSO). 

II. ONLINE TASK SCHEDULING ALGORITHMS 
The common online task scheduling algorithms include Round-

Robin scheduling algorithm[11], weighted Round-Robin scheduling 
algorithm, minimum Link-Counter scheduling algorithm and 
weighted minimum Link-Counter scheduling algorithm. For 
example ,there are 4 processor cores in the heterogeneous multi-core 
processors environment, we introduce the basic idea and task 
scheduling process of 4 online task scheduling algorithms 
respectively. 

A. Round-Robin scheduling algorithm 

Round-Robin scheduling algorithm is an online scheduling 
algorithm. Its basic idea is to schedule a selected task to different 
processor cores in turn. The advantages of the algorithm are simple 
and easy, but the disadvantage is that the processor core with 
heterogeneous performance is inefficient. As shown in Fig. 1, 4 task 
queues Q1,Q2,Q3 and Q4 are used to store the task scheduling queues 
of 4 processor cores(c0,c1,c2,c3). Scheduling tasks in sequence from c0 
firstly, and when scheduling to c3, the next processor core is c0. In the 
algorithm, the loop scheduling is handled by 
(core_ID+1)%total_core, where core_ID is the ID of current 
shceduled processor core and total_core is the number of the 
processor cores. 
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Fig. 1. RR task scheduling algorithm 

B. Weighted Round-Robin scheduling algorithm 

In order to overcome the disadvantages in the rotation scheduling 
algorithm, the computing performance of every processor core is 
represented by the corresponding weights w0,w1,w2 and w3, and the 
processor core with large weights will be assigned more task requests. 
Finally, the number of links of each processor core tends to the 
weight proportion corresponding to each node. The task scheduling 
algorithm is shown in Fig. 2. According to the idea of weighted 
Round-Robin scheduling algorithm, the number of tasks allocated on 
each processor core is Tj，Tj= 4

0
( * _ ) /j i

i

w total task w



, variable j is the 

number of a processor core between 0 and 3, and variable total_task 
is the number of tasks scheduled. Obviously Tj is not an integer. 
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Fig. 2. wRR task scheduling algorithm 

C. Minimum Link-Counter scheduling algorithm 

The minimum Link-Counter algorithm is an online task scheduling 
algorithm, as shown in Fig. 3. The algorithm registers the number of 
scheduled tasks in each processor core by a load balancer. The number 
of scheduled tasks in each processor core is ts0,ts1,ts2 and ts3 
respectively. When a task arrives, the load balancer assigns the early 
arrival time to the least connected processor core. Obviously, when 
the processor core has not been scheduled, the minimum Link-Counter 
scheduling algorithm is similar to the Round-Robin scheduling 
algorithm. In order to solve this problem, if there are more than two 
processor cores with minimum scheduled tasks, select the processor 
core with the minimum execution time to be scheduled. 
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Fig. 3. LC task scheduling algorithm 

D. Weighted minimum Link-Counter scheduling algorithm 

Because LC algorithm does not consider the inconsistent 
processing power of the processor core, the weighted minimum Link-
Counter algorithm can overcome this problem. The weighted 
minimum Link-Counter algorithm uses the corresponding weights to 
represent the computing power of each processor core, and assigns 
task to the processor core with the smallest connections to the weight 
ratio, as shown in Fig. 4. The number of tasks assigned on each 
processor core is Tj, Tj= 4

0
(( / )* _ ) / ( / )j j j j

i

ts w total task ts w



,variable j is 

the number of a processor core between 0 and 3, and variable 
total_task is the number of tasks scheduled. 
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Fig.4. wLC task scheduling algorithm 

III. TASK SCHEDULING MODEL AND ALGORITHM 

A. Definitions 

Definition 1. The task set T refers to the set of scheduled tasks, 
including the set of n tasks{t1,t2,…,tn},each task ti has the 
corresponding arrival time

 ( )iAT t . 

Definition 2. The processor core set C, including the set of m 
processor cores{c0,c1,…,cm-1},each processor core cj has a 
corresponding weight of wj. 

Definition 3. Scheduling time TC(ti,cj) refers to the execution time 
of task ti on processor core cj. 

Definition 4. Arrival time of task ti ( )iAT t  refers to the time that 
each task reaches the set of processor cores. 

Definition 5. Makespan or scheduling length represents the 
completion time of the last task in the task set T with a certain 
scheduling algorithm based on the task set T, as shown in (1). ( )iAFT t  
represents the actual finish time of task ti (Actual Finish Time). 
Makespan is the maximum value of the actual finish time in all 
scheduled tasks. 

max{ ( )}iMakespan AFT t  (1) 
Definition 6. Earliest start time ( , )i jEST t c  refers to the earliest 

start time of task ti on processor core cj. ( , )i jEST t c  take the larger 

value between
 ( )iAT t  

and ( )jEFT c , as shown in (2). 

( )
( , )

( )
i

i j

j

AT t
EST t c

EFT c


 


  (2) 

Definition 7. Earliest finish time ( , )i jEFT t c  refers to the earliest 
finish time of task ti on processor core cj. The value of earliest finish 
time is equal to the earliest start time of the task ti on the processor 
core cj, plus the scheduling time of ti on the processorcj, as shown in 
(3). 

( , ) ( , ) ( , )i j i j i jEFT t c EST t c ET t c 
 

(3) 
Definition 8. Average waiting time AWT. Suppose the start time of 

the task ti is STi, and the arrival time of task is ATi during the 

scheduling process, AWT=
1
( ) /

n

j j

j

ST AT n


 . 

B. Task scheduling model 

wEFT task scheduling model is as shown in Fig. 5. The task 
scheduling model mainly include three modules: earliest finish time 
module, weighted link counter module and task scheduling module. 
The earliest finish time module calculates the minimum earliest finish 
time based on the task set T and the processor core set C. Weighted 
link counter module calculates the minimum value of the number and 
weight of the task being scheduled on the process core set. Based on 
the results of the first two modules, task scheduling module chooses 
the appropriate processor core from the core set C to schedule the 
corresponding task. 

core set C

minimun 
nwc[j]

task set T

minimun 
EFT[j]

wEFT

task 
scheduling

 
Fig. 5. wEFT task scheduling model 

C. Task scheduling algorithm 

The wEFT algorithm takes the earliest finish time (EFT) of tasks 
on each processor core and the weighted minimum link counter as the 
main parameters of task scheduling. Firstly, the algorithm finds the 
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minimum earliest finish time of the scheduled task on each processor 
core. Secondly, if there are multiple processors cores with the same 
earlisest finish time, we further find the processor core of the 
weighted minimum link counter, and schedule the task to the 
processor core. Otherwise, the task is directly scheduled to the 
process core with the smallest earliest finish time. wEFT algorithm is 
shown in Table I. n tasks to be scheduled with m processor cores, and 
the time complexity of wEFT algorithm is O(n*m). 

TABLE I.  WEFT  ALGORITHM 

Input：task set TS,w[j],TC[][]; 
Output：tc[s]; 
int i,ts[],nwc[],total_core,counter,core_ID; 
double min_EFT, 
select a task ti with the minimum arrive time from TS; 
for(int j=0;j<total_core;j++){ 

ts[j]=0; 
read w[j] of every process core; 

} 
while (TS is not empty){ 
  for(int j=0;j<total_core;j++){ 

nwc[j]=ts[j]/w[j]; 
calculate EFT[j]; 

} 
  find minimum EFT[j] min_EFT; 
  if min_EFT=EFT[j] 

counter++; 
  if counter>1{ 

select minimum nwc[j]; 
core_ID=j; 

} 
assign task ti to core core_ID; 
tc[core_ID]=1; 
ts[core_ID]++; 

} 

IV. ANALYSIS OF TASK SCHEDULING PROCESS 
(1) Initialization of task set and processor core set 

It is assumed that the task set T includes 8 tasks, that is n=8. There 
are 4 processor cores in core set C, and those processor cores are 
performance heterogeneity. The weights of the 4 processor cores are 
as follows: w0=1.0,w1=4.0,w2=2.0,w3=1.33. The greater the weight 
value, the stronger the computing power of the processor core.On 
contrary, the smaller the weight value, the weaker the computing 
power of the processor core. The scheduling time of the task set on 
the processor core set is shown in Table II. 

TABLE II.  THE SCHEDULING TIME OF THE TASK SET ON THE PROCESSOR CORE 
SET 

task c0 c1 c2 c3 
t1 200 50 100 150 
t2 40 11 21 32 
t3 21 5 11 16 
t4 35 9 18 27 
t5 60 14 31 43 
t6 100 26 49 77 
t7 120 31 62 90 
t8 150 38 75 112 
t9 90 22 44 68 
t10 110 28 56 85 

(2)Arrival time of every task ( )iAT t . 
The arrival time of each task is generated through a random 

program, and the arrival time of each task is taken as an integer. 
Arrival time of each task as shown in Table III. 

TABLE III.  ARRIVAL TIME OF EACH TASK 

task arrival time 
t1 20 
t3 0 
t4 15 
t5 11 
t6 35 
t7 21 
t8 22 
t9 23 

(3) Scheduling tasks 
RR, wRR, LC, wLC, and wEFT algorithms are used to schedule 

the task set to generate the scheduling relationship between the task 
set T and the processor core set C, as shown in Fig. 6, Fig. 7 and Fig. 
8. 
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Fig.6. (a) RR algorithm task scheduling diagram (b) wRR algorithm task 
scheduling diagram 
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Fig. 7. (a)LC algorithm task scheduling diagram (b) wLC algorithm task scheduling 
diagram 
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Fig. 8. wEFT algorithm task scheduling diagram 
(4)Calculating the Makespan and AWT values 

According to the scheduling relationship between the task set and 
the processor core set, as well as the Definition 5, the Definition 8, 
the corresponding Makespan and AWT values of the 5 algorithms are 
shown in Table IV. 

TABLE IV.  COMPARISON BETWEEN MAKESPAN AND AWT 

Algorithms RR wRR LC wLC wEFT 
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Makespan 247 238 320 170 135 
AWT 18.5 22.88 28 13.8 8.75 

V. SIMULATION EXPERIMENT  AND RESULT ANALYSIS 

A. Experimental purpose 

In order to verify we proposed wEFT algorithm, the performance 
of the wEFT algorithm is compared with the existing task scheduling 
algorithms RR, wRR, LC and wLC algorithms under the same 
experimental conditions. The Makespan and the AWT of task set are 
compared. 

B. Simulated environment 

Based on the simulator toolkit provided by SimGrid[12-14], a 
simulation environment of heterogeneous multi-core processors is 
built in this paper. 

(1)Interprocessor cores are interconnected through high speed 
networks. 

(2)Each processor core can perform task execution at the same 
time and communicate with other processor cores without 
competition. 

(3)Every task is not preempted on the processor core. 
(4)The processor cores are heterogeneous,there are some 

difference between the same task is scheduled on the different 
processor core. 

The computer used in the experiment is configured as:Intel Core 
i5-3210M@2.5GHz dual core pen processor, 8GB memory. The 
number of the processor cores in the experiment is 4 and 6. 

C. Test Data Set 

The input data of wEFT algorithm include task scheduling time 
two-dimensional array, task set and weights on processor cores. The 
task scheduling time array includes the execution time of 10 tasks 
and 4 processor cores, another case is 10 tasks and 6 processor cores. 
The number of tasks in the test task set starts from 50, increments 50 
tasks each time until to 500 tasks, and the arrival time of each task 

( )iAT t  
is generated by a random program. 

D. Analysis of Experimental Results 

(1)Result analysis under 4 processor cores 

 
Fig. 9. comparison of Makespan 

 
Fig. 10. Comparison of average waiting time 

Fig. 9 and Fig. 10 compare the value of Makespan and AWT of 5 
algorithms under various tasks. Obviously, for Makespan, the wEFT 
algorithm is better than the other 4 algorithms. When the number of 
tasks is less, the Makespan value is at least 16.3% lower than other 4 
algorithms. When the number of tasks is more, the Makespan value is 
at least 28.5% lower than other 4 algorithms. That is, as the number 
of tasks increases, the performance of wEFT algorithm is better than 
other algorithms. In terms of average waiting time, the wEFT 
algorithm is close to the RR and LC algorithm, and the average 
waiting time of wRR and wLC is the shortest in the experiments. 

(2) Result analysis under 6 processor cores 

 
Fig. 11. comparison of Makespan 

 
Fig. 12. Comparison of average waiting time 

145

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 21,2020 at 02:27:36 UTC from IEEE Xplore.  Restrictions apply. 



When the number of processor core is increased to 6, Fig. 11 and 
Fig. 12 compare the value of Makespan and AWT of the 5 algorithms. 
For the value of Makespan, wEFT algorithm is better than the other 4 
algorithms. By comparing Fig. 9 and Fig. 11, with the increase of the 
processor cores, the Makespan will be reduced accordingly. The 
wEFT algorithm has better Makespan value under 6 processor cores 
environment than under 4 processor cores environment. When the 
number of tasks is small, the Makespan value is at least 46.3% lower 
than the other 4 algorithms, and when the number of tasks is more, 
the Makespan value is at least 45.6% lower than the other 4 
algorithms. As the number of tasks increases, the performance of 
wEFT algorithm is not changed significantly. In terms of average 
waiting time, RR and LC algorithms are close, the average waiting 
time of the wRR is the shortest, the average waiting time of the 
wEFT algorithm is not better, and the average waiting time of the 
wLC algorithm is the largest. 

VI. CONCLUSION 
In this paper, 4 common task scheduling algorithms are analyzed 

for task scheduling in heterogeneous multi-core processor 
environment, and an online task scheduling model and a wEFT 
scheduling algorithm are proposed. Through simulation experiments, 
the Makespan value of wEFT algorithm is obviously better than that 
of RR, wRR, LC and wLC algorithms. 

wEFT algorithm is not dominant in the average waiting time of 
task set. In the future research work, we need to further optimize and 
improve the algorithm. 
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