
Longest Common Subsequence using
Chemical Reaction Optimization

Md. Rafiqul Islam
Computer Science and Engineering

Discipline, Khulna University, Khulna -
9208, Bangladesh.

e-mail: dmri1978@gmail.com

Zarrin Tasnim Asha
Computer Science and Engineering

Discipline, Khulna University, Khulna -
9208, Bangladesh.

e-mail: zarrin.ku@gmail.com

Rezoana Ahmed
Computer Science and Engineering

Discipline, Khulna University,
Khulna -9208, Bangladesh.

e-mail: sheme.cse@gmail.com

Abstract— Longest Common Subsequence (LCS) is a well-

known optimization problem. It is the problem to find out a
longest subsequence of each member of a given set of sequences.
It is an NP-hard problem and has applications in data
compression, FPGA circuit minimization and bioinformatics.
Chemical Raction Optimization (CRO) is a new meta-heuristic
method that is being widely used in solving optimization
problem. In this paper we have proposed an efficient Chemical
Reaction Optimization technique to solve Longest Common
Subsequence problem. The design strategies of elementary
operators and correction method are shown to solve the problem.
The proposed method is compared with two other methods and
the experimental results show that it takes less execution time
than that of others.

Keywords—Longest common subsequence, Chemical Reaction
Optimizatio, Metaheurictic, Molecule.

I. INTRODUCTION
Longest common subsequence is an optimization problem.
Longest Common Subsequence (LCS) means the longest
sequence of characters that appear left-to-right in a given set
of strings. But it is not necessarily that it is adjacent block of
characters. LCS is essential to occupy serial positions within
the original sequences or strings. The longest common
subsequence is the base of data comparison programs. Many
problems or applications are solved by LCS such as the
applications in data compression, FPGA circuit minimization,
Bioinformatics [1]. A detail of literature review related to LCS
problem and its solutions can be found in [1].One of the
biological applications is to compare the DNA of two or more
difference organisms. DNA is sequence which consists of A
(Aclenine), G (Gaunine), C (Cytosine) and T (Thymin). Thus
we are given two DNA sequences and wish to find DNA
sequence which is common and longest in length and such a
problem is LCS problem [2]. LCS problem for two strings can
be solved using Dynamic Programming (DP) [2, 3], which
gives optimum results. Chemical Reaction Optimization
(CRO) is a simple and powerful meta-heuristic which is

showing excellent performance in solving optimization
problem. CRO mimics the interactions of molecules in
chemical reactions to search for the global optimum [4]. CRO
was designed as an optimization framework. It has been
applied to solve many practical problems, e.g. quadratic
assignment problem[5], population transition problem in peer-
to-peer streaming[7], network coding optimization
problem[8], standard continuous benchmark function[9],
cognitive radio spectrum allocation problem[10], grid
scheduling problem[11][12], stock portfolio selection problem
[13],artificial neural network training [14], 0-1 Knapsack
problem [3] etc. In this paper we have designed an algorithm
to find LCS based on the concept of CRO. The proposed
method and other two dynamic programming algorithms such
as dynamic programming algorithm for LCS given in [2] and
fast dynamic programming method depicted in [3] have been
implemented and compared the results to show the
performances.

II. LONGEST COMMON SUBSEQUENCE (LCS)
Common subsequence of two given sequences is a
subsequence that exits in both the sequences. However, the
Longest Common Subsequence (LCS) of two given sequences
is a subsequence that exits in both the sequences and have
longest or maximum length. For example, we have two
sequences S1=(E,F,G,H,E,F) and S2=(F,H,G,E,F,E), the
sequence S=(F,G,F,E) is an LCS. Since the subsequence is
common in both in the sequence S1 and S2 and the sub
sequence S have the length, |S| = 4, which is the maximum in
common sub-sequences. The problem can be formulated as
follows:
Let X = [x1, x2 … xn] be a sequence of n elements where X is a
string. The elements of the string are members of a finite
alphabet ∑, xn ∈ ∑, i = 1, 2, 3, …..,n.
A sequence Y = [y1, y2,.....,ym] is a subsequence of X if there
exists an increasing sequence of indices [i1, i2, … ,ik] such that
X[ik] = Y[j] holds, j = 1, 2, . . . ,k ≤ n.

Proceedings of International Conference on Electrical Information and Communication Technology (EICT 2015)

978-1-4673-9257-0/15/$31.00 ©2015 IEEE 29

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 25,2020 at 22:26:14 UTC from IEEE Xplore. Restrictions apply.

Given a finite set S of n strings S* = {S1, S2, . . . ,Sn }, S is a
common subsequence, if S subsequence Si, i = 1, 2,
3,……… ,n.
The longest common subsequence of S* is the common
subsequence of maximum length. The problem can be
expressed as

 Maximize |S|
 subject to S subsequence Si, i = 1, . . . ,n.

with |S| being the length of the common subsequence S. The
longest common subsequences are not always unique. More
than one common subsequence with maximum length can be
found there.

III. CHEMICAL REACTION OPTIMIZATION (CRO)
CRO is one of the newest optimization algorithms, which is
inspired by the chemical reaction process [15]. CRO has been
successfully applied to many other problems. In CRO,
molecule (M) is the basic operating agent which represents the
solution of optimization problem. To explore solution a set of
molecules are controlled and manipulated by CRO. A
molecule has potential energy (PE), kinetic energy (KE), hits
number, and other characteristics that represent solution. CRO
simulates four types of chemical reactions. The four types of
elementary reactions are on-wall ineffective collision,
decomposition, inter-molecular ineffective collision and
synthesis. During the process of CRO the total energy remains
constant which means CRO requires conservation of energy.
The CRO algorithm includes three stages: initialization,
iteration and the final stage. The initialization stage generates
initial population (pop) along with PopSize, KElossRate,
MoleColl, buffer, InitialKE and two thresholds(α and β). In
iteration stage, one elementary reaction out of four reactions
takes place in each iteration. Here, we have to determine
whether uni-molecular or bi-molecular reaction is taken place.
The type of reaction is determined by comparing a random
number t [0, 1] against MoleColl. If t > MoleColl there will be
unimolecular reaction. Otherwise a bi-molecular reaction
occurs. At the end of the each iteration we have to check
stopping criteria. Here the potential energy value of the newly
obtained molecule(s) is compared with the original molecules.
The new molecules will be accepted when the new values can
satisfy the energy conservation conditions. Otherwise, the new
molecules are discarded.

The pseudo code of CRO algorithm is depicted in Algorithm
1.
Algorithm 1: CRO Algorithm
Input: Objective function f and the parameter values
\\ Initialization
Set PopSize, KELossRate, MoleColl, buffer, InitialKE, α, and
β
Create PopSize number of molecules or solutions
\\ Iterations

while the stopping criteria not met do
Generate b ∈ [0, |S1|]
if b > MoleColl then
Randomly select one molecule or solution S'
if Decomposition criterion met then
Trigger Decompos ()
else
Trigger Onwall ()
end if
else
Randomly select two molecules or solutions S'1 and S'2
if Synthesis criterion met then
Trigger Synthesis ()
else
Trigger Intermole ()
end if
end if
Check for any new minimum solution
end while
\\ The final stage
Output the best solution found and its objective function value

IV. DESIGN CRO FOR LCS
Here we design CRO method for two strings. In LCS problem
two sequences are given for finding the longest subsequence.
Suppose we have two sequences such as S1 (first sequence) of
length n and S2 (second sequence) of length m, where m ≤ n
and n = |S1| and m = |S2|. We have to find out the longest
common subsequence of S1 and S2.
Example 1:
S1 = “GCCCTAGCG”.
S2 = “GGCACTA”.
The output sequence, S = ”GCAC”.
Here we will design Chemical Reaction Optimization (CRO)
algorithm for LCS problem.

S1 :

Character G C C C T A G C G
Index 0 1 2 3 4 5 6 7 8

S2:

Character G G C A C T A
Index 0 1 2 3 4 5 6

A. Solution Generation

To generate solution first we take an array of length m=|S2|.
Then we generate m random numbers from 0 to n =|S1|. Next
we sort the numbers to get a solution sequence. The following
Fig. 1 depicts the scenario according to the example 1.

Generate |S2| random numbers k ∈ [0, n]:

 30

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 25,2020 at 22:26:14 UTC from IEEE Xplore. Restrictions apply.

Sorted numbers (index values):

0 2 4 6 7 8 8

Solution sequence in characters:

G C T G C G G

 Fig. 1. Solution Representation

B. On-wall Ineffective Collision
This elementary reaction corresponds to the basic local search
operator for CRO. It changes the solution structure of one
solution. Suppose that in an on-wall ineffective collision, the
solution structure S is transformed to S'. The new solution
structure is generated as S' = C(S), where C(S) is a correction
operator that corrects new solution structure. The detail of C
(S) function is explained at the end of this section.

S

0 2 4 6 7 8 8

 S'

0 2 4 1 7 8 8

Sorted

0 1 2 4 7 8 8

Fig. 2. Solution after On Wall Ineffective Collision

C. Decomposition
This elementary reaction generates two solutions from one
solution. Decomposition often applies a vigorous change to
the solution and the resultant solution possesses solution
structures greatly different from the original one. Assume that
the operator creates two solutions S'1 and S'2 from solution S,
such as,
 S → S'1 ∪ S'2
Firstly, S is copied to generate S'1 and S'2. After that, for n/2
positions in solutions S'1 and S'2 are changed randomly. Then
we sort them. The function C (S) is invoked to make the
output solution valid.

New solution S'1

0 2 3 0 7 8 1

Solution S

0 2 4 6 7 8 8

New solution S'2

0 0 4 1 7 5 8

Sorted new solution S'1

0 0 1 2 3 7 8

Sorted new solution S'2

0 0 1 4 5 7 8

 Fig. 3. Solution representation after decomposition

D. Inter-molecular Ineffective Collision
It changes the solution structure. The molecularity (assume
two) remains unchanged before and after the process. Suppose
that in an inter-molecular ineffective collision, the solution
structure S1 is transformed to S'1 and S2 is transformed to S'2.
It can be defined as follows:
 S1 ∪ S2 → S'1 ∪ S'2
Then the new solution structure is generated as S' = C (S).

 S'1 (new solution)

 0 1 4 6 7 7 8

 S1

0 2 4 6 7 8 8

 S2

 0 1 4 4 7 7 8

 S'2 (new solution)

 0 2 4 4 7 8 8

 Fig. 4. Solution representation in Inter-molecular Ineffective Collision

E. Synthesis Operator
Synthesis takes two molecules as the inputs and combines
them to generate a new molecule. In this paper we take two
existing solution S'1 and S'2. Generate a new solution S from
them. It can be represent by the following form.

8 2 0 8 6 4 7

 31

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 25,2020 at 22:26:14 UTC from IEEE Xplore. Restrictions apply.

 S'1 ∪ S'2 → S
This new solution S is the longest common subsequence.

S'1

0 2 4 5 6 8 8

S

0 0 2 5 7 8 8

S'2

0 0 2 4 7 7 8

 Fig. 5. Solution representation after Synthesis

F. Correction Method
In correction method, the input is solution, S. From the
solution vector we get index of character in S1. Next, we
compare the character in position S[i] of S1 with the character
in position, i of S2, where i = 0, 1……….n-1. If we find same
character (character matching) in S2 and in S1, then we copy
the value of S[i] to output vector, S'[i]. If different character is
found (no character matching) then we do forward searching
in S1 starting at the position S[i] +1 to the position S[i+1]-1. If
any character in position, j where j ∈ [S[i]+1 to S[i+1]-1]
matches with the character in position, i of S2, the value of j (
which is the index value of S1)is saved to S'[i]. In Fig 6, when
i = 1, the character in position 1 of S1 is C and the character in
the same position of S2 is G. So we do forward searching in
S1. Here S[i] +1 = 2 and S [i+1]-1 = 3, so we perform
searching in positions 2 to 3 of S1. In this case the character in
position 3 of S1 is G, which is same in position 1 of S2. So we
save 3 (position of S1) to S'[1]. If character matching is not
found, then backward searching is to be done in positions S[i]-
1 to S [i-1] +1. In backward searching, if we find character
matching in position, k of string1 where k ∈ [S [i-1] +1 to
S[i]-1]. We save the value of k in S'[i]. In case, there is no
character matching in forward searching and also in backward
searching the value of S[i] to be copied in S'[i].

S (Input solution):

0 1 4 7 7 8 8

S1:

 G C C G C A G C G

S2:

G G C A C T A

S� (Output Solution)

Fig. 6. Solution representation after Correction

V. SIMULATION RESULTS
We compare proposed CRO method with Dynamic LCS [2]
and Fast Dynamic LCS [3] algorithms to show their
performances. During the experiments, we have used our own
data sets in all test cases. For input string of different length
generation different alphabets are used. All times the lengths
of both input strings are same. As stated earlier the input
sequences are generated randomly. In order to use of same
input over and over, different input are used. The following
alphabets: {0, 1}, {A, C, G, T} and English alphabet with 26
characters, i.e., {A….Z} or {a…z} are used in order to build
input strings. Two strings of certain length are generated
randomly based on certain alphabet and used those strings as
an input for the algorithm. As we say in section 1(Introduction
section) that DNA sequence is consists of A (Adenine), G
(Guanine), C (Cytosine) and T (Thymine). For example, the
DNA of any organism can be a string S=ACCTGT. So DNA
can be expressed as a string that is consists of finite set {A, G,
C, T}.
Two strings (S1 and S2) are generated as follows:
 Si= rand [A, G, C, T], i=1, 2, 3,……, n.
Here, rand [A, G, C, T] generates a character from {A, G, C,
T} uniformly. The length of the string is n.

In CRO parameters affects its performance. For first testing
we set the parameters as initialize PopSize = 10, CollisionRate
= 0.2, buffer = 0, KE = 1000, lossRate = 0.1,
DecompositionThreshold (α) = 15000 and SysthesisThreshold
(β) =10 etc. The decomposition condition and synthesis
condition respectively effect by the value of Decomposition
Threshold and Systhesis Threshold. We perform 50 runs for
each of the chosen values. Among the chosen values the sets
of 50 runs are compared and the longest length’s sequence is
selected. During the experiment, we see that 50 runs for each

0 3 4 5 7 8 8

 32

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 25,2020 at 22:26:14 UTC from IEEE Xplore. Restrictions apply.

of the chosen values is not sufficient for longest String which
length is bigger than 1000 or more. Then we need to increase
the number of runs such as, 100 or more. We showed the
performance of the algorithm in the table.
The test environment is set up on a personal computer with
Core i5 CPU at 2.50 GHz CPU, 4G RAM, running on
Windows8. Each LCS algorithm was run several times in
order to obtain accurate CPU time measurements.
System.currentTimeMillis() method was used for obtained the
time measurement. It returns current CPU time in
milliseconds. All of the algorithms are developed using Java
programming language and the process of coding, Eclipse IDE
is used.

TABLE I. SIMULATION RESULTS OF CRO

Case 1: Length of string 1 =180, Length of string 2 = 28 , Length of

output sequence = 28
Number

of
iteration

Best case Worst case Average Time
(ms)

 50 75 57 66 1.09
 100 78 50 60 1.24
 150 80 48 58 1.30

TABLE II. SIMULATION RESULTS OF CRO

Case 2: Length of string 1 =270, Length of string 2 = 56 , Length of

output sequence = 53
Number

of
iteration

Best case Worst case Average Time
(ms)

 50 70 58 64 6.92
 100 80 50 59 6.94
 150 82 40 63 7.00

TABLE III. SIMULATION RESULTS OF CRO

Case 3: Length of string 1 =360, Length of string 2 = 84 , Length of

output sequence = 78
Number

of
iteration

Best case Worst case Average Time
(ms)

 50 55 53 54 13.60
 100 67 48 50 13.80
 150 70 30 60 14.00

TABLE IV. SIMULATION RESULTS OF CRO AND OTHER ALGORITHMS

Algorithm

Length of
string1

Length of
string2

Length of
output

sequence

Time(ms
)

LCS
128

28

28 10
FLCS 28 7
CRO 28 4.32
LCS

270

56

53 18
FLCS 53 12
CRO 51 6.96
LCS

360

84

78 25
FLCS 78 21
CRO 78 13.98

VI. CONCLUSIONS
In this paper we have proposed an algorithm to solve longest
common subsequence problem based on the concept of
chemical reaction optimization. Our main target is to reduce
the time complexity of LCS problem and generate an optimal
solution. We have compared proposed CRO based method
with Dynamic LCS [2] and Fast Dynamic LCS [3] and found
that our proposed algorithm has superior performance when
compared for all proposed test instances. It reduces the
execution time. Here we have used two strings of different
lengths. In the future, we will design a CRO algorithm to find
LCS for multiple strings.

REFERENCES

[1] Tabataba, Farzaneh Sadat, and Sayyed Rasoul Mousavi. "A hyper-
heuristic for the Longest Common Subsequence
problem." Computational biology and chemistry 36 (2012): 42-54.

[2] Cormen, Thomas H. Introduction to algorithms. MIT press, 2009.
[3] Truong, Tung Khac, Kenli Li, and Yuming Xu. "Chemical reaction

optimization with greedy strategy for the 0–1 knapsack
problem." Applied Soft Computing13.4 (2013): 1774-1780.

[4] Ossman, Mohammed, and Lamiaa Fathi Hussein. "Fast Longest
Common Subsequences for Bioinformatics Dynamic
Programming." population 5 (2012): 7.

[5] Xu, Jin, Albert YS Lam, and Victor OK Li. "Parallel chemical reaction
optimization for the quadratic assignment problem." World Congress in
Computer Science, Computer Engineering, and Applied Computing.
2010.

[6] Chaudhuri, Arindam. "A Dynamic Algorithm for the Longest Common
Subsequence Problem using Ant Colony Optimization
Technique." arXiv preprint arXiv:1307.1905 (2013).

[7] Lam, Albert, Jialing Xu, and Victor OK Li. "Chemical reaction
optimization for population transition in peer-to-peer live
streaming." Evolutionary Computation (CEC), 2010 IEEE Congress on.
IEEE, 2010.

[8] Pan, Bo, Albert Lam, and Victor OK Li. "Network coding optimization
based on chemical reaction optimization." Global Telecommunications
Conference (GLOBECOM 2011), 2011 IEEE. IEEE, 2011.

[9] Lam, Albert, Victor OK Li, and James JQ Yu. "Real-coded chemical
reaction optimization." Evolutionary Computation, IEEE Transactions
on 16.3 (2012): 339-353.

[10] Lam, Albert, and Victor OK Li. "Chemical reaction optimization for
cognitive radio spectrum allocation." Global Telecommunications
Conference (GLOBECOM 2010), 2010 IEEE. IEEE, 2010.

[11] Xu, Jin, Albert Lam, and Victor OK Li. "Chemical reaction optimization
for the grid scheduling problem." Communications (ICC), 2010 IEEE
International Conference on. IEEE, 2010.

[12] Xu, Jin, Albert Lam, and Victor OK Li. "Chemical reaction optimization
for task scheduling in grid computing." Parallel and Distributed
Systems, IEEE Transactions on 22.10 (2011): 1624-1631.

[13] Xu, Jin, Albert YS Lam, and Victor OK Li. "Stock portfolio selection
using chemical reaction optimization." Proceedings of the international
conference on operations research and financial engineering. Paris,
France. 2011.

[14] Yu, James JQ, Albert Lam, and Victor OK Li. "Evolutionary artificial
neural network based on chemical reaction optimization." Evolutionary
Computation (CEC), 2011 IEEE Congress on. IEEE, 2011.

[15] Lam, Albert, and Victor OK Li. "Chemical-reaction-inspired
metaheuristic for optimization." Evolutionary Computation, IEEE
Transactions on 14.3 (2010): 381-399.

 33

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 25,2020 at 22:26:14 UTC from IEEE Xplore. Restrictions apply.

