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ABSTRACT 

Finding the longest common subsequence (LCS) of multiple 
strings is a well-known problem that has many applications in 
various fields, such as computational biology and computational 
genomics. This problem has been studied by a number of 
researchers and over the years, its complexity has been improved 
from various aspects. This paper presents a new algorithm for the 
general case of multiple LCS (MLCS) which is based on one of 
the fastest existing algorithms. The proposed algorithm is founded 
on the dominant point approach and uses a linear sorting 
technique to minimize the dominant points set. The main idea is 
that, after linearly sorting dominant points, a one-pass linear 
algorithm can minimize the dominant points set. The results of 
theoretical and experimental evaluations indicate that the 
efficiency of the newly proposed algorithm in different scenarios 
is better than the fastest existing algorithm. 

Categories and Subject Descriptors 
F.2.2 [Analysis of Algorithms and Problem Complexity]: 
Nonnumerical Algorithms and Problems – Computations on 

discrete structures, Sorting and searching. 

General Terms 
Algorithms, Performance. 

Keywords 
Longest common subsequence, multiple longest common 
subsequence, dominant point approach, linear sorting, DNA 
sequence, protein sequence. 

1. INTRODUCTION 
The multiple longest common subsequence (MLCS) problem 
attempts to find the longest common subsequence between two or 
more input strings. This problem, in general, is NP-Hard [15] and 
is a common task in the sequence comparison of DNA sequences 
and amino acid sequences of proteins [3][5][18]. The application 
of the MLCS problem is not only limited to the field of 
computational biology but has many applications in file 
comparison [1] and text processing [19]. In all of these 
applications, the MLCS problems are identical and differ only in 

the alphabet, numbers and size of their sequences. 

So far, significant efforts have been made to find an efficient 
algorithm for the general MLCS problem [9][6][13][14][22] and 
for special cases with a limited number of strings 
[10][16][17][21][9][20]. These works can be classified into two 
main categories; classical methods based on the dynamic 
programming technique and methods based on the dominant 
point. Generally, in most applications, the MLCS problem for 
many strings arises and so a more efficient algorithm for the 
problem is requested. 

This paper presents a fast algorithm for the MLCS problem 
having any number of strings. This new algorithm is based on 
work done in [22], but with the difference that a linear sorting 
technique is utilized to minimize the dominant points set. The 
central concept is that, a one-pass linear algorithm can minimize 
the dominant points set after it has linearly sorted them. This 
method is more efficient than the divide and conquer technique 
used in [22] for the minimization of the dominant points set. The 
findings of theoretical and experimental evaluations show that the 
efficiency of the presented algorithm in different scenarios 
exceeds that of the algorithm presented in [22]. 

The rest of the paper is organized as follows. In the next section, 
the basic concepts of the MLCS problem are presented and related 
work is investigated. Section 3 presents the new algorithm which 
is based on the dominant point approach. In Section 4, the 
efficiency of the newly proposed algorithm is compared with that 
of the best work reported so far. Finally, in Section 5, the results 
of the evaluation are analyzed and possible future extensions are 
presented. 

2. BASIC CONCEPTS AND RELATED 
WORK 

2.1 Basic Definitions 
Suppose that a is a finite sequence of elements from the ∑ 
alphabet. The length of a is represented with |a|. a[i] is the ith 
element of a and a[i:j], 1 ≤ i ≤ j ≤ |a| denotes the sequence a[i], 
a[i+1], ..., a[j]. 

Definition 1. If a and b are finite sequences from the ∑ alphabet, 
then a is said to be a subsequence of b if there exists a 
monotonically increasing sequence of integers r1, r2, ..., r| a | such 
that a[i] = b[ri], 1 ≤ i ≤ |a|. 

Definition 2. If a, b and c are finite sequences from the ∑ 
alphabet, then c is said to be a common subsequence of a and b 
iff c is a subsequence of both a and b. The longest common 

subsequence is the common subsequence with the maximal 
length.  
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For example, “ACA” is a common subsequence of “ACAGTAG” 
and “CTTAGCA”, while “CTAG” and “CAGA” are the LCS of 
the two strings. 

The algorithms so far presented for the MLCS problem can be 
classified into two main categories: classical methods based on 
the dynamic programming technique and methods based on the 
dominant point. Dynamic programming algorithms are simpler 
and more straightforward than those of the dominant point. 
However, in situations in which there is no restriction on the 
number of sequences, these algorithms are very time-consuming 
and take up much space in the cases of very large sequences [9]. 

2.2 Dynamic Programming Approach 
The dynamic programming approach to solving the MLCS 
problem will first be explained as it is the basis of most algorithms 
for this problem. The main strategy behind the dynamic 
programming method is to successively evaluate the distance 
between longer and longer prefixed strings until the final result is 
obtained.  

More formally, given two sequences, a and b, of the length |a| and 
|b|, respectively, a dynamic programming algorithm iteratively 
builds an (|a|+1) × (|b|+1) score matrix L in which L[i,j], 0 ≤ i ≤ |a| 
and 0 ≤ j ≤ |b| denote the length of an LCS between the a[1:i] and 
b[1:j] prefixes. L[i,0] = L[0,j] = 0 for 0 ≤ i ≤ |a|, 0 ≤ j ≤ |b| and 

���, �� = � ��� − 1, � − 1� + 1 ��
���� = ����
max
{��� − 1, ��, ���, � − 1�} ��ℎ������  

The boundary condition simply means that the length of an LCS 
between any string and a null string is zero. The definition of the 
matrix L can be naturally generalized to a case of d sequences: for 
each position L[i1,i2,…,id], its value is defined through the 
immediately preceding positions. 

The maximal value in the matrix L is the length of LCS (i.e. 
|LCS|). LCS itself can be found by backtracking from L[|a|,|b|] 
and, at each step, by either (a) following pointers which were set 
during the calculation of the values or (b) by recalculating the 
predecessor which yielded the value of the current matrix 
position. Each time a match is made (the first rule applies), a 
symbol to the LCS is found. In general, there may be several such 
paths because the LCS is not necessarily unique. As an example, 
the score matrix L corresponding to two sequences, a = 
“CTTAGCA” and b = “ACAGTAG”, is shown in Figure 1. 

The resulting dynamic programming algorithm has a time and 
space complexity of O(nd) for d sequences of the length n [11]. 
Various approaches have been introduced to improve the 
efficiency of dynamic programming [10][16][17][2]. 
Unfortunately, however, these approaches are not applicable to 
the general MLCS problem with any number of strings. 

2.3 Dominant Point Approach 
In contrast to dynamic programming, in the dominant point 
approach only some positions of the score matrix L are calculated. 
The basic concept of this approach is that the longest common 
subsequence is uniquely defined on the match points; therefore, 
there is no need to compute all the matrix points of L [4]. Let L be 

the score matrix for a set of d sequences ��, ��, … , �� over a finite 

alphabet ∑. A point p in the matrix L is denoted as  =� �,  �, … ,  ��, where pi is the ith coordinate of the position p in L. 
The value at position p of the matrix L is denoted as L[p]. 

  A C A G T A G 

 0 0 0 0 0 0 0 0 

C 0 0 1 1 1 1 1 1 

T 0 0 1 1 1 2 2 2 

T 0 0 1 1 1 2 2 2 

A 0 1 1 2 2 2 3 3 

G 0 1 1 2 3 3 3 4 

C 0 1 2 2 3 3 3 4 

A 0 1 2 3 3 3 4 4 

Figure 1. The score matrix of two sequences a = “CTTAGCA” 

and b = “ACAGTAG”. 

 

Definition 3. A point  = � �,  �, … ,  �� in L is a match point iff 

��� �� = ��� �� = ⋯ = ��� �� 
Definition 4. A point  = � �,  �, … ,  �� dominates a point " = �"�, "�, … , "��, if  # ≤ "#, for all i = 1,2,…,d (denoted by  ≼ "). For example, in Figure 1, point [1,2] dominates point 
[4,3]. 

It is clear that a common subsequence of ��, ��, … , �� 
corresponds to a chain of dominant relations, and a LCS of the 
strings corresponds to the longest such chain. 

Definition 5. A point  = � �,  �, … ,  �� is a predecessor of 

another point " = �"�, "�, … , "��, if  # < "#, for all i = 1,2,…,d 

(written as  ≺ "). Alternatively, it is said that q is a successor of 
p. 

A point  = � �,  �, … ,  �� does not dominate a point " =�"�, "�, … , "�� (denoted as  ⋠ "), if ∃�, 1 ≤ � ≤ *, for which "# <  #. Note that  ⋠ " does not necessarily imply " ≼  , i.e. for 

some points p and q;  ⋠ " and " ⋠   may be true at the same 
time. In these situations, points p and q are said to be independent. 
For example, in Figure 1, neither [1,2] dominates [4,1] nor [4,1] 
dominates [1,2]. 

Definition 6. A match p is dominant or k-dominant iff L[p] = 

L[p1,p2,…,pd] = k and L[q] < k for all q such that �0,0,… ,0� ≼ " ≼  and " ≠  , that is, the dominants on the level k. 

Define Dk as the set of k-dominants. The set of all dominant points 
(that is, k-dominants for all k) are denoted as D. In Figure 1, the 
regions of the same entry values are bounded by contours. The 
corner points of these contours are dominant points. These are the 
critical points which are sufficient to define the overall contour 
shape. 

Definition 7. A match q is a (k + 1)-dominant iff there is a k-
dominant p with  ≺ " and there is no match r such that  ≺ � ≼" and � ≠ " for any k-dominant p with  ≺ ". 

As a general iteration step, a set of (k+1)-dominants is calculated 
from a set of k-dominants, 1 ≤ - ≤ .�/0. − 1. Thus, by 
advancing from one contour to another, all dominant points can be 
obtained. 
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Algorithm 1 Find Multiple Longest Common Subsequence 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

procedure Quick-MLCS({s1,s2,…,sd}, ∑) 

// Step 1: Calculation of dominant points 

Preprocessing; 

D0 = {[0, 0, …, 0]}; k = 0; 

while Dk not empty do 

Dk+1 = Minima(Succ(Dk, ∑)); 

k = k + 1; 

end while 

// Step 2: Calculation of MLCS-optimal path 

pick a point p = [p1, p2, …, pd] ∈ Dk-1; 

while k – 1 > 0 do 

current LCS position = a1[p1]; 

pick a point q ∈ Dk-2 such that p ∈ Succ(q, ∑); 

p = q; 

k = k – 1; 

end while 

end procedure 

  

Figure 2. The pseudocode of Quick-MLCS 

 
Figure 1 illustrates the process of the dominant point approach for 
the two sequences a and b. In Figure 1, the dominant points of the 
same level are encircled and tagged with the level number. Two 
dominant points, [1,2] and [4,1], of level 1 (1-dominant) are found 
at the first step. At the second step, three dominant points, [2,5], 
[4,3] and [6,2], of level 2 are detected based on the previous 
dominant points set {[1,2], [4,1]}, and so on. 

The dominant point approach has been successfully applied to the 
case of two sequences [2][7][12]. In [9], three dominant point 
algorithms for three or more sequences were proposed. Recently, 
Wang et al. [22] presented a dominant point based algorithm for 
the MLCS problem with any number of strings. The sequential 
version of this algorithm, Quick-DP, is the fastest algorithm found 
in literature. Quick-DP uses an iterative method for computing 
dominant points in each level and then, after sorting these points, 
it employs a divide and conquer technique to minimize them. The 
performance of the minimization algorithm in Quick-DP 
decreases with the growth of the cardinality of the dominant 
points set. In this paper, Quick-DP is utilized as the base method. 

3. THE NEW ALGORITHM, QUICK-MLCS 
In this section, a new dominant point based algorithm is presented 
for the MLCS problem with any number of sequences, the Quick-
MLCS. However, before presenting this algorithm, a few 
assumptions and definitions are needed. 

It is assumed that a1,a2,…,ad are sequences from the ∑ alphabet, 
and that |a1| = |a2| = … = |ad| = n are only taken for convenience. 

Definition 8. A match q is called an σ-successor (a successor with 
respect to the σ symbol 2 ∈ Σ) of a point p, if  
 ≺ 
" and there is 

no other match r of σ, such that  
 ≺ 
�
 ≺ 
". The σ-successor of 
p is denoted as p(σ). The set of σ-successor for p is indicated as 
Succ(p,σ), i.e., Succ(p,σ) = {p(σ)}. The set of all σ-successors for  

Algorithm 2 Compute the Minima of Dominant Points 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

function Minima(A) 

if (size(A) = 1) then 

return A; 

end if 

n = max value in ith-dimensional coordinate; 

sorted = array [n][d]; 

for all p ∈ A do 

if (sorted[p[i]] is empty) or (p < sorted[p[i]]) then 

sorted[p[i]] = p; 

end if 

end for 

min = [∞, ∞, …, ∞]; 

A = ∅; 

for all p ∈ sorted do 

if (p < min) then 

min = p; 

A = A ∪ p; 

end if 

end for 

return A; 

end function 

  

Figure 3. The pseudocode of Minima algorithm 

 

a set of points A is denoted as Succ(A,σ). The set of all successors, 6 0788(:, 2)<∈= , for A is written as Succ(A,∑). 

Definition 9. A point p in a set of points A is called a minimal 

element of A, if, for all " ∈ : − { }, " ⋠  . The minima problem 
consists of finding all the minimal elements of A. 

Define Succ(Dk, σ) as { (2)
.
 ∈ >?} and Succ(Dk,∑) as { (2).
 ∈ >? , 2 ∈ ∑}. Succ(Dk,∑) is the set of the candidates of 
(k+1)-dominants. 

It was proven in [14] that (k+1)-dominants, D(k+1), 0 ≤ - ≤.@�/0. − 1, constitute exactly the minima of the successor set 

Succ(Dk,∑) of k-dominants Dk, i.e. 

>?A� = B�C�B�
0788(>? ,∑), 
where minima is an algorithm that returns the minima of a set of 
points. 

3.1 Main Idea 
The Quick-MLCS consists of two main parts (Figure 2). In the 
first part, the set of all dominants is calculated iteratively, starting 
from the 0-dominant set (containing one element). The set of 
(k+1)-dominants, D(k+1), is obtained based on the set of k-
dominants Dk. In the second part, a path corresponding to an 
MLCS is found by tracing back through the sets of dominant 
points obtained in the first part of the algorithm, starting with an 
element from the last dominant set. If needed, all MLCS, can be 
enumerated systematically. 
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The most important part of the Quick-MLCS algorithm is the 
minimization part. This follows a two-step procedure to compute 

the minima of the successor set Succ(Dk,∑). In the first step, all 
points are linearly sorted based on the ith dimensional coordinate. 
In this process, if the space of a key is already occupied, then a 
new point is inserted if it can dominate the existing one. This 
means that, among points with duplicate keys, only the minimal 
points will remain. In the second step, a linear algorithm passes 
through the sorted points and removes those that are dominated by 
the previous ones (Figure 3). 

To better understand the logic behind the Quick-MLCS algorithm, 
an example is given in Table 1. This example shows the trace 
table of the Quick-MLCS for two sequences, a = “CTTAGCA” 
and b = “ACAGTAG”. 

 

Table 1. The trace table of Quick-MLCS for two sequences 

a=“CTTAGCA” and b=“ACAGTAG” 

k Dk Succ(Dk,∑∑∑∑) 
minima 

Succ(Dk,∑∑∑∑) 

0 {[0, 0]} 
{[1, 2], [4, 1], 

[2, 5], [5, 4]} 
{[1, 2], [4, 1]} 

1 {[1, 2], [4, 1]} 

{[4, 3], [2, 5], 

[5, 4], [6, 2], 

[7, 3]} 

{[2, 5], [4, 3], 

[6, 2]} 

2 
{[2, 5], [4, 3], 

[6, 2]} 

{[4, 6], [5, 7], 

[5, 4], [7, 6], 

[7, 3]} 

{[4, 6], [5, 4], 

[7, 3]} 

3 
{[4, 6], [5, 4], 

[7, 3]} 
{[5, 7], [7, 6]} {[5, 7], [7, 6]} 

4 {[5, 7], [7, 6]} {} {} 

 

3.2 Successor Table 
The Quick-MLCS needs a preprocessing step at the beginning of 
its algorithm (as in [22]) that efficiently calculates all the 
successors of each dominant point. In this step, a successor matrix 
T = {T[σ,j,i]}, 2 ∈ ∑, 0 ≤ � ≤ B�D�E?E�{.�?.}, 1 ≤ � ≤ *, 
where each element T[σ,j,i] specifies the position of the first 
occurrence of the character σ in the ith sequence, starting from the 
(j+1)st position in that sequence. If σ no longer occurs in the ith 

sequence, the value of T[σ,j,i] is equal to 1 + B�D�E?E�{.�?.}. 
With the matrix T, the σ-successor  = � �,  �, … ,  �� of a point " = �"�, "�, … , "�� can be calculated in O(d) time using the 
formula 

 # = F(2, "# , �), 1 ≤ � ≤ * 

The calculation of this successor matrix T takes O(n|∑|d) time, 

where |∑| is the size of the ∑ alphabet. The successor matrix T, 
calculated for the two sequences a = “CTTAGCA” and b = 
“ACAGTAG”, is shown in Figure 4. 

3.3 Complexity Analysis 
Let |D| be the size of the dominant point set D. Since it was 
already stated that Succ(q,σ) can be calculated in O(d) time, it can 

be concluded that it takes O(|∑|d) time to compute the successor 

set Succ(q,∑), " ∈ ∑. The time for computing the minima of a 
point set is linear. Therefore, O(|D|d) is the time needed to 

compute the minima of each σ-successor set for all 2 ∈ ∑. Hence, 

the complexity of minima is O(|D||∑|d). 

As was said previously in section 3.2, the calculation of the 

successor matrix T takes O(n|∑|d) time; thus, the overall 
complexity of the Quick-MLCS is 

O(n|∑|d + |D||∑|d). 

The space complexity of the algorithm can be easily estimated as 

O(n|∑|d + nd + |D|d): O(n|∑|d) for storing the successor matrix T, 
O(nd) for linearly sorting points and, finally, O(|D|d) for 
minimizing the dominant points. 

 

a = “CTTAGCA” b = “ACAGTAG” 

 - C T T A G C A  - A C A G T A G 

A 4 4 4 4 7 7 7 8 A 1 3 3 6 6 6 8 8 

C 1 6 6 6 6 6 8 8 C 2 2 8 8 8 8 8 8 

T 2 2 3 8 8 8 8 8 T 5 5 5 5 5 8 8 8 

G 5 5 5 5 5 8 8 8 G 4 4 4 4 7 7 7 8 

Figure 4. The successor matrix T for two sequences a = 

“CTTAGCA” and b = “ACAGTAG” 

 

Table 2. The Average Running Time (in Milliseconds) of 

Quick-MLCS and Quick-DP Algorithms for Random Two-

Sequence MLCS Problems of lengths ranging between 100 

and 1,000 

|∑∑∑∑| = 20 |∑∑∑∑| = 4 
Sequence 

Length Quick-

MLCS 
Quick-DP 

Quick-

MLCS 
Quick-DP 

5 17 4 14 100 

20 35 17 31 200 

49 81 32 54 300 

94 147 59 93 400 

161 253 99 157 500 

259 400 148 228 600 

427 620 219 317 700 

599 877 327 468 800 

914 1289 446 634 900 

1259 1712 582 803 1000 

 

4. EXPERIMENTAL EVALUATION 
In this paper’s experiments, the algorithms were run on a machine 
with the Linux Fedora 15 Lovelock Kernel 2.6.38 with Intel 
Core2 Duo P8400 2.26 GHz and 3 GB memory. The 
programming environment was GNU C++. The algorithms were 
tested on a set of strings of lengths ranging between 100 and 
4,000, on alphabets of size 4 (e.g. DNA sequences) and 20 (e.g. 
protein sequences). 

The new algorithm Quick-MLCS is compared with the Wang et 
al. [22] algorithm, the Quick-DP. The Quick-DP algorithm is 
designed for any number of strings and is among the fastest 
algorithms for the general MLCS problem. This paper’s algorithm 
can work with any number of sequences and the Quick-DP 
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algorithm was implemented according to Wang et al. [22]. All the 
source codes used for our experiments are available by request. 

Since the MLCS method can be applied to many areas of 
bioinformatics and computational genomics, and well beyond the 
biological domain, the sequence representations of the objects 
from each application domain, as well as the distribution of the 
letters in the sequences, can be drastically different. Therefore, for 
an unbiased assessment of this paper’s algorithms, a set of strings 
randomly and independently generated from the alphabet was 
used as a test set. 

 

Figure 5. The Average Running Time (in Milliseconds) of 

Quick-MLCS and Quick-DP Algorithms for Random Two-

Sequence MLCS Problems of lengths ranging between 100 

and 1,000 

In the experiments on two-sequence MLCS problems, 10 sets of 
two random strings for each string length were generated. Quick-
MLCS and Quick-DP algorithms were tested on the same data 
sets and their average running times for strings of lengths ranging 
between 100 and 1,000 are shown in Table 2 and Figure 5. 

The experimental results for strings of lengths ranging between 
1,500 and 4,000 are presented in Table 3 and Figure 6. 

Figure 5 and Figure 6 show that Quick-MLCS is slightly faster 
than the Quick-DP algorithm on two strings. The results in Table 
2 and Table 3 indicate that the performance of the Quick-MLCS 
algorithm of this paper exceeds that of the Quick-DP by about 
20%. 

Table 3. The Average Running Time (in Seconds) of Quick-

MLCS and Quick-DP Algorithms for Random Two-Sequence 

MLCS Problems of lengths ranging between 1,500 and 4,000 

|∑∑∑∑| = 20 |∑∑∑∑| = 4 
Sequence 

Length Quick-

MLCS 

Quick-

DP 

Quick-

MLCS 

Quick-

DP 

3.94 5.54 1.89 2.66 1500 

9.06 12.07 4.35 5.75 2000 

17.47 23.49 8.38 11.37 2500 

29.78 39.15 13.94 18.28 3000 

48.47 63.04 22.09 29.04 3500 

75.2 94.95 33.57 42.48 4000 

5. CONCLUSIONS 
The MLCS problem is a common task in the sequence comparison 
of DNA sequences and amino acid sequences of proteins 
[3][5][18][14][7][8]. Therefore, the direction of further 
improvement and development of this paper’s algorithms for this 
field will be guided by the needs of the bioinformatics and 
computational genomics community. 

The main contribution of this paper is the design of a new 
efficient algorithm, the Quick-MLCS, for solving a general case 
of the MLCS problem. The comparison with the currently best 
method, the Quick-DP, through various experiments, suggests that 
the Quick-MLCS is presently the fastest sequential general MLCS 
algorithm, with a speed significantly higher than that of the 
existing methods. The author’s next steps will be towards 
presenting a parallel version of the Quick-MLCS which can 
handle larger sequences. 

 

Figure 6. The Average Running Time (in Seconds) of Quick-

MLCS and Quick-DP Algorithms for Random Two-Sequence 

MLCS Problems of lengths ranging between 1,500 and 4,000 
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