
Quick-MLCS: A New Algorithm for the Multiple Longest
Common Subsequence Problem

Majid Sazvar
Computer Engineering Department
Ferdowsi University of Mashhad

Mashhad, Iran

sazvar@stu-mail.um.ac.ir

Mahmoud Naghibzadeh
Computer Engineering Department
Ferdowsi University of Mashhad

Mashhad, Iran

naghibzadeh@um.ac.ir

Nayyereh Saadati
Ghaem Hospital

Mashhad University of Medical Sciences
Mashhad, Iran

saadatin@mums.ac.ir

ABSTRACT

Finding the longest common subsequence (LCS) of multiple
strings is a well-known problem that has many applications in
various fields, such as computational biology and computational
genomics. This problem has been studied by a number of
researchers and over the years, its complexity has been improved
from various aspects. This paper presents a new algorithm for the
general case of multiple LCS (MLCS) which is based on one of
the fastest existing algorithms. The proposed algorithm is founded
on the dominant point approach and uses a linear sorting
technique to minimize the dominant points set. The main idea is
that, after linearly sorting dominant points, a one-pass linear
algorithm can minimize the dominant points set. The results of
theoretical and experimental evaluations indicate that the
efficiency of the newly proposed algorithm in different scenarios
is better than the fastest existing algorithm.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems – Computations on

discrete structures, Sorting and searching.

General Terms
Algorithms, Performance.

Keywords
Longest common subsequence, multiple longest common
subsequence, dominant point approach, linear sorting, DNA
sequence, protein sequence.

1. INTRODUCTION
The multiple longest common subsequence (MLCS) problem
attempts to find the longest common subsequence between two or
more input strings. This problem, in general, is NP-Hard [15] and
is a common task in the sequence comparison of DNA sequences
and amino acid sequences of proteins [3][5][18]. The application
of the MLCS problem is not only limited to the field of
computational biology but has many applications in file
comparison [1] and text processing [19]. In all of these
applications, the MLCS problems are identical and differ only in

the alphabet, numbers and size of their sequences.

So far, significant efforts have been made to find an efficient
algorithm for the general MLCS problem [9][6][13][14][22] and
for special cases with a limited number of strings
[10][16][17][21][9][20]. These works can be classified into two
main categories; classical methods based on the dynamic
programming technique and methods based on the dominant
point. Generally, in most applications, the MLCS problem for
many strings arises and so a more efficient algorithm for the
problem is requested.

This paper presents a fast algorithm for the MLCS problem
having any number of strings. This new algorithm is based on
work done in [22], but with the difference that a linear sorting
technique is utilized to minimize the dominant points set. The
central concept is that, a one-pass linear algorithm can minimize
the dominant points set after it has linearly sorted them. This
method is more efficient than the divide and conquer technique
used in [22] for the minimization of the dominant points set. The
findings of theoretical and experimental evaluations show that the
efficiency of the presented algorithm in different scenarios
exceeds that of the algorithm presented in [22].

The rest of the paper is organized as follows. In the next section,
the basic concepts of the MLCS problem are presented and related
work is investigated. Section 3 presents the new algorithm which
is based on the dominant point approach. In Section 4, the
efficiency of the newly proposed algorithm is compared with that
of the best work reported so far. Finally, in Section 5, the results
of the evaluation are analyzed and possible future extensions are
presented.

2. BASIC CONCEPTS AND RELATED
WORK

2.1 Basic Definitions
Suppose that a is a finite sequence of elements from the ∑
alphabet. The length of a is represented with |a|. a[i] is the ith
element of a and a[i:j], 1 ≤ i ≤ j ≤ |a| denotes the sequence a[i],
a[i+1], ..., a[j].

Definition 1. If a and b are finite sequences from the ∑ alphabet,
then a is said to be a subsequence of b if there exists a
monotonically increasing sequence of integers r1, r2, ..., r| a | such
that a[i] = b[ri], 1 ≤ i ≤ |a|.

Definition 2. If a, b and c are finite sequences from the ∑
alphabet, then c is said to be a common subsequence of a and b
iff c is a subsequence of both a and b. The longest common

subsequence is the common subsequence with the maximal
length.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
C3S2E-12 2012, June 27-29, Montreal [QC, CANADA]
Editors: B. C. Desai, S. Mudur, E. Vassev

Copyright ©2012 ACM 978-1-4503-1084-0/12/06 $15.00

61

For example, “ACA” is a common subsequence of “ACAGTAG”
and “CTTAGCA”, while “CTAG” and “CAGA” are the LCS of
the two strings.

The algorithms so far presented for the MLCS problem can be
classified into two main categories: classical methods based on
the dynamic programming technique and methods based on the
dominant point. Dynamic programming algorithms are simpler
and more straightforward than those of the dominant point.
However, in situations in which there is no restriction on the
number of sequences, these algorithms are very time-consuming
and take up much space in the cases of very large sequences [9].

2.2 Dynamic Programming Approach
The dynamic programming approach to solving the MLCS
problem will first be explained as it is the basis of most algorithms
for this problem. The main strategy behind the dynamic
programming method is to successively evaluate the distance
between longer and longer prefixed strings until the final result is
obtained.

More formally, given two sequences, a and b, of the length |a| and
|b|, respectively, a dynamic programming algorithm iteratively
builds an (|a|+1) × (|b|+1) score matrix L in which L[i,j], 0 ≤ i ≤ |a|
and 0 ≤ j ≤ |b| denote the length of an LCS between the a[1:i] and
b[1:j] prefixes. L[i,0] = L[0,j] = 0 for 0 ≤ i ≤ |a|, 0 ≤ j ≤ |b| and

���, �� = � ��� − 1, � − 1� + 1 ��
���� = ����
max
{��� − 1, ��, ���, � − 1�} ��ℎ������

The boundary condition simply means that the length of an LCS
between any string and a null string is zero. The definition of the
matrix L can be naturally generalized to a case of d sequences: for
each position L[i1,i2,…,id], its value is defined through the
immediately preceding positions.

The maximal value in the matrix L is the length of LCS (i.e.
|LCS|). LCS itself can be found by backtracking from L[|a|,|b|]
and, at each step, by either (a) following pointers which were set
during the calculation of the values or (b) by recalculating the
predecessor which yielded the value of the current matrix
position. Each time a match is made (the first rule applies), a
symbol to the LCS is found. In general, there may be several such
paths because the LCS is not necessarily unique. As an example,
the score matrix L corresponding to two sequences, a =
“CTTAGCA” and b = “ACAGTAG”, is shown in Figure 1.

The resulting dynamic programming algorithm has a time and
space complexity of O(nd) for d sequences of the length n [11].
Various approaches have been introduced to improve the
efficiency of dynamic programming [10][16][17][2].
Unfortunately, however, these approaches are not applicable to
the general MLCS problem with any number of strings.

2.3 Dominant Point Approach
In contrast to dynamic programming, in the dominant point
approach only some positions of the score matrix L are calculated.
The basic concept of this approach is that the longest common
subsequence is uniquely defined on the match points; therefore,
there is no need to compute all the matrix points of L [4]. Let L be

the score matrix for a set of d sequences ��, ��, … , �� over a finite

alphabet ∑. A point p in the matrix L is denoted as =� �, �, … , ��, where pi is the ith coordinate of the position p in L.
The value at position p of the matrix L is denoted as L[p].

 A C A G T A G

 0 0 0 0 0 0 0 0

C 0 0 1 1 1 1 1 1

T 0 0 1 1 1 2 2 2

T 0 0 1 1 1 2 2 2

A 0 1 1 2 2 2 3 3

G 0 1 1 2 3 3 3 4

C 0 1 2 2 3 3 3 4

A 0 1 2 3 3 3 4 4

Figure 1. The score matrix of two sequences a = “CTTAGCA”

and b = “ACAGTAG”.

Definition 3. A point = � �, �, … , �� in L is a match point iff

��� �� = ��� �� = ⋯ = ��� ��
Definition 4. A point = � �, �, … , �� dominates a point " = �"�, "�, … , "��, if # ≤ "#, for all i = 1,2,…,d (denoted by ≼ "). For example, in Figure 1, point [1,2] dominates point
[4,3].

It is clear that a common subsequence of ��, ��, … , ��
corresponds to a chain of dominant relations, and a LCS of the
strings corresponds to the longest such chain.

Definition 5. A point = � �, �, … , �� is a predecessor of

another point " = �"�, "�, … , "��, if # < "#, for all i = 1,2,…,d

(written as ≺ "). Alternatively, it is said that q is a successor of
p.

A point = � �, �, … , �� does not dominate a point " =�"�, "�, … , "�� (denoted as ⋠ "), if ∃�, 1 ≤ � ≤ *, for which "# < #. Note that ⋠ " does not necessarily imply " ≼ , i.e. for

some points p and q; ⋠ " and " ⋠ may be true at the same
time. In these situations, points p and q are said to be independent.
For example, in Figure 1, neither [1,2] dominates [4,1] nor [4,1]
dominates [1,2].

Definition 6. A match p is dominant or k-dominant iff L[p] =

L[p1,p2,…,pd] = k and L[q] < k for all q such that �0,0,… ,0� ≼ " ≼ and " ≠ , that is, the dominants on the level k.

Define Dk as the set of k-dominants. The set of all dominant points
(that is, k-dominants for all k) are denoted as D. In Figure 1, the
regions of the same entry values are bounded by contours. The
corner points of these contours are dominant points. These are the
critical points which are sufficient to define the overall contour
shape.

Definition 7. A match q is a (k + 1)-dominant iff there is a k-
dominant p with ≺ " and there is no match r such that ≺ � ≼" and � ≠ " for any k-dominant p with ≺ ".

As a general iteration step, a set of (k+1)-dominants is calculated
from a set of k-dominants, 1 ≤ - ≤ .�/0. − 1. Thus, by
advancing from one contour to another, all dominant points can be
obtained.

62

Algorithm 1 Find Multiple Longest Common Subsequence

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

procedure Quick-MLCS({s1,s2,…,sd}, ∑)

// Step 1: Calculation of dominant points

Preprocessing;

D0 = {[0, 0, …, 0]}; k = 0;

while Dk not empty do

Dk+1 = Minima(Succ(Dk, ∑));

k = k + 1;

end while

// Step 2: Calculation of MLCS-optimal path

pick a point p = [p1, p2, …, pd] ∈ Dk-1;

while k – 1 > 0 do

current LCS position = a1[p1];

pick a point q ∈ Dk-2 such that p ∈ Succ(q, ∑);

p = q;

k = k – 1;

end while

end procedure

Figure 2. The pseudocode of Quick-MLCS

Figure 1 illustrates the process of the dominant point approach for
the two sequences a and b. In Figure 1, the dominant points of the
same level are encircled and tagged with the level number. Two
dominant points, [1,2] and [4,1], of level 1 (1-dominant) are found
at the first step. At the second step, three dominant points, [2,5],
[4,3] and [6,2], of level 2 are detected based on the previous
dominant points set {[1,2], [4,1]}, and so on.

The dominant point approach has been successfully applied to the
case of two sequences [2][7][12]. In [9], three dominant point
algorithms for three or more sequences were proposed. Recently,
Wang et al. [22] presented a dominant point based algorithm for
the MLCS problem with any number of strings. The sequential
version of this algorithm, Quick-DP, is the fastest algorithm found
in literature. Quick-DP uses an iterative method for computing
dominant points in each level and then, after sorting these points,
it employs a divide and conquer technique to minimize them. The
performance of the minimization algorithm in Quick-DP
decreases with the growth of the cardinality of the dominant
points set. In this paper, Quick-DP is utilized as the base method.

3. THE NEW ALGORITHM, QUICK-MLCS
In this section, a new dominant point based algorithm is presented
for the MLCS problem with any number of sequences, the Quick-
MLCS. However, before presenting this algorithm, a few
assumptions and definitions are needed.

It is assumed that a1,a2,…,ad are sequences from the ∑ alphabet,
and that |a1| = |a2| = … = |ad| = n are only taken for convenience.

Definition 8. A match q is called an σ-successor (a successor with
respect to the σ symbol 2 ∈ Σ) of a point p, if
 ≺
" and there is

no other match r of σ, such that
 ≺
�
 ≺
". The σ-successor of
p is denoted as p(σ). The set of σ-successor for p is indicated as
Succ(p,σ), i.e., Succ(p,σ) = {p(σ)}. The set of all σ-successors for

Algorithm 2 Compute the Minima of Dominant Points

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

function Minima(A)

if (size(A) = 1) then

return A;

end if

n = max value in ith-dimensional coordinate;

sorted = array [n][d];

for all p ∈ A do

if (sorted[p[i]] is empty) or (p < sorted[p[i]]) then

sorted[p[i]] = p;

end if

end for

min = [∞, ∞, …, ∞];

A = ∅;

for all p ∈ sorted do

if (p < min) then

min = p;

A = A ∪ p;

end if

end for

return A;

end function

Figure 3. The pseudocode of Minima algorithm

a set of points A is denoted as Succ(A,σ). The set of all successors, 6 0788(:, 2)<∈= , for A is written as Succ(A,∑).

Definition 9. A point p in a set of points A is called a minimal

element of A, if, for all " ∈ : − { }, " ⋠ . The minima problem
consists of finding all the minimal elements of A.

Define Succ(Dk, σ) as { (2)
.
 ∈ >?} and Succ(Dk,∑) as { (2).
 ∈ >? , 2 ∈ ∑}. Succ(Dk,∑) is the set of the candidates of
(k+1)-dominants.

It was proven in [14] that (k+1)-dominants, D(k+1), 0 ≤ - ≤.@�/0. − 1, constitute exactly the minima of the successor set

Succ(Dk,∑) of k-dominants Dk, i.e.

>?A� = B�C�B�
0788(>? ,∑),
where minima is an algorithm that returns the minima of a set of
points.

3.1 Main Idea
The Quick-MLCS consists of two main parts (Figure 2). In the
first part, the set of all dominants is calculated iteratively, starting
from the 0-dominant set (containing one element). The set of
(k+1)-dominants, D(k+1), is obtained based on the set of k-
dominants Dk. In the second part, a path corresponding to an
MLCS is found by tracing back through the sets of dominant
points obtained in the first part of the algorithm, starting with an
element from the last dominant set. If needed, all MLCS, can be
enumerated systematically.

63

The most important part of the Quick-MLCS algorithm is the
minimization part. This follows a two-step procedure to compute

the minima of the successor set Succ(Dk,∑). In the first step, all
points are linearly sorted based on the ith dimensional coordinate.
In this process, if the space of a key is already occupied, then a
new point is inserted if it can dominate the existing one. This
means that, among points with duplicate keys, only the minimal
points will remain. In the second step, a linear algorithm passes
through the sorted points and removes those that are dominated by
the previous ones (Figure 3).

To better understand the logic behind the Quick-MLCS algorithm,
an example is given in Table 1. This example shows the trace
table of the Quick-MLCS for two sequences, a = “CTTAGCA”
and b = “ACAGTAG”.

Table 1. The trace table of Quick-MLCS for two sequences

a=“CTTAGCA” and b=“ACAGTAG”

k Dk Succ(Dk,∑∑∑∑)
minima

Succ(Dk,∑∑∑∑)

0 {[0, 0]}
{[1, 2], [4, 1],

[2, 5], [5, 4]}
{[1, 2], [4, 1]}

1 {[1, 2], [4, 1]}

{[4, 3], [2, 5],

[5, 4], [6, 2],

[7, 3]}

{[2, 5], [4, 3],

[6, 2]}

2
{[2, 5], [4, 3],

[6, 2]}

{[4, 6], [5, 7],

[5, 4], [7, 6],

[7, 3]}

{[4, 6], [5, 4],

[7, 3]}

3
{[4, 6], [5, 4],

[7, 3]}
{[5, 7], [7, 6]} {[5, 7], [7, 6]}

4 {[5, 7], [7, 6]} {} {}

3.2 Successor Table
The Quick-MLCS needs a preprocessing step at the beginning of
its algorithm (as in [22]) that efficiently calculates all the
successors of each dominant point. In this step, a successor matrix
T = {T[σ,j,i]}, 2 ∈ ∑, 0 ≤ � ≤ B�D�E?E�{.�?.}, 1 ≤ � ≤ *,
where each element T[σ,j,i] specifies the position of the first
occurrence of the character σ in the ith sequence, starting from the
(j+1)st position in that sequence. If σ no longer occurs in the ith

sequence, the value of T[σ,j,i] is equal to 1 + B�D�E?E�{.�?.}.
With the matrix T, the σ-successor = � �, �, … , �� of a point " = �"�, "�, … , "�� can be calculated in O(d) time using the
formula

 # = F(2, "# , �), 1 ≤ � ≤ *

The calculation of this successor matrix T takes O(n|∑|d) time,

where |∑| is the size of the ∑ alphabet. The successor matrix T,
calculated for the two sequences a = “CTTAGCA” and b =
“ACAGTAG”, is shown in Figure 4.

3.3 Complexity Analysis
Let |D| be the size of the dominant point set D. Since it was
already stated that Succ(q,σ) can be calculated in O(d) time, it can

be concluded that it takes O(|∑|d) time to compute the successor

set Succ(q,∑), " ∈ ∑. The time for computing the minima of a
point set is linear. Therefore, O(|D|d) is the time needed to

compute the minima of each σ-successor set for all 2 ∈ ∑. Hence,

the complexity of minima is O(|D||∑|d).

As was said previously in section 3.2, the calculation of the

successor matrix T takes O(n|∑|d) time; thus, the overall
complexity of the Quick-MLCS is

O(n|∑|d + |D||∑|d).

The space complexity of the algorithm can be easily estimated as

O(n|∑|d + nd + |D|d): O(n|∑|d) for storing the successor matrix T,
O(nd) for linearly sorting points and, finally, O(|D|d) for
minimizing the dominant points.

a = “CTTAGCA” b = “ACAGTAG”

 - C T T A G C A - A C A G T A G

A 4 4 4 4 7 7 7 8 A 1 3 3 6 6 6 8 8

C 1 6 6 6 6 6 8 8 C 2 2 8 8 8 8 8 8

T 2 2 3 8 8 8 8 8 T 5 5 5 5 5 8 8 8

G 5 5 5 5 5 8 8 8 G 4 4 4 4 7 7 7 8

Figure 4. The successor matrix T for two sequences a =

“CTTAGCA” and b = “ACAGTAG”

Table 2. The Average Running Time (in Milliseconds) of

Quick-MLCS and Quick-DP Algorithms for Random Two-

Sequence MLCS Problems of lengths ranging between 100

and 1,000

|∑∑∑∑| = 20 |∑∑∑∑| = 4
Sequence

Length Quick-

MLCS
Quick-DP

Quick-

MLCS
Quick-DP

5 17 4 14 100

20 35 17 31 200

49 81 32 54 300

94 147 59 93 400

161 253 99 157 500

259 400 148 228 600

427 620 219 317 700

599 877 327 468 800

914 1289 446 634 900

1259 1712 582 803 1000

4. EXPERIMENTAL EVALUATION
In this paper’s experiments, the algorithms were run on a machine
with the Linux Fedora 15 Lovelock Kernel 2.6.38 with Intel
Core2 Duo P8400 2.26 GHz and 3 GB memory. The
programming environment was GNU C++. The algorithms were
tested on a set of strings of lengths ranging between 100 and
4,000, on alphabets of size 4 (e.g. DNA sequences) and 20 (e.g.
protein sequences).

The new algorithm Quick-MLCS is compared with the Wang et
al. [22] algorithm, the Quick-DP. The Quick-DP algorithm is
designed for any number of strings and is among the fastest
algorithms for the general MLCS problem. This paper’s algorithm
can work with any number of sequences and the Quick-DP

64

algorithm was implemented according to Wang et al. [22]. All the
source codes used for our experiments are available by request.

Since the MLCS method can be applied to many areas of
bioinformatics and computational genomics, and well beyond the
biological domain, the sequence representations of the objects
from each application domain, as well as the distribution of the
letters in the sequences, can be drastically different. Therefore, for
an unbiased assessment of this paper’s algorithms, a set of strings
randomly and independently generated from the alphabet was
used as a test set.

Figure 5. The Average Running Time (in Milliseconds) of

Quick-MLCS and Quick-DP Algorithms for Random Two-

Sequence MLCS Problems of lengths ranging between 100

and 1,000

In the experiments on two-sequence MLCS problems, 10 sets of
two random strings for each string length were generated. Quick-
MLCS and Quick-DP algorithms were tested on the same data
sets and their average running times for strings of lengths ranging
between 100 and 1,000 are shown in Table 2 and Figure 5.

The experimental results for strings of lengths ranging between
1,500 and 4,000 are presented in Table 3 and Figure 6.

Figure 5 and Figure 6 show that Quick-MLCS is slightly faster
than the Quick-DP algorithm on two strings. The results in Table
2 and Table 3 indicate that the performance of the Quick-MLCS
algorithm of this paper exceeds that of the Quick-DP by about
20%.

Table 3. The Average Running Time (in Seconds) of Quick-

MLCS and Quick-DP Algorithms for Random Two-Sequence

MLCS Problems of lengths ranging between 1,500 and 4,000

|∑∑∑∑| = 20 |∑∑∑∑| = 4
Sequence

Length Quick-

MLCS

Quick-

DP

Quick-

MLCS

Quick-

DP

3.94 5.54 1.89 2.66 1500

9.06 12.07 4.35 5.75 2000

17.47 23.49 8.38 11.37 2500

29.78 39.15 13.94 18.28 3000

48.47 63.04 22.09 29.04 3500

75.2 94.95 33.57 42.48 4000

5. CONCLUSIONS
The MLCS problem is a common task in the sequence comparison
of DNA sequences and amino acid sequences of proteins
[3][5][18][14][7][8]. Therefore, the direction of further
improvement and development of this paper’s algorithms for this
field will be guided by the needs of the bioinformatics and
computational genomics community.

The main contribution of this paper is the design of a new
efficient algorithm, the Quick-MLCS, for solving a general case
of the MLCS problem. The comparison with the currently best
method, the Quick-DP, through various experiments, suggests that
the Quick-MLCS is presently the fastest sequential general MLCS
algorithm, with a speed significantly higher than that of the
existing methods. The author’s next steps will be towards
presenting a parallel version of the Quick-MLCS which can
handle larger sequences.

Figure 6. The Average Running Time (in Seconds) of Quick-

MLCS and Quick-DP Algorithms for Random Two-Sequence

MLCS Problems of lengths ranging between 1,500 and 4,000

6. ACKNOWLEDGMENTS
The authors would like to thank the four anonymous reviewers for
their excellent and supportive comments.

7. REFERENCES
[1] Aho, A., Hopcroft, J., Ullman, J. 1983. Data structures and

algorithms. Addison-Wesley.

[2] Apostolico, A., Browne, S. and Guerra, C. 1992. Fast Linear-
Space Computations of Longest Common Subsequences.
Theoretical Computer Science 92, 1, 3-17.
DOI=10.1016/0304-3975(92)90132-Y
http://dx.doi.org/10.1016/0304-3975(92)90132-Y

[3] Attwood, T.K. and Findlay, J.B.C. 1994. Fingerprinting G
Protein-Coupled Receptors. Protein Eng. 7, 2, 195-203.
DOI=10.1093/protein/7.2.195.

[4] Bergroth, L., Hakonen, H. and Raita, T. 2000. A Survey of
Longest Common Subsequence Algorithms. Proc. Int’l
Symp. String Processing Information Retrieval (SPIRE ’00),
IEEE Computer Society, Washington, DC, USA, 39-48.

[5] Bourque, G. and Pevzner, P.A. 2002. Genome-Scale
Evolution: Reconstructing Gene Orders in the Ancestral
Species. Genome Research 12, 26-36.

65

[6] Chen, Y., Wan, A. and Liu, W. 2006. A Fast Parallel
Algorithm for Finding the Longest Common Sequence of
Multiple Biosequences. BMC Bioinformatics 7, S4.

[7] Chin, F.Y. and Poon, C.K. 1990. A Fast Algorithm for
Computing Longest Common Subsequences of Small
Alphabet Size. J. Information Processing 13, 4, 463-469.

[8] Dayhoff, M.O. 1969. Computer Analysis of Protein
Evolution. Scientific Am. 221, 1, 86-95.

[9] Hakata, K. and Imai, H. 1998. Algorithms for the Longest
Common Subsequence Problem for Multiple Strings Based
on Geometric Maxima. Optimization Methods and Software
10, 233-260.

[10] Hirschberg, D.S. 1977. Algorithms for the Longest Common
Subsequence Problem. J. ACM 24, 664-675.
DOI=10.1145/322033.322044
http://doi.acm.org/10.1145/322033.322044

[11] Hsu, W.J. and Du, M.W. 1984. Computing a Longest
Common Subsequence for a Set of Strings. BIT Numerical
Math. 24, 1, 45-59.

[12] Hunt, J.W. and Szymanski, T.G. 1977. A Fast Algorithm for
Computing Longest Common Subsequences. Comm. ACM
20, 5, 350-353. DOI=10.1145/359581.359603
http://doi.acm.org/10.1145/359581.359603

[13] Korkin, D. 2001. A New Dominant Point-Based Parallel
Algorithm for Multiple Longest Common Subsequence
Problem. Technical Report TR01-148, Univ. of New
Brunswick.

[14] Korkin, D., Wang, Q. and Shang, Y. 2008. An Efficient
Parallel Algorithm for the Multiple Longest Common
Subsequence (MLCS) Problem. Proc. 37th Int’l Conf.
Parallel Processing (ICPP ’08), 354-363.

[15] Maier, D. 1978. The Complexity of Some Problems on
Subsequences and Supersequences. J. ACM 25, 2 (April
1978), 322-336. DOI=10.1145/322063.322075
http://doi.acm.org/10.1145/322063.322075.

[16] Masek, W.J. and Paterson, M.S. 1980. A Faster Algorithm
Computing String Edit Distances. J. Computer and System
Sciences 20, 18-31.

[17] Rick, C. 1994. New Algorithms for the Longest Common
Subsequence Problem. Technical Report No. 85123-CS,
Computer Science Dept., Univ. of Bonn.

[18] Sankoff, D. and Blanchette, M. 1999. Phylogenetic
Invariants for Genome Rearrangements. J. Computational
Biology 6, 431-445.

[19] Sankoff, D., Kruskal, J.B. 1983. Time warps, string edits,
and macromolecules: the theory and practice of sequence
comparison. Addison-Wesley.

[20] Sankoff, D. 1972. Matching Sequences Under
Deletion/Insertion Constraints. Proc. Nat’l Academy of
Sciences USA 69, 4-6.

[21] Smith, T.F. and Waterman, M.S. 1981. Identification of
Common Molecular Subsequences. J. Molecular Biology
147, 195-197.

[22] Wang, Q., Korkin, D. and Shang, Y. 2011. A Fast Multiple
Longest Common Subsequence (MLCS) Algorithm. IEEE
Transactions on Knowledge and Data Engineering 23, 3,
321-334. DOI=10.1109/TKDE.2010.123
http://dx.doi.org/10.1109/TKDE.2010.123

66

