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Abstract

In this paper we report the results of experiments on multi-parent

reproduction in an adaptive genetic algorithm framework. An adap-

tive mechanism based on competing subpopulations is incorporated

into the algorithm in order to detect the best crossovers. Experiments

on a number of test functions designed for studying crossover perfor-

mance show that multi-parent reproduction is superior to traditional

two-parent crossover, but the adaptive mechanism is not able to re-

ward better crossovers according to their performance. Nevertheless,

the adaptive algorithm exhibits comparable performance to the non-

adaptive variant using the best crossover alone. This implies that it

is sound and safe to use an adaptive GA with competing subpopula-

tions/crossovers, instead of performing time consuming comparisons

in search of the best operators.

1 Introduction

The present investigation combines research goals and techniques from two

sub-areas in evolutionary computation. One area is the study of reproduc-

tion operators. There has been a lot of research on the power of di�erent

crossover operators and on the power of crossover (binary reproduction op-

erator) versus mutation (unary reproduction operator) [9, 10, 11, 17, 16].

Recently, n-ary crossovers were introduced and shown to have increased per-

formance for higher arities on some numerical optimization problems and
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NK-landscapes [6, 7, 8]. Here we investigate �tness landscapes that were

speci�cally designed for studying crossovers in [9, 16, 17]. Adaptivity and

emergent properties in simulated evolutionary processes form the second area

this research is based upon. Having several options for a certain GA para-

meter or component implies that a choice has to be made between them.

Choosing the best crossover operator usually happens by testing them each

and �nally using the one that exhibits the best performance. Alternatively,

using adaptive or self-adaptive mechanisms, [12], allows the GA making the

choice. Simultaneously using more operators and adaptively modifying their

application rate, [4, 14, 22], or encoding usage information in the chromo-

somes and applying self-adaptation, [20], have been tried in the past.

In this paper we compare crossovers in an adaptive GA framework based

on competing subpopulations. In nature, di�erent species sharing the same

environment may develop di�erent strategies to ensure survival and, most

preferably, to increase their `share of the cake'. In this paper we experiment

with an evolutionary system where di�erent subpopulations (species) search

by di�erent strategies. Individuals of di�erent subpopulations are not al-

lowed to mate, interference between the species is restricted to migration.

The adaptive population redistribution mechanism is designed in such a way

that subpopulations with successful strategies grow and those of unsuccess-

ful strategies shrink. In this study we restrict ourselves to using di�erent

crossover operators in each subpopulation, thus restricting the meaning of

a `strategy' to `crossover'. Our experiments are carried out in a Genetic

Algorithm framework and have a three-fold objective:

� investigating whether multi-parent crossovers are better than others on

the chosen landscapes,

� investigating whether a GA simultaneously using more crossovers and

adaptively tuning on the applied crossovers is better than a traditional

GA,

� investigating whether the built-in self-organization mechanism detects

the di�erences in performance, that is whether the subpopulations of

successful crossovers become larger than other ones.

The rest of the paper is organized as follows. In Section 2 we briey

review and illustrate the crossovers used in this investigation. In Section 3

the self-organization mechanism is described. Thereafter in Section 4 we

present the experimental setup and summarize the test results. Finally, we

draw conclusions and sketch further research in Section 5.
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2 Crossover operators

The traditional N-point crossover [5] uses two parents and creates two chil-

dren. It selects N crossover points and the children are built by alternat-

ingly taking segments from the �rst, respectively second parent. Diagonal

crossover [7] uses N parents and selects (N � 1) crossover points in the bit-

strings. The N children are created by combining the segments from the

parents in a diagonal manner; the i-th child starts with the �rst segment

of the i-th parent and each next segment will be taken from the following

parent, wrapping around after the last parent.

For both types of crossovers (N-point and diagonal) we also test a variant

which only creates one child (the �rst one). Illustrations for 2-point crossover

and 3-parents diagonal crossover are given in Figure 1 and Figure 2.

parent 1

parent 2

child 1

child 2
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parent 2

child

One child

Figure 1: 2-Point crossover with two children (left) and one child (right)
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Figure 2: 3-Parent diagonal crossover with three children (left) and one child

(right)
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3 Migration and redivision mechanisms

Redistribution of the subpopulations is done by two mechanisms: migration

is to increase the size of successful subpopulations, while redivision (applied

less frequently) serves the opposite goal, it is to give a second chance to

inferior subpopulations and make them increase in size.

There are many di�erent mechanisms possible to handle migration be-

tween the di�erent subpopulations. Competing subpopulations each using a

di�erent search strategy has been used in [2, 15, 18, 19], for instance. The

mechanism we use takes a number of randomly selected individuals from

each subpopulation and puts them in a migration pool. In this phase inferior

subpopulations have to deliver more individuals. After that the individuals

in the migration pool will be randomly redistributed over the subpopulations

in such a way that each subpopulation receives approximately equal number

of individuals. The exact de�nition is given below.

Let F

i

be the average �tness of subpopulation i, F

min

and F

max

respec-

tively the average �tness of the worst and best subpopulation (�tness to be

maximized), �F

i

= F

max

�F

i

. If F

max

= F

min

then no migration takes place.

Otherwise the normalized �F

i

�

values can be calculated as follows:

�F

i

�

=

�F

i

F

max

� F

min

Each subpopulation P

i

has to deliver c � �F

i

�

of its individuals to the mi-

gration pool, where 0 � c � 1 is a parameter of the mechanism. The

i-th migration-subpool MP

i

will be thus formed by randomly choosing c �

�F

i

�

� jP

i

j individuals from P

i

, rounded to a natural number, and the mi-

gration pool will be MP = [

i

MP

i

. The individuals from the migration pool

are distributed over the subpopulations uniform randomly, so if there are M

subpopulations, then each subpopulation receives b

jMPj

M

c individuals. The

individuals which are still in the migration pool will be assigned to the pop-

ulations with the highest average �tness in descending order, one each. This

mechanism is illustrated in Figure 3.

Besides migration we also use a redivision mechanism to give the smallest

subpopulations another chance. This prevents a crossover that is inferior in

the beginning, but would be successful later on, from disappearing by re-

ceiving new members from the redivision pool. The redividing mechanism

takes a percentage of every subpopulation, where the smaller subpopulations

give fewer individuals than the bigger ones, and redivides them equally over

all subpopulations. This will bring the sizes of the subpopulations closer

together. The redivision of the subpopulations is done in two steps. First,

d � jP

i

j (rounded to a natural number) individuals will be randomly taken
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Figure 3: Illustration of the migration mechanism: subpopulations I, II and

III before migration (left), reduced subpopulations and migration pool (mid-

dle) and subpopulations after migration (right).

from each subpopulation and put in the redivision pool. The parameter d

indicates what percentage of the subpopulation P

i

should be given away. The

second step is to redivide the individuals from the redivision pool back to

the subpopulations. This will be done uniformly and randomly, so if there

are M subpopulations, then every subpopulation P

i

will receive b

jRPj

M

c indi-

viduals randomly. The individuals which are still in the redivision pool will

be assigned to the populations with the highest average �tness in descending

order, one each.

The individuals moving by both mechanisms adopt the crossover operator

assigned to their new subpopulation.

4 Experiments

Seven di�erent �tness landscapes were used for this research, Onemax [17],

Twin Peaks [9], Plateau [17], Plateau-d [17], Trap [17], Trap-d [17] and Royal

Road [16]. These functions were adjusted a little, for instance they were re-

versed to maximization problems, because our GA maximizes the objective

function, see [21] for technical details. For all these functions we used a bit-

string length of 100, the optimal function values are summarized in Table 1.

In the tests we used a Steady State GA for each subpopulation and 10

subpopulations, initially containing 50 individuals each. Tournament selec-

tion with tournament size 4 and worst �tness deletion strategy, crossover rate

p

c

= 0:7 and mutation rate p

m

= 0:005 is used everywhere. The constants

for the migration and the redivision mechanism are set to c = 0:75, and
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Problem maximum

�tness

Onemax 100

Twin Peaks 100

Plateau 100

Plateau-d 100

Trap 200

Trap-d 200

Royal Road 600

Table 1: Maximum �tness values of the applied test functions

d = 0:25

1

. We ran three series of experiments which di�er in the de�nition

of one generation, or one cycle, in the Steady-State GA the subpopulations

use. In each series we executed 50 independent runs on each test function,

the presented results are averaged over the 50 runs.

4.1 Test series A: one crossover per generation

In the �rst series we used one crossover operation in each subpopulation

before inserting the o�spring in the population. An overview of crossovers

used in di�erent subpopulations is given in Table 2.

Subpopulation 0 1 2 3 4 5 6 7 8 9

Points in N-point 1 2 3 4 5 - - - - -

Parents in diag. - - - - - 2 3 4 5 6

Children per op. 2 2 2 2 2 2 3 4 5 6

Table 2: Test series A: crossovers used in di�erent subpopulations

The maximum number of evaluations is 60000, migration is applied after

every 30 evaluations, the frequency of applying the redividing mechanism is

set to 7500 evaluations. On each test function we observed that the crossovers

with more parents were assigned larger subpopulations by the adaptive mech-

anism. We present the �gures on the seven functions in Figure 4. In these,

and the following �gures the x axis represents the elapsed time, measured

by the number of �tness evaluations, graded by the number of population

1

These values were chosen after a few preliminary tests which are not reported here.
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updates. On the y axis we depict the 10 subpopulations, while the z axis

shows the size of the subpopulation.

These outcomes suggest that the crossovers with more parents are better,

therefore the adaptive mechanism increases the corresponding subpopula-

tions. Nevertheless, the results might be an artifact of the di�erent number

of children created by di�erent operators. Namely, diagonal crossover with

arity k creates k children, while the N-point operators create only 2. This

implies that subpopulations using diagonal crossover with higher arity per-

form more search in one selection-reproduction-replacement cycle. If we call

the cardinality of the o�spring population in the Steady State GA the gen-

erational gap, (which terminology is somewhat di�erent from that used in

generational GAs), then we can say that the generational gap is bigger for

subpopulations using higher arity crossover operators.

4.2 Equal generational gaps

To �lter out the possible e�ect of di�erent generational gaps, we performed

two new series of experiments where this gap was kept equal for each sub-

population. To this end we tested two realizations. The �rst one is based

on the one child versions of the operators, cf. Section 2. Since one appli-

cation of any crossover operator now creates the same number of children

we can use the same mechanism as before updating the subpopulations (i.e.

inserting the o�spring) after performing one crossover. Thus, this �rst option

is based on modifying the operators and leaving the update mechanisms in

tact. The second realization of the equal generational gaps is based on the

complementary idea. We use the same operators as in the �rst test series, but

update the subpopulations after di�erent number of crossover applications,

in such a way that the number of o�spring created before updating equals

for each subpopulation. In the following experiments the maximum number

of evaluations is set to 50000.

4.2.1 Test series B: one child per crossover

In this test series we replaced diagonal crossover for two parents (which is

the same as 1-point crossover) with the 7 parents version. The assignment

of crossovers to subpopulations is given in Table 3.

The migration frequency is 100 evaluations, the redividing frequency is

5000 evaluations. We present the curves for the seven functions in Figure 5.
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Subpopulation 0 1 2 3 4 5 6 7 8 9

Points in N-point 1 2 3 4 5 - - - - -

Parents in diag. - - - - - 3 4 5 6 7

Children per op. 1 1 1 1 1 1 1 1 1 1

Table 3: Test series B: crossovers used in di�erent subpopulations

4.2.2 Test series C: more children per crossover

In these tests we set the number of created o�spring before replacement in

the Steady State GA each subpopulation worked with to 24. Accordingly

we modi�ed the number of parents for diagonal crossover as shown in Ta-

ble 4. The migration frequency was 240 evaluations, the redividing frequency

was 5000 evaluations. The results for the seven functions are presented in

Figure 6.

Subpopulation 0 1 2 3 4 5 6 7 8 9

Points in N-point 1 2 3 5 7 - - - - -

Parents in diag. - - - - - 3 4 6 8 12

Children per op. 2 2 2 2 2 3 4 6 8 12

Table 4: Test series C: crossovers used in di�erent subpopulations

4.2.3 Comparing the results of the test series

The outcomes of the test series B and C di�er from those of series A. The

adaptive mechanism only slightly, if at all, rewards the higher arity operators.

There are (at least) two di�erent explanations for this fact. The �rst possible

reason can be that diagonal crossover with more parents is not better than

traditional 2-parent crossovers on the test suite used in this study. The second

one is that adaptivity based on competing subpopulations as implemented

here is not able to detect and reward better crossovers. To this end we

ran some cross-checking experiments with 2-parent 1-point crossover and 6-

parent diagonal crossover on the whole test suite.

2

2

Testing all N 's used in the experiments would cause an explosion in the number of

tests, therefore not performed.
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4.3 1-Point vs. 6-parent diagonal crossover

For the cross-checking experiments we used only one subpopulation of 500

individuals and executed 50 independent runs on each test function. We com-

pared the two crossovers according to three measures, the mean best function

values (MBF), the Average number of Evaluations to Solution (AES) with

their standard deviations and the Success Rates (SR), that is the percentage

of all runs when an optimal solution was found. The results of the control

experiment on series B (one child per crossover) are given in Table 5, those of

cross-checking series C (number of children according to the original operator

de�nitions) are shown in Table 6.

6-parents diagonal crossover 1-point crossover

Problem MBF sd AES sd SR MBF sd AES sd SR

Onemax 100.0 0.0 3095 253.1 100 100.0 0.0 5691 595.8 100

Twin Peaks 100.0 0.0 3839 521.2 100 100.0 0.0 6021 596.9 100

Plateau 100.0 0.0 8060 8127.5 100 97.6 3.2 25021 9105.0 60

Plateau-d 99.2 1.8 23479 10337.4 84 93.9 4.9 35063 5368.7 26

Trap 189.8 5.1 3701 102.3 6 168.3 8.7 - - 0

Trap-d 138.8 7.2 - - 0 136.7 6.8 - - 0

Royal Road 595.8 29.4 10228 9369.2 92 480.2 112.9 30050 6970.3 46

Table 5: Diagonal crossover with 6 parents vs. 1-point crossover, one undi-

vided population, one child per crossover

6-parents diagonal crossover 1-point crossover

Problem MBF sd AES sd SR MBF sd AES sd SR

Onemax 100.0 0.0 3155 261.1 100 100.0 0.0 5813 522.5 100

Twin Peaks 100.0 0.0 4012 632.1 100 100.0 0.0 6012 564.8 100

Plateau 99.9 0.7 9012 9791.8 98 98.0 2.6 29817 9535.2 62

Plateau-d 99.3 1.7 22279 9680.3 86 94.5 5.1 37705 5171.9 34

Trap 189.3 6.3 4360 75.4 10 169.7 7.5 - - 0

Trap-d 139.7 9.0 - - 0 135.9 7.9 - - 0

Royal Road 583.2 57.0 12920 11113.0 92 477.2 122.8 23434 6868.1 48

Table 6: Diagonal crossover with 6 parents vs. 1-point crossover, one undi-

vided population, original operator variants

These tables clearly show that diagonal crossover with 6 parents outper-

forms the traditional 2-parent 1-point crossover on each test function. On
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the Onemax and the Twin Peaks function the MBF and SR results are iden-

tical, but the diagonal crossover is signi�cantly faster (lower AES). Besides,

the standard deviations of diagonal crossover are lower. It is interesting to

compare the one child variants and the original versions of both operators.

The di�erences are not signi�cant, indicating that this aspect is not criti-

cal for the performance of the operators. For this reason we only compare

the adaptive GA using the original operator variants with the non-adaptive

GAs. Table 7 presents the analogue of Table 6 for the adaptive GA using

the crossover-subpopulation assignment as given in Table 4.

Multiple Subpopulations (setup C)

Problem MBF sd AES sd SR

Onemax 100.0 0.0 4940 325.9 100

Twin Peaks 100.0 0.0 6359 974.4 100

Plateau 100.0 0.0 7855 6350.3 100

Plateau-d 97.9 2.5 29315 8009.3 58

Trap 191.4 5.3 6913 190.0 10

Trap-d 142.9 8.5 - - 0

Royal Road 579.0 63.0 12332 7793.3 90

Table 7: Performance of the adaptive GA using the original operator variants

From this table it is clear that the adaptive GA outperforms the standard

GA using 1-point crossover and has comparable performance with the GA

using diagonal crossover with 6 parents (see Table 6).

5 Conclusions and future work

As discussed in the Introduction, we had a three-fold objective with this

investigation. As for our �rst question concerning the di�erences in the suc-

cessfulness of crossovers, we could establish that the multi-parent diagonal

crossover (6 parents variant tested in isolation) is better than the traditional

2-parent 1-point crossover on each test function. This is a new result in the

sense that earlier papers considered performance of multi-parent crossovers

on numerical optimization problems [6] and NK-landscapes [8]. The present

study was performed on such bit-problems that have been carefully designed

for studying and comparing crossovers in earlier studies, [9, 16, 17], and thus

constitutes relevant new evidence on the viability of multi-parent recombi-

nation. It is interesting to note that the di�erences (in MBF) between the

6-parent and the 2-parent versions are by far the largest on the Royal Road
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function. This function (or rather, family of functions) has been speci�cally

designed to favor GAs using crossover above other search techniques, such

as hill-climbers [16]. From our results it seems that on landscapes where

crossover is supposed to be helpful, crossover using more parents is even

more helpful.

In the light of the previous paragraph, it is clear that the answer to our

second question, whether the adaptive or the standard GA performs better,

depends on which crossover is used in the standard GA. The adaptive GA

outperformed the standard GA using 1-point crossover, but showed com-

parable performance with the GA using diagonal crossover with 6 parents

(Tables 6 and 7). These results suggest that it is sound and safe to use an

adaptive GA with competing subpopulations/crossovers, instead of perform-

ing time consuming comparisons of several operators.

As for our third research objective we observed that the self-organizing

mechanism was not able to modify the size of the sub-populations accord-

ing to the performance of the crossover operators used in them when the

generational gaps were kept equal (test series B and C). This conclusion is

close to that of Spears' in [20]. In his work Spears used two crossovers and

a self-adaptive mechanism to choose between them by encoding the applica-

ble crossover in the chromosomes. The results were inconclusive and Spears

conjectured that the GA wouldn't choose to use one of the crossovers, be-

cause the availability of two crossovers was better than just having one. This

conjecture is in agreement with our results regarding the second research

objective discussed above.

Further research is directed to other rewarding mechanisms of good cross-

overs in the competing subpopulations framework. Instead of enlargening

successful subpopulations by adding individuals bred by other crossovers,

increase in size can be done by giving them more space which they �ll them-

selves. Research on such adaptive selection mechanisms is in progress and

will be reported later.
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Figure 4: Test series A. Results for: a) the Onemax function, b) the Twin

Peaks function, c) the Plateau function, d) the Plateau-d function, e) the

Trap function, f) the Trap-d function, and g) the Royal Road function
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Figure 5: Test series B. Results for: a) the Onemax function, b) the Twin

Peaks function, c) the Plateau function, d) the Plateau-d function, e) the

Trap function, f) the Trap-d function, and g) the Royal Road function
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Figure 6: Test series C. Results for: a) the Onemax function, b) the Twin

Peaks function, c) the Plateau function, d) the Plateau-d function, e) the

Trap function, f) the Trap-d function, and g) the Royal Road function
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