
List Scheduling Algorithm for Heterogeneous
Systems by an Optimistic Cost Table

Hamid Arabnejad and Jorge G. Barbosa, Member, IEEE

Abstract—Efficient application scheduling algorithms are important for obtaining high performance in heterogeneous computing

systems. In this paper, we present a novel list-based scheduling algorithm called Predict Earliest Finish Time (PEFT) for

heterogeneous computing systems. The algorithm has the same time complexity as the state-of-the-art algorithm for the same

purpose, that is, Oðv2:pÞ for v tasks and p processors, but offers significant makespan improvements by introducing a look-ahead

feature without increasing the time complexity associated with computation of an optimistic cost table (OCT). The calculated value is

an optimistic cost because processor availability is not considered in the computation. Our algorithm is only based on an OCT that is

used to rank tasks and for processor selection. The analysis and experiments based on randomly generated graphs with various

characteristics and graphs of real-world applications show that the PEFT algorithm outperforms the state-of-the-art list-based

algorithms for heterogeneous systems in terms of schedule length ratio, efficiency, and frequency of best results.

Index Terms—Application scheduling, DAG scheduling, random graphs generator, static scheduling

Ç

1 INTRODUCTION

A heterogeneous system can be defined as a range of
different system resources, which can be local or

geographically distributed, that are utilized to execute
computationally intensive applications. The efficiency of
executing parallel applications on heterogeneous systems
critically depends on the methods used to schedule the
tasks of a parallel application. The objective is to minimize
the overall completion time or makespan. The task schedul-
ing problem for heterogeneous systems is more complex
than that for homogeneous computing systems because of
the different execution rates among processors and possibly
different communication rates among different processors.
A popular representation of an application is the directed
acyclic graph (DAG), which includes the characteristics of
an application program such as the execution time of tasks,
the data size to communicate between tasks and task
dependences. The DAG scheduling problem has been
shown to be NP-complete [13], [17], [31], even for the
homogeneous case; therefore, research efforts in this field
have been mainly focused on obtaining low-complexity
heuristics that produce good schedules. In the literature,
one of the best list-based heuristics is the Heterogeneous
Earliest Finish Time (HEFT) [30]. In [10], the authors
compared 20 scheduling heuristics and concluded that on
average, for random graphs, HEFT is the best one in terms
of robustness and schedule length.

The task scheduling problem is broadly classified into
two major categories, namely static scheduling and dynamic

scheduling. In the static category, all information about tasks
such as execution and communication costs for each task
and the relationship with other tasks is known beforehand;
in the dynamic category, such information is not available
and decisions are made at runtime. Moreover, static
scheduling is an example of compile-time scheduling,
whereas dynamic scheduling is representative of runtime
scheduling. Static scheduling algorithms are universally
classified into two major groups, namely, heuristic-based
and guided random search-based algorithms. Heuristic-
based algorithms allow approximate solutions, often good
solutions, with polynomial time complexity. Guided ran-
dom search-based algorithms also give approximate solu-
tions, but the solution quality can be improved by including
more iterations, which therefore makes them more expen-
sive than the heuristic-based approach [30]. The heuristic-
based group is composed of three subcategories: list,
clustering, and duplication scheduling. Clustering heuristics
are mainly proposed for homogeneous systems to form
clusters of tasks that are then assigned to processors. For
heterogeneous systems, CHP algorithms [7] and Triplet [12]
were proposed, but they have limitations in higher hetero-
geneity systems. The duplication heuristics produce the
shortest makespans, but they have two disadvantages: a
higher time complexity, i.e., cubic, in relation to the number
of tasks, and the duplication of the execution of tasks, which
results in more processor power used. This is an important
characteristic not only because of the associated energy cost
but also because, in a shared resource, fewer processors are
available to run other concurrent applications. List schedul-
ing heuristics, on the other hand, produce the most efficient
schedules, without compromising the makespan and with a
complexity that is generally quadratic in relation to the
number of tasks. HEFT has a complexity of Oðv2:pÞ, where v
is the number of tasks and p is the number of processors.

In this paper, we present a new list scheduling algorithm
for a bounded number of fully connected heterogeneous

682 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

. The authors are with Laboratório de Intelegência Artificial e Ciência dos
Computadores, Dep. de Engenharia Informática, Universidade do Porto,
Faculdade de Engenharia, Rua Dr. Roberto Frias, s/n, 4200-465 Porto,
Portugal. E-mail: {hamid.arabnejad, jbarbosa}@fe.up.pt.

Manuscript received 14 Sept. 2012; accepted 8 Feb. 2013; published online
27 Feb. 2013.
Recommended for acceptance by O. Beaumont.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-09-0837.
Digital Object Identifier no. 10.1109/TPDS.2013.57.

1045-9219/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on January 13,2021 at 04:56:25 UTC from IEEE Xplore. Restrictions apply.

processors called Predict Earliest Finish Time (PEFT) that
outperforms state-of-the-art algorithms such as HEFT in
terms of makespan and Efficiency. The time complexity is
Oðv2:pÞ, as in HEFT. To our knowledge, this is the first
algorithm to outperform HEFT while having the same
time complexity. We also introduce one innovation, a look
ahead feature, without increasing the time complexity.
Other algorithms such as LDCP [14] and Lookahead [6]
have this feature but with a cubic and quartic time
complexity, respectively. We present results for randomly
generated DAGs [28] and DAGs from well-known applica-
tions used in related papers, such as Gaussian Elimination,
Fast Fourier Transform (FFT), Montage, and Epigenomic
Workflows.

This paper is organized as follows: in Section 2, we
introduce the task scheduling problem; in Section 3, we
present related work in scheduling DAGs on heterogeneous
systems, and we present in detail the scheduling algorithms
that are used for the comparison with PEFT, which is the list
scheduling heuristic proposed here; in Section 4, we present
PEFT; in Section 5, we present the results, and, finally, we
present the conclusions in Section 6.

2 SCHEDULING PROBLEM FORMULATION

The problem addressed in this paper is the static scheduling
of a single application in a heterogeneous system with a set
P of processors. As mentioned above, task scheduling can
be divided into static and dynamic approaches. Dynamic
scheduling is adequate for situations where the system and
task parameters are not known at compile time, which
requires decisions to be made at runtime but with
additional overhead. A sample environment is a system
where users submit jobs, at any time, to a shared computing
resource [23]. A dynamic algorithm is required because the
workload is only known at runtime, as is the status of each
processor when new tasks arrive. Consequently, a dynamic
algorithm does not have all work requirements available
during scheduling and cannot optimize based on the entire
workload. By contrast, a static approach can maximize a
schedule by considering all tasks independently of execu-
tion order or time because the schedule is generated before
execution begins and introduces no overhead at runtime. In
this paper, we present an algorithm that minimizes the
execution time of a single job on a set of P processors. We
consider that P processors are available for the job and that
they are not shared during the job execution. Therefore,
with the system and job parameters known at compile time,
a static scheduling approach has no overhead at runtime
and is more appropriate.

An application can be represented by a directed acyclic
graph, G ¼ ðV ;EÞ, as shown in Fig. 1, where V is the set
of v nodes and each node vi 2 V represents an application
task, which includes instructions that must be executed
on the same machine. E is the set of e communication
edges between tasks; each eði; jÞ 2 E represents the task-
dependence constraint such that task ni should complete
its execution before task nj can be started. The DAG is
complemented by a matrix W that is a v� p computation
cost matrix, where v is the number of tasks and p is the
number of processors in the system. wi;j gives the

estimated time to execute task vi on machine pj. The
mean execution time of task vi is calculated as follows:

wi ¼
X
j2P

wi;j

 !�
p: ð1Þ

The average execution time wi is commonly used to
compute a priority rank for the tasks. The algorithm
proposed in this paper uses the wi;j rather than wi as
explained in Section 4.

Each edge eði; jÞ 2 E is associated with a nonnegative
weight ci;j representing the communication cost between
the tasks vi and vj. Because this value can be computed only
after defining where tasks vi and vj will be executed, it is
common to compute the average communication costs to
label the edges [30]. The average communication cost ci;j of
an edge eði; jÞ is calculated as follows:

ci;j ¼ Lþ
datai;j

B
; ð2Þ

where L is the average latency time of all processors and B

is the average bandwidth of all links connecting the set of P
processors. datai;j is the amount of data elements that task
vi needs to send to task vj. Note that when tasks vi and vj
are assigned to the same processor, the real communication
cost is considered to be zero because it is negligible
compared with interprocessor communication costs.

Additionally, in our model, we consider processors that
are connected in a fully connected topology. The execution
of tasks and communications with other processors can be
achieved for each processor simultaneously and without
contention. Additionally, the execution of any task is
considered nonpreemptive. These model simplifications
are common in this scheduling problem [14], [19], [30], and
we consider them to permit a fair comparison with state-of-
the-art algorithms and because these simplifications corre-
spond to real systems. Our target system is a single site
infrastructure that can be as simple as a set of devices (e.g.,
CPUs and GPUs) connected by a switched network that
guarantees parallel communications between different
pairs of devices. The machine is heterogeneous because
CPUs can be from different generations and also because
other very different devices such as GPUs can be included.
Another common machine is the one that results from
selecting processors from several clusters from the same
site. Although a cluster is homogeneous, the set of

ARABNEJAD AND BARBOSA: LIST SCHEDULING ALGORITHM FOR HETEROGENEOUS SYSTEMS BY AN OPTIMISTIC COST TABLE 683

Fig. 1. Application DAG and computation time matrix of the tasks in each
processor for a three-processor machine.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on January 13,2021 at 04:56:25 UTC from IEEE Xplore. Restrictions apply.

processors selected to execute a given DAG forms a
heterogeneous machine. Because the clusters are connected
by high-speed networks, with redundant links, the simpli-
fication is still reasonable. The processor latency can differ
in a heterogeneous machine, but such differences are
negligible. For low communication-to-computation ratios
(CCRs), the communications are negligible; for higher
CCRs, the predominant factor is the network bandwidth,
and we consider that the bandwidth is the same throughout
the entire network.

Next, we present some of the common attributes
used in task scheduling, which we will refer to in the
following sections.

Definition 1. predðniÞ denotes the set of immediate predecessors
of task ni in a given DAG. A task with no predecessors is
called an entry task, nentry. If a DAG has multiple entry
nodes, a dummy entry node with zero weight and zero
communication edges can be added to the graph.

Definition 2. succðniÞ denotes the set of immediate successors of
task ni. A task with no successors is called an exit task, nexit.
Similar to the entry node, if a DAG has multiple exit nodes, a
dummy exit node with zero weight and zero communication
edges from current multiple exit nodes to this dummy node can
be added to the graph.

Definition 3. makespan or schedule length denotes the finish
time of the last task in the scheduled DAG and is defined by

makespan ¼ maxfAFT ðnexitÞg; ð3Þ

where AFT ðnexitÞ denotes the Actual Finish Time of the exit
node. In the case where there is more than one exit node and no
redundant node is added, the makespan is the maximum
actual finish time of all exit tasks.

Definition 4. levelðniÞ the level of task ni is an integer value
representing the maximum number of edges of the paths from the
entry node toni. For the entry node, the level is levelðnentryÞ ¼ 1,
and for other tasks, it is given by

levelðniÞ ¼ max
q2predðniÞ

flevelðqÞg þ 1: ð4Þ

Definition 5. Critical PathðCPÞ the CP of a DAG is the
longest path from the entry node to the exit node in the graph.
The lower bound of a schedule length is the minimum critical
path length (CPMIN), which is computed by considering the
minimum computational costs of each node in the critical path.

Definition 6. EST ðni; pjÞ denotes the Earliest Start Time
(EST) of a node ni on a processor pj and is defined as

EST ðni; pjÞ ¼ max

�
TAvailableðpjÞ;

max
nm2predðniÞ

fAFT ðnmÞ þ cm;ig
�
;

ð5Þ

where TAvailableðpjÞ is the earliest time at which processor pj
is ready. The inner max block in the EST equation is the
time at which all data needed by ni arrive at the processor
pj. The communication cost cm;i is zero if the predecessor
node nm is assigned to processor pj. For the entry task,
EST ðnentry; pjÞ ¼ 0.

Definition 7. EFT ðni; pjÞ denotes the Earliest Finish Time
(EFT) of a node ni on a processor pj and is defined as

EFT ðni; pjÞ ¼ EST ðni; pjÞ þ wi;j; ð6Þ

which is the Earliest Start Time of a node ni on a processor pj
plus the computational cost of ni on a processor pj.

The objective of the scheduling problem is to determine
an assignment of tasks of a given DAG to processors such
that the schedule length is minimized. After all nodes in the
DAG are scheduled, the schedule length will be the Actual
Finish Time of the exit task, as expressed by (3).

3 RELATED WORK

In this section, we present a brief survey of task scheduling
algorithms, specifically list-based heuristics. We present
their time complexity and their comparative performance.

Over the past few years, research on static DAG
scheduling has focused on finding suboptimal solutions to
obtain a good solution in an acceptably short time. List
scheduling heuristics usually generate high-quality sche-
dules at a reasonable cost. In comparison with clustering
algorithms, they have lower time complexity, and in
comparison with task duplication strategies, their solutions
represent a lower processor workload.

3.1 List-Based Algorithms

Many list scheduling algorithms have been developed by
researchers. This type of scheduling algorithm has two
phases: the prioritizing phase for giving a priority to each
task and a processor selection phase for selecting a suitable
processor that minimizes the heuristic cost function. If two
or more tasks have equal priority, then the tie is resolved by
selecting a task randomly. The last phase is repeated until
all tasks are scheduled to suitable processors. Table 1
presents some list scheduling algorithms including some of
the most cited, along with their time complexity.

The Mapping Heuristic (MH) and Dynamic Level
Scheduling (DLS) algorithms consider a link contentions
model, but their versions for a fully connected network
were used for comparison purposes by other authors and
are therefore described here. The schedules generated by

684 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

TABLE 1
List-Based Scheduling Algorithms for Heterogeneous Systems

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on January 13,2021 at 04:56:25 UTC from IEEE Xplore. Restrictions apply.

the Mapping Heuristic algorithm [16] are generally longer
than recently developed heuristics because MH only
considers a processor ready when it finishes the last task
assigned to it. Therefore, MH ignores the possibility that a
processor that is busy when a task is being scheduled can
complete the task in a shorter time, which thus results in
poorer scheduling. The time complexity of MH without
contention is Oðv2:pÞ and Oðv2:p3Þ otherwise. Dynamic
Level Scheduling [27] is one of the first algorithms that
computed an estimate of the availability of each processor
and thus allowed a task to be scheduled to a currently busy
processor. Consequently, DLS yields better results than
MH. The DLS authors proposed a version for a hetero-
geneous machine, but the processor selection was based on
the Earliest Start Time as the homogeneous version, which is
one of the drawbacks of the algorithm because the EST does
not guarantee the minimum completion time for a task.
Additionally, DLS does not try to fill scheduling holes in a
processor schedule (idle time slots that are between two
tasks already scheduled on the same processor), in contrast
to other more recent algorithms. The time complexity of
DLS for a fully connected network is Oðv3:pÞ, where the
routing complexity is equal to 1. The Levelized Min-Time
Algorithm (LMT) [22] is a very simple heuristic that assigns
priorities to tasks based on their precedence constraints,
which are called levels. The time complexity is squared in
relation to the number of processors and tasks. The
schedules produced are significantly worse than those
produced by other more recently developed heuristics,
such as Critical Path On a Processor (CPOP) [29], [30]. The
Best Imaginary Level (BIL) [24] defines a static level for
DAG nodes, called BIL, that incorporates the effect of
interprocessor communication overhead and processor
heterogeneity. The BIL heuristic provides an optimal
schedule for linear DAGs. Fast load balancing (FLB) [25]
was proposed with the aim of reducing the time complexity
relative to that of HEFT [29], [30]. FLB generates schedules
comparable to those of HEFT, but it generates poor
schedules for irregular task graphs and for higher processor
heterogeneities. The critical path on a processor [29], [30]
achieves better schedules than LMT and MH as well as
schedules that are comparable to those of DLS, with a lower
time complexity. The main feature of CPOP is the assign-
ment of all the tasks that belong to the critical path to a
single processor. Heterogeneous Critical Parent Trees
(HCPT) [18] yield better scheduling results than CPOP,
FLB, and DLS. The Heterogeneous Earliest Finish Time [29],
[30] is one of the best list scheduling heuristics, as it has
quadratic time complexity. In [10], the authors compared
20 heuristics and concluded that HEFT produces the
shortest schedule lengths for random graphs.

High-Performance Task Scheduling (HPS) [21] and
Performance Effective Task Scheduling (PETS) [20] are other
list scheduling heuristics reported to achieve better results
than HEFT. HPS, PETS, HEFT, HCPT, and Lookahead are
explained in more detail in Section 3.2, and they are used in
this paper for comparison with our proposed list scheduling
algorithm.

For the Longest Dynamic Critical Path (LDCP) [14], the
authors reported better scheduling results than HEFT,

although these results were not significant when considering

the associated increase in complexity. For random graphs,

the improvements in the schedule length ratio over HEFT

were less than 3.1 percent. The algorithm builds for each

processor a DAG, called a DAGP, which consists of the initial

DAG with the computation costs of the processors. The

complexity is higher (cubic) because the algorithm needs to

update all DAGPs after scheduling a task to a processor.
Another recent algorithm that reported an average

improvement in makespan over HEFT is the Lookahead

approach [6]. This algorithm has quartic complexity for the

one step Lookahead. We consider the Lookahead for

comparison with our algorithm because it has achieved

the best results reported thus far in the literature. Because it

has a higher complexity, it serves as a reference and an

upper bound for our algorithm.

3.2 Selected List Scheduling Heuristics

Here, we describe the list scheduling heuristics for schedul-

ing tasks on a bounded number of heterogeneous processors

selected for comparison with our proposed algorithm,

namely HEFT, HCPT, HPS, PETS, and Lookahead.

3.2.1 Heterogeneous Earliest Finish Time

The HEFT algorithm [30] is highly competitive in that it

generates a schedule length comparable to the schedule

lengths of other scheduling algorithms with a lower time

complexity. The HEFT algorithm has two phases: a task

prioritizing and a processor selection phase. In the first phase,

task priorities are defined as ranku. ranku represents the

length of the longest path from task ni to the exit node,

including the computational cost of ni and is given by

rankuðniÞ ¼ wi þmaxnj2succðniÞfci;j þ rankuðnjÞg. For the exit

task, rankuðnexitÞ ¼ wexit. The task list is ordered by

decreasing value of ranku. In the processor selection phase,

the task on top of the task list is assigned to the processor pj
that allows for the Earliest Finish Time of task ni. However,

the HEFT algorithm uses an insertion policy that tries to

insert a task in at the earliest idle time between two already

scheduled tasks on a processor, if the slot is large enough to

accommodate the task.

3.2.2 Heterogeneous Critical Parent Trees

The HCPT algorithm [18] uses a new mechanism to construct

the scheduling list L, rather than assigning priorities

to the application tasks. HCPT divides the task graph into

a set of unlisted-parent trees. The root of each unlisted-

parent tree is a critical path node (CN). A CN is defined as

the node that has zero difference between its AEST and

ALST. The AEST is the Average Earliest Start Time of node ni
and is equivalent to rankd, as indicated by AEST ðniÞ ¼
maxnj2predðniÞfAEST ðnjÞ þ wj þ cj;ig; AEST ðnentryÞ ¼ 0.

The Average Latest Start Time (ALST) of node ni can be

computed recursively by traversing the DAG upward

starting from the exit node and is given by

ALST ðniÞ ¼ min
nj2succðniÞ

fALST ðnjÞ�ci;jg�wi;

ALST ðnexitÞ¼AEST ðnexitÞ:

ARABNEJAD AND BARBOSA: LIST SCHEDULING ALGORITHM FOR HETEROGENEOUS SYSTEMS BY AN OPTIMISTIC COST TABLE 685

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on January 13,2021 at 04:56:25 UTC from IEEE Xplore. Restrictions apply.

The algorithm also has two phases, namely listing tasks
and processor assignment. In the first phase, the algorithm
starts with an empty queue L and an auxiliary stack S that
contains the CNs pushed in decreasing order of their
ALSTs, i.e., the entry node is on top of S. Consequently,
topðSÞ is examined. If topðSÞ has an unlisted parent (i.e., has
a parent not in L), then this parent is pushed on the stack S.
Otherwise, topðSÞ is removed and enqueued into L. In the
processor assignment phase, the algorithm tries to assign
each task ni 2 L to a processor pj that allows the task to be
completed as early as possible.

3.2.3 High-Performance Task Scheduling

The HPS [21] algorithm has three phases, namely a level
sorting, task prioritization, and processor selection phase. In the
level sorting phase, the given DAG is traversed in a top-
down fashion to sort tasks at each level to group the tasks
that are independent of each other. As a result, tasks in the
same level can be executed in parallel. In the task
prioritization phase, priority is computed and assigned to
each task using the attributes Down Link Cost (DLC), Up Link
Cost (ULC), and Link Cost (LC) of the task. The DLC of a task
is the maximum communication cost among all the
immediate predecessors of the task. The DLC for all tasks
at level 0 is 0. The ULC of a task is the maximum
communication cost among all the immediate successors of
the task. The ULC for an exit task is 0. The LC of a task is the
sum of DLC, ULC, and maximum LC for all its immediate
predecessor tasks.

At each level, based on the LC values, the task with the
highest LC value receives the highest priority, followed by
the task with the next highest LC value and so on in the
same level. In the processor selection phase, the processor
that gives the minimum EFT for a task is selected to execute
that task. HPS has an insertion-based policy, which
considers the insertion of a task in the earliest idle time
slot between two already-scheduled tasks on a processor.

3.2.4 Performance Effective Task Scheduling

The PETS algorithm [20] has the same three phases as HPS.
In the level sorting phase, similar to HPS, tasks are
categorized in levels such that in each level, the tasks are
independent. In the task prioritization phase, priority is
computed and assigned to each task using the attributes
Average Computation Cost (ACC), Data Transfer Cost (DTC),
and the Rank of Predecessor Task (RPT). The ACC of a task is
the average computation cost for all p processors, which we
referred to before as wi. The DTC of a task ni is the
communication cost incurred when transferring the data
from task ni to all its immediate successor tasks; for an exit
node, DTCðnexitÞ ¼ 0. The RPT of a task ni is the highest
rank of all its immediate predecessor tasks; for an entry
node,RPT ðnentryÞ ¼ 0. The rank is computed for each task ni
based on the tasks ACC, DTC, and RPT values and is given
by rankðniÞ ¼ roundfACCðniÞ þDTCðniÞ þRPT ðniÞg.

At each level, the task with the highest rank value receives
the highest priority, followed by the task with next highest
rank value and so on. A tie is broken by selecting the task
with the lower ACC value. As in some of the other task
scheduling algorithms, in the processor selection phase, this
algorithm selects the processor that gives the minimum EFT

value for executing the task. It also uses an insertion-based
policy for scheduling a task in an idle slot between two
previously scheduled tasks on a given processor.

3.2.5 Lookahead Algorithm

The Lookahead scheduling algorithm [6] is based on the
HEFT algorithm, whose main feature is its processor
selection policy. To select a processor for the current task
t, it iterates over all available processors and computes the
EFT for the child tasks on all processors. The processor
selected for task t is the one that minimizes the maximum
EFT from all children of t on all resources where t is tried.
This procedure can be repeated for each child of t by
increasing the number of levels analyzed. In HEFT, the
complexity of v tasks is Oðe:pÞ, where EFT is computed v
times. In the worst case, by replacing e by v2, we obtain
Oðv2:pÞ. The Lookahead algorithm has the same structure as
HEFT but computes EFT for each child of the current task.
The number of EFT calls (graph vertices) is equal to vþ p:e
for a single level of forecasting. By replacing this number of
vertices in Oðv2:pÞ, in the worst case the total time
complexity of Lookahead is Oðv4:p3Þ. The authors reported
that additional levels of forecasting do not result in
significant improvements in the makespan. Here, we only
consider the one-level Lookahead.

4 THE PROPOSED ALGORITHM PEFT

In this section, we introduce a new list-based scheduling
algorithm for a bounded number of heterogeneous proces-
sors, called PEFT. The algorithm has two major phases: a
task prioritizing phase for computing task priorities, and a
processor selection phase for selecting the best processor for
executing the current task.

In our previous work [4], we evaluated the performance
of list-based scheduling algorithms. We compared their
results with the solutions achieved by three metaheuristic
algorithms, namely, Tabu Search, Simulated Annealing, and
Ant Colony System. The metaheuristic algorithms, which
feature a higher processing time, always achieved better
solutions than the list scheduling heuristics with quadratic
complexity. We then compared the best solutions for both
types, step by step. We observed that the best metaheuristic
schedules could not be achieved if we followed the common
strategy of selecting processors based only on current task
execution time, because the best schedules consider not
only the immediate gain in processing time but also the gain
in a sequence of tasks. Most list-based scheduling heuristics
with quadratic time complexity assign a task to a processor
by evaluating only the current task. This methodology,
although inexpensive, does not evaluate what is ahead of
the current task, which leads to poor decisions in some
cases. Algorithms that analyze the impact on children
nodes, such as Lookahead [6], exist, but they increase the
time complexity to the fourth order.

The most powerful feature of the Lookahead algorithm,
as the best algorithm with the lowest makespan, is its
ability to forecast the impact of an assignment for all
children of the current task. This feature permits better
decisions to be made in selecting processors, but it increases
the complexity significantly. Therefore, the novelty of the

686 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on January 13,2021 at 04:56:25 UTC from IEEE Xplore. Restrictions apply.

proposed algorithm is its ability to forecast by computing
an optimistic cost table (OCT) while maintaining quadratic
time complexity, as explained in the following section.

4.1 Optimistic Cost Table

Our algorithm is based on the computation of a cost table
on which task priority and processor selection are based.
The OCT is a matrix in which the rows indicate the number
of tasks and the columns indicate the number of processors,
where each element OCT ðti; pkÞ indicates the maximum of
the shortest paths of ti children’s tasks to the exit node
considering that processor pk is selected for task ti. The OCT
value of task ti on processor pk is recursively defined by (7)
by traversing the DAG from the exit task to the entry task:

OCT ðti; pkÞ ¼ max
tj2succðtiÞ

min
pw2P
fOCT ðtj; pwÞ þ wðtj; pwÞ þ ci;jg

� �
;

ci;j ¼ 0 if pw ¼ pk;
ð7Þ

where ci;j is the average communication cost, which is zero
if tj is being evaluated for processor pk, and wðtj; pwÞ is the
execution time of task tj on processor pw. As explained
before, we use the average communication cost and the
execution cost for each processor. OCT ðti; pkÞ represents
the maximum optimistic processing time of the children of
task ti because it considers that children tasks are executed
in the processor that minimizes processing time (commu-
nications and execution) independently of processor
availability, as the OCT is computed before scheduling
begins. Because it is defined recursively and the children
already have the optimistic cost to the exit node, only the
first level of children is considered. For the exit task, the
OCT ðnexit; pkÞ ¼ 0 for all processors pk 2 P .

4.2 Task Prioritizing Phase

To define task priority, we compute the average OCT for
each task that is defined as follows:

rankoctðtiÞ ¼
PP

k¼1 OCT ðti; pkÞ
P

: ð8Þ

Table 2 shows the values of OCT for the DAG sample of
Fig. 1. When the new rank rankoct is compared with ranku,
the former shows slight differences in the order of the tasks

based on these two priority strategies. For instance, T5 has a
lower rankoct value than T4, where T4 is selected first for
scheduling. With ranku, the opposite is true. The main
feature of our algorithm is the cost table that reflects for
each task and processor the cost to execute descendant tasks
until the exit node. This information permits an informed
decision to be made in assigning a processor to a task. Task
ranking is a less relevant issue because few tasks in each
step are ordered by priority and the influence on perfor-
mance is less relevant. By comparing ranku and rankoct, we
can see that ranku uses the average computing cost for each
task and also accumulates the maximum descendant costs
of descendant tasks to the exit node. In contrast, rankoct is
an average over a set of values that were computed with the
cost of each task on each processor. Therefore, the ranks are
computed using a similar procedure, and significant
differences in performance are not expected when using
either system.

For the tests with random graphs reported in the results
section, when using ranku, the performance is on average
better in approximately 0.5 percent. The OCT exerts a
greater influence in the processor selection phase, and using
ranku would require additional computations without
providing a significant advantage.

4.3 Processor Selection Phase

To select a processor for a task, we compute the Optimistic
EFT (OEFT), which sums to EFT the computation time of the
longest path to the exit node. In this way, we are looking
forward (forecasting) in the processor selection; perhaps we
are not selecting the processor that achieves the Earliest
Finish Time for the current task, but we expect to achieve a
shorter finish time for the tasks in the next steps. The aim is
to guarantee that the tasks ahead will finish earlier, which is
the purpose of the OCT table. OEFT is defined as

OEFT ðti; pjÞ ¼ EFT ðti; pjÞ þOCT ðti; pjÞ: ð9Þ

4.4 Detailed Description of the PEFT Algorithm

In this section, we present the algorithm PEFT, supported
by an example, to detail the description of each step. The
proposed PEFT algorithm is formalized in Algorithm 1.

Algorithm 1. The PEFT Algorithm.

1: Compute OCT table and rankoct for all tasks

2: Create Empty list ready-list and put nentry as initial task

3: while ready-list is NOT Empty do

4: ni the task with highest rankoct from ready-list

5: for all processor pj in the processor-set P do

6: Compute EFT ðni; pjÞ value using insertion-based

scheduling policy
7: OEFT ðni; pjÞ ¼ EFT ðni; pjÞ þOCT ðni; pjÞ
8: end for

9: Assign task ni to the processor pj that minimize

OEFT of task ni
10: Update ready-list

11: end while

The algorithm starts by computing the OCT table and
rankoct at line 1. It then creates an empty ready� list and
places the entry task on top of the list. In the while loop,
from lines 4 to 10, in each iteration, the algorithm will
schedule the task with a higher value of rankoct. After

ARABNEJAD AND BARBOSA: LIST SCHEDULING ALGORITHM FOR HETEROGENEOUS SYSTEMS BY AN OPTIMISTIC COST TABLE 687

TABLE 2
Optimistic Cost Table for the DAG of Fig. 1; rankoct and ranku

Are Also Shown for Comparison Purposes

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on January 13,2021 at 04:56:25 UTC from IEEE Xplore. Restrictions apply.

selecting the task for scheduling, the PEFT algorithm

calculates the OEFT values for the task on all processors.

In the processor selection phase, the aim is to guarantee that

the tasks ahead will finish earlier, but rather than analyzing

all tasks until the end, to reduce complexity we use the OCT

table, which incorporates that information. In line 9, the

processor pj that achieves the minimum OEFT ðni; pjÞ is

selected to execute task ni.
Table 3 shows an example that demonstrates the PEFT

for the DAG of Fig. 1.
Fig. 2 shows the scheduling results for the sample DAG

with the algorithms PEFT, Lookahead, HEFT, HCPT, HPS,

and PETS. By comparing the schedules of PEFT and HEFT,

we can see that T1 is assigned to P1 although it does not

guarantee the Earliest Finish Time for T1, but P1 minimizes

the expected EFT of all DAG. This is only one example used

to illustrate the algorithm, but as shown in the results
section, PEFT produces, on average, better schedules than
the state-of-the-art algorithms.

In terms of time complexity, PEFT requires the computa-
tion of an OCT table that is Oðpðeþ vÞÞ, and to assign the
tasks to processors, the time complexity is of the order
Oðv2:pÞ. The total time is Oðpðeþ vÞ þ v2:pÞ. For dense
DAGs, e becomes v2, where the total algorithm complexity
is of the order Oðv2:pÞ. That is, the time complexity of PEFT
is of the same order as the HEFT algorithm.

5 EXPERIMENTAL RESULTS AND DISCUSSION

This section compares the performance of the PEFT
algorithm with that of the algorithms presented above. For
this purpose, we consider two sets of graphs as the workload:
randomly generated application graphs and graphs that

688 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

TABLE 3
Schedule Produced by the PEFT Algorithm in Each Iteration

Fig. 2. Schedules of the sample task graph in Fig. 1 with (a) PEFT (makespan ¼ 122), (b) Lookahead (makespan ¼ 127), (c) HEFT (makespan ¼ 133),
(d) HCPT (makespan ¼ 142), and (e) PETS (makespan ¼ 147).

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on January 13,2021 at 04:56:25 UTC from IEEE Xplore. Restrictions apply.

represent some real-world applications. We first present the
comparison metrics used for the performance evaluation.

5.1 Comparison Metrics

The comparison metrics are scheduling length ratio (SLR),
efficiency, pairwise comparison of the number of occur-
rences of better solutions, and slack.

5.1.1 Scheduling Length Ratio

The metric most commonly used to evaluate a schedule for
a single DAG is the makespan, as defined by (3). Here, we
want to use a metric that compares DAGs with very
different topologies; the metric most commonly used to do
so is the normalized schedule length (NSL) [14], which is
also called the scheduling length ratio [30]. For a given
DAG, both represent the makespan normalized to the lower
bound. SLR is defined as follows:

SLR ¼ makespanðsolutionÞP
ni2CPMIN

minpj2P ðwði;jÞÞ
: ð10Þ

The denominator in SLR is the minimum computation
cost of the critical path tasks (CPMIN). There is no makespan
less than the denominator of the SLR equation. Therefore,
the algorithm with the lowest SLR is the best algorithm.

5.1.2 Efficiency

In the general case, efficiency is defined as the speedup
divided by the number of processors used in each run, and
Speedup is defined as the ratio of the sequential execution
time to the parallel execution time (i.e., the makespan). The
sequential execution time is computed by assigning all tasks
to a single processor that minimizes the total computation
cost of the task graph, as shown by the following equation:

Speedup ¼
minpj2P

�P
ni2V wði;jÞ

�
makespanðsolutionÞ : ð11Þ

5.1.3 Number of Occurrences of Better Solutions

This comparison is presented as a pairwise table, where the
percentage of better, equal, and worse solutions produced
by PEFT is compared to that of the other algorithms.

5.1.4 Slack

The slack metric [8], [26] is a measure of the robustness
of the schedules produced by an algorithm to uncertainty in
the tasks processing time, and it represents the capacity of
the schedule to absorb delays in task execution. The slack is
defined for a given schedule and a given set of processors.
The slack of a task represents the time window within which
the task can be delayed without extending the makespan.
Slack and makespan are two conflicting metrics; lower
makespans produce small slack. For deterministic sche-
dules, the slack is defined as

Slack ¼
X
ti2V

M � blevelðtiÞ � tlevelðtiÞ
" #�

n; ð12Þ

where M is the makespan of the DAG, n is the number of
tasks, blevel is the length of the longest path to the exit node,
and tlevel is the length of the longest path from the entry
node. These values are referred to a given schedule, and

therefore, the processing time used for each task is the
processing time on the processor that it was assigned. The
aim of using this metric is to evaluate whether the proposed
algorithm has an equivalent slack to HEFT, which is the
reference quadratic algorithm.

5.2 Random Graph Generator

To evaluate the relative performance of the heuristics, we

first considered randomly generated application graphs. For

this purpose, we used a synthetic DAG generation program

available at [28] with an adaptation to the fat parameter, as

explained next. Five parameters define the DAG shape:

. n: number of computation nodes in the DAG
(i.e., application tasks);

. fat: this parameter affects the height and the width of
the DAG. The width in each level is defined by a
uniform distribution with a mean equal to fat:

ffiffiffi
n
p

.
The height, or the number of levels, is created until n
tasks are defined in the DAG. The width of the DAG
is the maximum number of tasks that can be
executed concurrently. A small value will lead to a
thin DAG (e.g., chain) with low task parallelism,
whereas a large value induces a fat DAG (e.g., fork-
join) with a high degree of parallelism;

. density: determines the number of edges between
two levels of the DAG, with a low value leading to
few edges and a large value leading to many edges;

. regularity: the regularity determines the uniformity
of the number of tasks in each level. A low value
indicates that levels contain dissimilar numbers of
tasks, whereas a high value indicates that all levels
contain similar numbers of tasks;

. jump: indicates that an edge can go from level l to
level lþ jump. A jump of 1 is an ordinary connection
between two consecutive levels.

In the present study, we used this synthetic DAG
generator to create the DAG structure, which includes the
specific number of nodes and their dependences. To obtain
computation and communication costs, the following
parameters are used:

. Communication-to-computation ratio: ratio of the
sum of the edge weights to the sum of the node
weights in a DAG.

. � (Range percentage of computation costs on
processors): the heterogeneity factor for processor
speeds. A high � value implies higher heterogeneity
and different computation costs among processors,
and a low value implies that the computation costs
for a given task are nearly equal among processors
[30]. The average computation cost of a task ni in a
given graph wi is selected randomly from a uniform
distribution with range ½0; 2� wDAG�, where wDAG is
the average computation cost of a given graph that is
obtained randomly. The computation cost of each
task ni on each processor pj is randomly set from the
range of the following equation:

wi � 1� �
2

 �
� wi;j � wi � 1þ �

2

 �
: ð13Þ

ARABNEJAD AND BARBOSA: LIST SCHEDULING ALGORITHM FOR HETEROGENEOUS SYSTEMS BY AN OPTIMISTIC COST TABLE 689

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on January 13,2021 at 04:56:25 UTC from IEEE Xplore. Restrictions apply.

In our experiment, for random DAG generation, we
considered the following parameters:

. n ¼ ½10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 200; 300; 400;
500�;

. CCR ¼ ½0:1; 0:5; 0:8; 1; 2; 5; 10�;

. � ¼ ½0:1; 0:2; 0:5; 1; 2�;

. jump ¼ ½1; 2; 4�;

. regularity ¼ ½0:2; 0:8�

. fat ¼ ½0:1; 0:4; 0:8�

. density ¼ ½0:2; 0:8�;

. Processors ¼ ½4; 8; 16; 32�.
These combinations produce 70,560 different DAGs. For

each DAG, 10 different random graphs were generated with
the same structure but with different edge and node weights.
Thus, 705,600 random DAGs were used in the study.

Fig. 3a shows the average SLR and Fig. 3b shows the
average slack for all algorithms as a function of the DAG size.
For DAGs featuring up to 100 tasks, Lookahead and PEFT
present similar results. For larger DAGs, PEFT is the best
algorithm, as it outperforms the Lookahead algorithm. All
quadratic algorithms maintain a certain level of perfor-
mance, in contrast to the Lookahead algorithm, which after
100 tasks suffers a substantial decrease in performance. The
Lookahead algorithm bases its decisions on the analysis of
the children nodes for the current task, expecting that those
nodes will be scheduled shortly. However, if there are too
many concurrent tasks to schedule, as observed for DAGs
with more than 100 tasks, the processor load is substantially
changed by the concurrent tasks to be scheduled after the
current task. This finding implies that when the children
tasks are scheduled, the conditions are different and the

optimization decision made by the parent task is not valid,
which results in poorer performance. Compared with HEFT,
our PEFT algorithm improves by 10 percent for 10 task
DAGs. This improvement gradually decreases to 6.2 percent
for 100 task DAGs and to 4 percent for 500 task DAGs.
Despite this significant improvement, we can observe that
PEFT maintains the same level of Slack as HEFT. Thus, the
schedules produced, although shorter, have the same
robustness to uncertainty as those produced by HEFT.

To illustrate the results statistically, boxplots are pre-
sented, where the minimum, 25 percent, mean and 75 percent
values of the algorithm results are represented. The max-
imum is not shown because there is a broad distribution in
the results; therefore, we only show values up to the upper
inner fence. We also show the average values, which are
indicated by an individual line in each boxplot.

The SLRs obtained for the PEFT, Lookahead, HEFT,
HCPT, HPS, and PETS algorithms as a function of CCR and
heterogeneity are shown in Figs. 4a and 4b, respectively. We
can see that PEFT has the lowest average SLR and a smaller
dispersion in the distribution of the results. The second best
algorithm in terms of SLR is Lookahead. In terms of
efficiency, Fig. 4c, Lookahead is the best algorithm, with a
performance very similar to that of PEFT. This is an
important finding because with the proposed algorithm, we
improved the SLR and also achieved high values of
efficiency that are only comparable with those of a higher-
complexity algorithm. PEFT was the best quadratic algo-
rithm in our simulation.

Table 4 shows the percentage of better, equal, and worse
results for PEFT when compared with the remaining

690 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Fig. 4. (a) Boxplot of SLR as a function of CCR; (b) boxplot of SLR as a function of heterogeneity, and (c) efficiency for random graphs.

Fig. 3. (a) Average SLR and (b) slack for random graphs as a function of DAG size.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on January 13,2021 at 04:56:25 UTC from IEEE Xplore. Restrictions apply.

algorithms, based on makespan. Compared with HEFT,
PEFT achieves better scheduling in 72 percent of runs,
equivalent schedules in 3 percent of runs, and worse
schedules in 25 percent of runs.

5.3 Real-World Application Graphs

In addition to the random graphs, we evaluated the
performance of the algorithms with respect to real-world
applications, namely Gaussian Elimination [3], Fast Fourier
Transform [11], [30], Laplace Equation [32], Montage [1], [5],
[15], and Epigenomics [2], [9]. All of these applications are
well known and used in real-world problems. Because of
the known structure of these applications, we simply used
different values for CCR, heterogeneity and CPU number.
The range of values that we used in our simulation was
½0:1; 0:5; 0:8; 1; 2; 5; 10� for CCR, ½0:1; 0:2; 0:5; 1; 2� for hetero-
geneity and ½2; 4; 8; 16; 32� for CPU number. For Montage
and Epigenomics, we also considered 64 CPUs. The range
of parameters considered here represents typical values
within the context of this work [14], [30]. The CCR and
heterogeneity represent a wide range of machines, from
high-speed networks (CCR ¼ 0:1) to slower ones (CCR ¼
10) and from nearly homogeneous systems (heterogeneity
equal to 0.1) to highly heterogeneous machines (hetero-
geneity equal to 2). We also considered a wide range of CPU
numbers to simulate higher concurrent environments with
two processors, as well as low concurrent situations where
the total number of processors, in most of the cases, is
higher than the maximum number of concurrent tasks
ready to be scheduled at any given instant.

5.3.1 Gaussian Elimination

For Gaussian Elimination, a new parameter, matrix size
m, was used to determine the number of tasks. The total
number of tasks in a Gaussian Elimination graph is
equal to m2þm�2

2 . The values considered for m were
½5; 10; 15; 20; 30; 50; 100�. The boxplot of SLR as a function
of the matrix size is shown in Fig. 5.

For all matrix sizes, PEFT produced shorter schedules
than all other algorithms with quadratic complexity and
almost the same results as the Lookahead algorithm, which
has quartic complexity. Fig. 6 shows the SLR boxplot as a
function of the CCR parameter. For low CCRs, PEFT
yielded results equivalent to those of HEFT, and for higher
CCRs, PEFT performed significantly better, obtaining an
average improvement of 2, 9, and 16 percent over HEFT
for CCR values of 2, 5, and 10, respectively. From the
boxplots, we can see that statistically, PEFT produced
schedules with lower SLR dispersion than the other
quadratic algorithms.

Concerning heterogeneity, PEFT outperformed HEFT in
average SLR by 2, 3, 4, 6, and 7 percent for heterogeneity
values of 0.1, 0.2, 0.5, 1, and 2, respectively. Concerning the
number of CPUs, the improvement over HEFT was 2, 6, 12,
and 12 percent for sets of 4, 8, 16, and 32 CPUs, respectively.
Graphical representation is not provided for SLR as a
function of heterogeneity and CPU numbers.

5.3.2 Fast Fourier Transform

The second real application was the Fast Fourier Transform.
As mentioned in [30], we can separate the FFT algorithm
into two parts: recursive calls and the butterfly operation.
The number of tasks depends on the number of FFT points
(n), where there are 2� ðn� 1Þ þ 1 recursive call tasks and
n log2 n butterfly operation tasks. Also, in this application,
because the structure is known, we simply change CCR, �
and the CPU number. Fig. 7 shows the SLR for different
FFT sizes.

ARABNEJAD AND BARBOSA: LIST SCHEDULING ALGORITHM FOR HETEROGENEOUS SYSTEMS BY AN OPTIMISTIC COST TABLE 691

TABLE 4
Pairwise Schedule Length Comparison of the Scheduling

Algorithms

Fig. 5. Boxplot of SLR for the Gaussian Elimination graph as a function
of matrix size.

Fig. 6. Boxplot of SLR for the Gaussian Elimination graph as a function
of the CCR.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on January 13,2021 at 04:56:25 UTC from IEEE Xplore. Restrictions apply.

In this type of application, PEFT and Lookahead yielded
the worst results, although the results were similar to those
obtained using HEFT. This example allowed us to conclude,
with additional experiments, that PEFT does not perform
better than HEFT when all tasks belong to a critical path,
i.e., when all paths are critical.

5.3.3 Montage Workflow

Montage is an application for constructing custom astro-
nomical image mosaics of the sky.

We considered Montage graphs with 25 and 50 tasks, and
as in the other real applications, because the graph structure
was defined, we simply considered different values of CCR,
�, and CPU number. Fig. 8 shows the boxplots of SLR as a
function of different hardware parameters.

All algorithms except for PEFT and Lookahead exhibited
the same performance for this application. The average SLR
improvement for PEFT over HEFT for different values of
CCR (see Fig. 8a) started at 0.8 percent for a low CCR value
(equal to 0.1) and increased to 22 percent at a CCR value
equal to 10. Concerning the number of CPUs, the improve-
ment was 10 percent with four CPUs and increased to
19 percent for 64 CPUs, as shown in Fig. 8b. The
improvement for different heterogeneities (see Fig. 8c)
started at 15 percent for low heterogeneity (� ¼ 0:1) and
increased to 18 percent for a heterogeneity of 2 (� ¼ 2).

5.3.4 Epigenomic Workflow

The Epigenomic workflow is used to map the epigenetic
state of human cells on a genome-wide scale. As was the
case for the other real application graphs, the structure of
this application is known; therefore, we simply considered
different values of CCR, � and CPU number. In our
experiment, we used graphs with 24 and 46 tasks.

Fig. 9 shows the boxplot for SLR as a function of the
hardware parameters. Also, for this application, PEFT
always outperformed the other algorithms, including the
Lookahead algorithm. The average SLR improvement of
PEFT over HEFT for a low CCR value of 0.1 was 0.1 percent
and increased to 22 percent for a CCR value of 10 (see
Fig. 9a). Similarly, PEFT showed (see Fig. 9b) a range of
SLR improvement for different CPU numbers: 3 percent for
four CPUs and 21 percent for 64 CPUs. In addition, we
observed an average SLR improvement of 15 to 21 percent
for low heterogeneity (� ¼ 0:1) to high heterogeneity
(� ¼ 2) (see Fig. 9c).

6 CONCLUSIONS

In this paper, we proposed a new list scheduling algorithm
with quadratic complexity for heterogeneous systems
called PEFT. This algorithm improves the scheduling
provided by state-of-the-art quadratic algorithms such as
HEFT [30]. To our knowledge, PEFT is the first algorithm to
outperform HEFT while maintaining the same time com-
plexity of Oðv2:pÞ. The algorithm is based on an optimistic
cost table that is computed before scheduling. This cost
table represents for each pair (task, processor) the mini-
mum processing time of the longest path from the current
task to the exit node by assigning the best processors to
each of those tasks. The table is optimistic because it does
not consider processor availability at a given time. The
values stored in the cost table are used in the processor
selection phase. Rather than considering only the Earliest

692 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Fig. 7. Boxplot of SLR for the Fast Fourier Transform graph as a function
of the input points.

Fig. 8. Boxplot of SLR for Montage with respect to (a) CCR, (b) number
of CPUs, and (c) heterogeneity factor.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on January 13,2021 at 04:56:25 UTC from IEEE Xplore. Restrictions apply.

Finish Time for the task that is being scheduled, PEFT adds
to EFT the processing time stored in the table for the pair
(task, processor). All processors are tested, and the one that
gives the minimum value is selected. Thus, we introduce
the look ahead feature while maintaining quadratic com-
plexity. This feature has been proposed in other algorithms,
but all such algorithm increase the complexity to cubic or
higher orders.

To prioritize the tasks, we also use the OCT table to
define a new rank that is given by the average of the costs
for a given task over all processors. Although other ranks
could be used, such as ranku [30], we concluded that with
the new rank, similar performance is obtained. Therefore,
the use of ranku would require additional computations
without resulting in a significant advantage.

In terms of scheduling length ratio, the PEFT algorithm
outperformed all other quadratic algorithms considered in

this work for random graph sizes of 10 to 500. Statistically,
PEFT had the lowest average SLR and a lower dispersion in
the distribution of the results.

We also compared the algorithms in terms of robustness
to uncertainty in the task processing time, given by the Slack
function, and we obtained the same level of robustness for
PEFT and HEFT, which is an important characteristic of the
proposed algorithm.

The simulations performed for real-world applications
also verified that PEFT performed better than the remaining
quadratic algorithms. These tests also revealed an excep-
tional case (the FFT transform) in which PEFT did not
perform better. We concluded that this lack of improvement
by PEFT occurs for graphs with the same characteristics as
FFT and that are characterized by having all tasks belong to a
critical path, i.e., having all paths be critical.

From the results, we can conclude that among the static
scheduling algorithms studied in this paper, PEFT exhibits
the best performance for the static scheduling of DAGs in
heterogeneous platforms with quadratic time complexity
and the lowest quadratic time complexity.

ACKNOWLEDGMENTS

This work was supported in part by the Fundação para a
Ciencia e Tecnologia, PhD Grant FCT-DFRH-SFRH/BD/
80061/2011.

REFERENCES

[1] Montage: An Astronomical Image Mosaic Engine, http://
montage.ipac.caltech.edu/, 2013.

[2] USC Epigenome Center, http://epigenome.usc.edu/, 2013.
[3] A.K. Amoura, E. Bampis, and J.C. Konig, “Scheduling Algorithms

for Parallel Gaussian Elimination with Communication Costs,”
IEEE Trans. Parallel and Distributed Systems, vol. 9, no. 7, pp. 679-
686, July 1998.

[4] H. Arabnejad and J.G. Barbosa, “Performance Evaluation of List
Based Scheduling on Heterogeneous Systems,” Proc. Euro-Par
2011: Parallel Processing Workshops, pp. 440-449, 2012.

[5] G.B. Berriman, J.C. Good, A.C. Laity, A. Bergou, J. Jacob, D.S.
Katz, E. Deelman, C. Kesselman, G. Singh, M.-H. Su, and R.
Williams, “Montage: A Grid Enabled Image Mosaic Service for the
National Virtual Observatory,” Proc. Astronomical Data Analysis
Software and Systems (ADASS) XIII, pp. 593-596, 2004.

[6] L.F. Bittencourt, R. Sakellariou, and E.R.M. Madeira, “DAG
Scheduling Using a Lookahead Variant of the Heterogeneous
Earliest Finish Time Algorithm,” Proc. 18th Euromicro Int’l Conf.
Parallel, Distributed and Network-Based Processing (PDP ’10), pp. 27-
34, 2010.

[7] C. Boeres, J.V. Filho, and V.E.F. Rebello, “A Cluster-Based Strategy
for Scheduling Task on Heterogeneous Processors,” Proc. 16th
Symp. Computer Architecture and High Performance Computing,
pp. 214-221, 2004.

[8] L. Bölöni and D.C. Marinescu, “Robust Scheduling of Metapro-
grams,” J. Scheduling, vol. 5, no. 5, pp. 395-412, 2002.

[9] D.A. Brown, P.R. Brady, A. Dietz, J. Cao, B. Johnson, and J.
McNabb, “A Case Study on the Use of Workflow Technologies for
Scientific Analysis: Gravitational Wave Data Analysis,” Workflows
for e-Science, I.J. Taylor, E. Deelman, D.B. Gannon, and M. Shields,
eds., Springer, pp. 39-59, 2007.

[10] L.C. Canon, E. Jeannot, R. Sakellariou, and W. Zheng, “Com-
parative Evaluation of the Robustness of Dag Scheduling
Heuristics,” Grid Computing: Achievements and Prospects, S.
Gorlatch, P. Fragopoulou, and T. Priol, eds., Springer, pp. 73-
84, 2008.

[11] Y.C. Chung and S. Ranka, “Applications and Performance
Analysis of a Compile-Time Optimization Approach for List
Scheduling Algorithms on Distributed Memory Multiprocessors,”
Proc. ACM/IEEE Conf. Supercomputing (Supercomputing ’92),
pp. 512-521, 1992.

ARABNEJAD AND BARBOSA: LIST SCHEDULING ALGORITHM FOR HETEROGENEOUS SYSTEMS BY AN OPTIMISTIC COST TABLE 693

Fig. 9. Boxplot of SLR for Epigenomic Workflow as a function of
(a) CCR, (b) CPU number, and (c) heterogeneity factor.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on January 13,2021 at 04:56:25 UTC from IEEE Xplore. Restrictions apply.

[12] B. Cirou and E. Jeannot, “Triplet: A Clustering Scheduling
Algorithm for Heterogeneous Systems,” Proc. Int’l Conf. Parallel
Processing Workshops, pp. 231-236, 2001.

[13] E.G. Coffman, Computer and Job-Shop Scheduling Theory. John Wiley
& Sons, 1976.

[14] M.I. Daoud and N. Kharma, “A High Performance Algorithm for
Static Task Scheduling in Heterogeneous Distributed Computing
Systems,” J. Parallel and Distributed Computing, vol. 68, no. 4,
pp. 399-409, 2008.

[15] E. Deelman, G. Singh, M.H. Su, J. Blythe, Y. Gil, C. Kesselman, G.
Mehta, K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, and
D.S. Katz, “Pegasus: A Framework for Mapping Complex
Scientific Workflows onto Distributed Systems,” J. Scientific
Programming, vol. 13, no. 3, pp. 219-237, 2005.

[16] H. El-Rewini and T.G. Lewis, “Scheduling Parallel Program Tasks
onto Arbitrary Target Machines,” J. Parallel and Distributed
Computing, vol. 9, no. 2, pp. 138-153, 1990.

[17] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, 1979.

[18] T. Hagras and J. Jane�cek, “A Simple Scheduling Heuristic for
Heterogeneous Computing Environments,” Proc. Second Int’l
Symp. Parallel and Distributed Computing, pp. 104-110, 2003.

[19] T. Hagras and J. Jane�cek, “A High Performance, Low Complexity
Algorithm for Compile-Time Task Scheduling in Heterogeneous
Systems,” J. Parallel Computing, vol. 31, no. 7, pp. 653-670, 2005.

[20] E. Ilavarasan and P. Thambidurai, “Low Complexity Performance
Effective Task Scheduling Algorithm for Heterogeneous Comput-
ing Environments,” J. Computer sciences, vol. 3, no. 2, pp. 94-103,
2007.

[21] E. Ilavarasan, P. Thambidurai, and R. Mahilmannan, “High
Performance Task Scheduling Algorithm for Heterogeneous
Computing System,” Distributed and Parallel Computing, Springer
LNCS, vol. 3719, pp. 193-203, 2005.

[22] M.A. Iverson, F. Özgüner, and G.J. Follen, “Parallelizing Existing
Applications in a Distributed Heterogeneous Environment,” Proc.
Fourth Heterogeneous Computing Workshop (HCW ’95), pp. 93-100,
1995.

[23] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R.F. Freund,
“Dynamically Mapping of a Class of Independent Tasks onto
Heterogeneous Computing Systems,” J. Parallel and Distributed
Computing, vol. 59, pp. 107-131, 1999.

[24] H. Oh and S. Ha, “A Static Scheduling Heuristic for Hetero-
geneous Processors,” Proc. Euro-Par ’96 Parallel Processing, pp. 573-
577, 1996.

[25] A. Radulescu and A.J.C. van Gemund, “Fast and Effective Task
Scheduling in Heterogeneous Systems,” Proc. Ninth Heterogeneous
Computing Workshop (HCW), pp. 229-238, 2000.

[26] Z. Shi, E. Jeannot, and J.J. Dongarra, “Robust Task Scheduling in
Non-Deterministic Heterogeneous Computing Systems,” Proc.
IEEE Int’l Conf. Cluster Computing, pp. 1-10, 2006.

[27] G.C. Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architec-
ture,” IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 2,
pp. 175-187, Feb. 1993.

[28] F. Suter, “DAG Generation Program,” http://www.loria.fr/
~suter/dags.html, 2010.

[29] H. Topcuoglu, S. Hariri, and M. Wu, “Task Scheduling Algo-
rithms for Heterogeneous Processors,” Proc. Eighth Heterogeneous
Computing Workshop (HCW), pp. 3-14, 1999.

[30] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous Comput-
ing,” IEEE Trans. Parallel and Distributed Systems, vol. 13, no. 3,
pp. 260-274, Mar. 2002.

[31] J.D. Ullman, “NP-Complete Scheduling Problems,” J. Computer
and System Sciences, vol. 10, no. 3, pp. 384-393, 1975.

[32] M.Y. Wu and D.D. Gajski, “Hypertool: A Programming Aid for
Message-Passing Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 1, no. 3, pp. 330-343, July 1990.

Hamid Arabnejad received the BSc degree in
software engineering from Azad University,
Mashhad Branch, Iran, in 2003, and the MSc
in software engineering from Azad University,
South Tehran Branch, Iran, in 2008. From 2007
to 2009, he served as a teacher in several
computer science courses of Azad University
and Applied-Scientific Comprehensive Univer-
sity. He is currently working towards the PhD
degree in computer science at the University of

Porto, Portugal, since 2011. His research interests are in the fields of
grid and distributed computing systems, especially global scheduling
and data management in grid computing.

Jorge G. Barbosa received the BSc degree in
electrical and computer engineering from the
Faculty of Engineering, University of Porto
(FEUP), Portugal, the MSc degree in digital
systems from the University of Manchester
Institute of Science and Technology, England,
in 1993, and the PhD degree in electrical and
computer engineering from the FEUP, Portugal,
in 2001. He is currently an assistant professor at
the FEUP. His research interests include parallel

and distributed computing, heterogeneous computing, scheduling in
heterogeneous environments, cloud computing, and biomedical en-
gineering. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

694 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on January 13,2021 at 04:56:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

