
Research Article

On the Complexity of Sequence-to-Graph Alignment

CHIRAG JAIN,* HAOWEN ZHANG,* YU GAO, and SRINIVAS ALURU

ABSTRACT

Availability of extensive genetic data across multiple individuals and populations is driving
the growing importance of graph-based reference representations. Aligning sequences to
graphs is a fundamental operation on several types of sequence graphs (variation graphs,
assembly graphs, pan-genomes, etc.) and their biological applications. Although research
on sequence-to-graph alignments is nascent, it can draw from related work on pattern
matching in hypertext. In this article, we study sequence-to-graph alignment problems
under Hamming and edit distance models, and linear and affine gap penalty functions, for
multiple variants of the problem that allow changes in query alone, graph alone, or in both.
We prove that when changes are permitted in graphs either standalone or in conjunction
with changes in the query, the sequence-to-graph alignment problem is N P-complete un-
der both Hamming and edit distance models for alphabets of size ‡2. For the case where
only changes to the sequence are permitted, we present an O(jVj+ mjEj) time algorithm,
where m denotes the query size, and V and E denote the vertex and edge sets of the graph,
respectively. Our result is generalizable to both linear and affine gap penalty functions, and
improves upon the runtime complexity of existing algorithms.

Keywords: approximate pattern matching, computational complexity, genomics, graph search,

sequence alignment.

1. INTRODUCTION

Aligning sequences to graphs is becoming increasingly important in the context of several applications

in computational biology, including variant calling (Nguyen et al., 2015; Dilthey et al., 2015; Eggertsson

et al., 2017; Garrison et al., 2018), genome assembly (Antipov et al., 2015; Wick et al., 2017; Garg et al.,

2018), read error-correction (Salmela and Rivals, 2014; Wang et al., 2018; Limasset et al., 2019; Zhang et al.,

2019), RNA-seq data analysis (Beretta et al., 2017; Kuosmanen et al., 2018), and more recently, antimicrobial

resistance profiling (Rowe and Winn, 2018). Much of this has been driven by the growing ease and ubiquity of

sequencing at personal, population, and environmental scale, leading to a significant growth in the availability

of data sets. Graph-based representations provide a natural mechanism for compact representation of related

sequences and variations among them. Some of the most useful graph-based data structures are de-Bruijn

College of Computing, Georgia Institute of Technology, Atlanta, Georgia.
*These authors contributed equally to this work.
A preliminary version of this article appeared in RECOMB 2019.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 27, Number 0, 2020

Mary Ann Liebert, Inc.

Pp. 1–15

DOI: 10.1089/cmb.2019.0066

1

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

graphs (Pevzner et al., 2001; Iqbal et al., 2012), variation graphs (Novak et al., 2017), string graphs (Myers,

2005), partial order graphs (Lee et al., 2002), and Wheeler graphs (Gagie et al., 2017).

Decades of progress made toward designing provably good algorithms for the classic sequence-to-

sequence alignment problems serves as the foundation for mapping tools currently used in genomics, and

similar efforts are necessary for sequence-to-graph alignment. To address the growing list of biological

applications that require aligning sequences to a graph, several heuristics (Huang et al., 2013; Limasset

et al., 2016; Liu et al., 2016; Garrison et al., 2018; Guo et al., 2018; Heydari et al., 2018; Rakocevic et al.,

2019) and a few provably good algorithms (Sirén et al., 2014; Rautiainen and Marschall, 2017; Kavya

et al., 2019) have been developed in recent years. In addition, sequence-to-graph alignment has been stud-

ied much earlier in the string literature through its counterpart, approximate pattern matching to hypertext

(Manber and Wu, 1992). Since then, important complexity results and algorithms have been obtained for

different variants of this problem (Amir et al., 2000; Navarro, 2000; Thachuk, 2013).

Many versions of the classic sequence-to-sequence alignment problem were considered in the literature,

for example, different alignment modes—local/global, and scoring functions—linear/affine/arbitrary gap

penalty (Navarro, 2001). The list further proliferates when considering a graph-based reference. This is

because the nature of the problem changes depending on whether the input graphs are cyclic or acyclic

(Navarro, 2000), and whether edits are allowed in the graph or query, or both (Amir et al., 2000). The

alignment routine to directed acyclic graphs (DAGs) is often referred to as partial order alignment (Lee

et al., 2002) in bioinformatics.

In this article, we present new complexity results and improved algorithms for multiple variants of the

sequence-to-graph alignment problem. The proposed results hold for general directed graphs, that is, the

graphs can contain cycles. Consider a query sequence of length m and a directed graph G(V, E) with string-

labeled vertices, over the alphabet S. We make the following contributions:

� The problem variants that allow changes to the graph labels are known to be N P-complete, via proofs

by Amir et al. (2000) that assume jSj � jV j. To date, tractability of these problems remains unknown

for the case of constant sized alphabets, which is an important consideration when aligning DNA,

RNA, or protein sequences to corresponding graphs. We close this knowledge gap by proving that four

variants of the problem, characterized by changes to graph alone or both graph and query, under the

Hamming or edit distance models, remain N P-complete for jSj � 2.
� Allowing changes to the query sequence alone makes the problem polynomially solvable. For graphs

with character-labeled vertices, we propose an algorithm that achieves O(jV j + mjEj) time bound for

both linear and affine gap penalty cases, superior to the best existing algorithms (Table 1). An

important attribute of the proposed algorithm is that it achieves the same time and space complexity as

required for the easier problem of sequence alignment to DAGs (Lee et al., 2002), under both scoring

models.

The article is organized as follows. We begin by defining the notations and definitions used throughout

the article (Section 2). Proofs for the hardness results are provided in Section 3. Later in Section 4, we

Table 1. Comparison of Runtime Complexity Achieved by Different Algorithms

for the Sequence-to-Graph Alignment Problem When Changes Are Allowed

in the Query Sequence Alone, Using Different Scoring Models

Linear gap penalty Affine gap penalty

Edit distance Arbitrary costs

Amir et al. (2000) O(m(jV j log jV j + jEj)) O(m(jV j log jV j + jEj)) —

Navarro (2000) O(m(jV j + jEj)) — —

Antipov et al. (2015) O(m(jV j log (mjV j) + jEj)) O(m(jV j log (mjV j) + jEj)) —

Kavya et al. (2019) O(mjV jjEj) O(mjV jjEj) O(mjV jjEj)
Rautiainen and Marschall (2017) O(jV j + mjEj) O(m(jV j log jV j + jEj)) O(m(jV j log jV j + jEj))
This work O(jV j + mjEj) O(jV j + mjEj) O(jV j + mjEj)

In this table, m denotes the query length, and V, E denote the vertex and edge sets in a graph with character-labeled vertices,

respectively.

2 JAIN ET AL.

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

present an improved algorithm for the polynomially solvable variant of the problem. As part of it, we

also argue that significant improvement in the runtime is unlikely, and generalize the algorithm for other

graph-based data structures typically used in bioinformatics. Conclusions and open problems are listed in

Section 5.

2. PRELIMINARIES

Let S denote an alphabet, and x and y be two strings over S. We use x[i] to denote the ith character of x,

and jxj to denote its length. Let x[i‚ j] (1 � i � j � jxj) denote x [i] x [i + 1] . . . x[j], the substring of x

beginning at the ith position and ending at the jth position. Concatenation of x and y is denoted as xy. Let xk

denote string x concatenated with itself k times.

Definition 2.1 Sequence Graph: A sequence graph G(V‚ E‚ r) is a directed graph with vertices V and

edges E. Function r : V ! S + labels each vertex v 2 V with string r(v) over the alphabet S.

Naturally, path p = vi‚ vi + 1‚ . . . ‚ vj in G(V‚ E‚ r) spells the sequence r(vi) r(vi + 1) . . . r(vj). The above

definition of sequence graph generalizes various graph data structures typically used in genomics (further

discussed in Section 4.5). Given a query sequence q, we seek its best matching path sequence in the graph.

Alignment problems are formulated such that distance between the computed path and the query sequence

is minimized, subject to a specified distance metric such as Hamming or edit distance. Typically, an align-

ment is scored using either a linear or an affine gap penalty function. The cost of a gap is proportional to its

length, when using a linear gap penalty function. An affine gap penalty function imposes an additional

constant cost to initiate a gap.

3. COMPLEXITY ANALYSIS

3.1. Asymmetry of edit locations

An alignment between two sequences also specifies possible changes to the sequences (e.g., substitu-

tions, insertions, and deletions) to make them identical, with alignment distance specifying the cumulative

penalty for the changes. The changes can be individually applied either to the first or the second sequence,

or any combination thereof. Such a symmetry is no longer valid when aligning sequences to graphs (Amir

et al., 2000). This is because alignments can occur along cyclic paths in the graph. If the label of a vertex in

the graph is changed, then an alignment path visiting that vertex k times reflects the same change at k

different positions in the alignment. On the contrary, a change in one position of the sequence only

reflects that change in the corresponding position in the alignment. As such, optimal alignment scores

vary depending on whether changes are permitted in just the sequence, just the graph, or both (see Fig. 1 for

an illustration). This characteristic leads to three different problems, with each potentially resulting in a

different optimal distance.

Consider the sequence-to-graph alignment problem under the Hamming or edit distance metrics. For

each distance metric, there are three versions of the problem depending on whether changes are allowed in

query alone, graph alone, or both in the query and graph. Consider the decision versions of these problems,

which ask whether there exists an alignment with £d modifications (substitutions or edits), as per the

FIG. 1. Asymmetry with respect to the location of changes in sequence-to-graph alignment illustrated using Ham-

ming distance. For sequence-to-sequence alignment (left), two substitutions are required for a match, and can be made

on either sequence. However, for sequence alignment to graph (right), two substitutions are required in the sequence,

whereas just one is sufficient if made in the graph.

SEQUENCE-TO-GRAPH ALIGNMENT 3

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

distance metric. Restricting substitutions or edits to the query sequence alone admits polynomial time

solutions (Amir et al., 2000; Navarro, 2000; Rautiainen and Marschall, 2017). In the pioneering work of

Amir et al. (2000) in the domain of string to hypertext matching, it has been proven that the other problem

variants permitting changes to graph are N P-complete. The proofs provided in their work assume an

alphabet size � jVj. To date, tractability of these problems remains unknown for the case of constant sized

alphabets (e.g., for DNA, RNA, or protein sequences). In what follows, we close this gap by showing that

the problems remain N P-complete for any alphabet of size at least 2.

3.2. Alignment using Hamming distance

Theorem 3.1 The problem ‘‘Can we substitute a total of £ d characters in graph G and query q such that

q will have a matching path in G?’’ is N P-complete for jSj � 2.

Proof. The problem is in N P. Given a solution, the set of substitutions can be used to obtain the

corrected graph and query. Next, we can leverage any polynomial time algorithm (Park and Kim, 1995;

Amir et al., 2000; Navarro, 2000) to verify if the corrected query matches a path in the corrected graph.

To show that the problem is N P-hard, we perform a reduction using the directed Hamiltonian cycle

problem. Suppose G0 (V‚ E) is a directed graph in which we seek a Hamiltonian cycle. Let n = jV j. We

transform it into a sequence graph G(V‚ E‚ r) over the alphabet S = fa‚ bg by simply labeling each vertex

v 2 V with an (Fig. 2). Note that the graph structure remains unchanged. Next, we construct query sequence

q. Let token ti be the sequence of n characters an - i - 1bai. We choose query q to be the n2(2n + 2) long

sequence: (t0t1 . . . tn - 1)2n + 2. We claim that a Hamiltonian cycle exists in G0(V‚ E) if and only if q can be

matched after substituting a total of � n characters in G(V‚ E‚ r) and q.

Suppose there is a Hamiltonian cycle in G0(V‚ E). We can follow the corresponding loop in G(V‚ E‚ r)

from the first character of any vertex label. To match each token in the query q, we require one a! b
substitution per vertex. Thus, the query q matches G(V‚ E‚ r) after making exactly n substitutions in the

graph.

Conversely, suppose the query q matches the graph G(V‚ E‚ r) after making � n substitutions in the

query and the graph. Consider the following substring qsub of q: t0t1 . . . tn - 1t0t1. Note that there are n + 1

nonoverlapping instances of qsub in q. Even if all the n substitutions occur in the query, at least one instance

of qsub must remain unchanged. As a result, qsub must match to a path in the corrected G(V‚ E‚ r).

Case 1: qsub starts matching from the first character of a vertex label. Note that the first n tokens

qsub[1‚ n] = t0, qsub[n + 1‚ 2n] = t1‚ . . ., qsub[n2 - n + 1‚ n2] = tn - 1 are all unique followed by qsub[n2 + 1‚

n2 + n] = t0. Therefore, this requires a Hamiltonian cycle in G(V‚ E‚ r). Accordingly, there is a Hamiltonian

cycle in G0(V‚ E).

Case 2: qsub starts somewhere other than the starting position within a vertex label. Let qsub[k]

(1 < k � n) be the first character that matches at the beginning of the next vertex on the path matching q.

Similar to the previous case, the following n sequences qsub[k‚ n + k - 1], qsub[n + k‚ 2n + k - 1]‚ . . . ‚

qsub[n2 - n + k‚ n2 + k - 1] are unique due to the spacing between b characters in qsub. Therefore, the

matching path must yield a Hamiltonian cycle. -

FIG. 2. Illustration of the two constructs used for reductions in proofs of Theorems 3.1 and 3.2. In both cases, we are

able to argue that the Hamiltonian cycle exists in G0(V‚ E) if and only if the query sequence can be matched to the

sequence graph using � jV j substitutions (Theorem 3.1) or � jV j edits (Theorem 3.2).

4 JAIN ET AL.

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Corollary 3.1.1. The problem ‘‘Can we substitute � d characters in graph G such that q will have a

matching path in G?’’ is N P-complete for jSj � 2.

Proof. The setup used in the proof of Theorem 3.1 can be trivially extended to prove the above claim.

Alternatively, we can simplify the proof by using the query sequence q = (t0t1 . . . tn - 1)2 since only one

instance of the substring qsub in q is needed for the subsequent arguments. This is because substitutions in

the query sequence are not permitted. -

Using the above two results, we conclude that Hamming distance-based decision formulations of sequence-

to-graph alignment problems are N P-complete when substitutions are allowed in graph labels, for jSj � 2.

In fact, it can be easily shown that jSj � 2 reflects a tight bound. Using jSj = 1, all the problem instances can

be decided in polynomial time using straightforward application of standard graph algorithms.

3.3. Alignment using edit distance

We next show that edit distance-based decision problems that permit changes in graph labels are

N P-complete if jSj � 2. Similar to our previous claims, allowing edits in the graph makes the sequence-

to-graph alignment problem intractable. Proofs used for Hamming distance do not apply here as edits also

permit insertions and deletions. The length of vertex labels can grow or shrink using insertion and deletion

edits, respectively.

Theorem 3.2 The problem ‘‘Can we perform a total of � d edits in graph G and query q so that q will

match in G?’’ is N P-complete for jSj � 2.

Proof. Clearly the problem is inN P. We again use the directed Hamiltonian cycle problem for reduction.

Given an instance G0(V‚ E) of the directed Hamiltonian cycle problem, we design an instance G(V‚ E‚ r)

using S = fa‚ bg. Let n = jV j. Label each vertex v in V using a sequence of 6n characters a2nb2na2n (Fig. 2).

Let token ti be a sequence of length 6n: a2n biab2n - 1 - i a2n. Using such tokens, we build a query sequence

q of length 6n2(2n + 2) as (t0t1 . . . tn - 1)2n + 2. We claim that a Hamiltonian cycle exists in G0(V‚ E) if and

only if we can match the sequence q to the graph G(V‚ E‚ r) using � n total edits.

If there is a Hamiltonian cycle in G0(V‚ E), we can follow the same loop in G(V‚ E‚ r) to align q. The

alignment requires one substitution per vertex. To prove the converse, suppose query q matches graph

G(V‚ E‚ r) after making a total of � n edits in q and G(V‚ E‚ r). Consider the substring qsub of q:

t0t1 . . . tn - 1t0. Note that there are n + 1 nonoverlapping instances of qsub in q, at least one of which must

remain unchanged. Accordingly, the substring qsub must match corrected G(V‚ E‚ r).

For the token ti, let ki = biab2n - 1 - i be its kernel sequence of length 2n. It follows that ti = a2nkia2n. We show

that a kernel must be matched entirely within a vertex in G(V‚ E‚ r) using the following two arguments.

First, since any vertex label cannot shrink from length 6n to < 5n, a kernel cannot be matched to an entire

vertex after the edits. It implies that a kernel must match to � 2 vertices. Second, if a kernel aligns across

two vertices, (2n - 1) b’s must be required in place of a’s at the two vertex ends, thus requiring > n edits.

Therefore, a kernel can only be matched within a single vertex label. Finally, it is easy to observe that any

vertex label after � n edits cannot be matched to more than one kernel. When combining these arguments

with the fact that all n consecutive kernels in qsub are unique, we establish that the alignment path of qsub

must follow a Hamiltonian cycle in G(V‚ E‚ r). Accordingly, there is a Hamiltonian cycle in G0(V‚ E).-

Corollary 3.2.1 The problem ‘‘Can we perform � d edits in graph G so that q will match in G?’’ is N P-

complete for jSj � 2.

Proof. The setup used to prove Theorem 3.2 can be trivially extended to prove the above claim. -

It is straightforward to prove that other problem variants, for example, with linear gap penalty or affine

gap penalty scoring functions are at least as hard as the edit distance-based formulations. Therefore,

the sequence-to-graph alignment problem remains N P-complete even on constant sized alphabets for

these classes of scoring functions, and also if changes are permitted in the graph. Finally, we note that

all the above problems remain equally hard even for planar sequence graphs of max-degree 3, as is true for

the Hamiltonian cycle problem (Plesn, 1979).

SEQUENCE-TO-GRAPH ALIGNMENT 5

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

4. SEQUENCE-TO-GRAPH ALIGNMENT WITH EDITS IN SEQUENCE

The sequence-to-graph alignment problem is polynomially solvable when changes are allowed in the query

sequence alone (Amir et al., 2000; Navarro, 2000). Here, we improve upon the state-of-the-art by presenting

an algorithm with O(jVj + mjEj) runtime. Our algorithm matches the runtime complexity achieved previously

by Rautiainen and Marschall (2017) for edit distance, while improving that for linear and affine gap penalty

functions. In addition, it is simpler to implement because it only uses elementary queue data structures. A

prototype implementation of the algorithm is available at https://github.com/haowenz/SGA.

Edit distance is a special case of linear gap penalty when cost per unit length of the gap is 1, and

substitution penalty is also 1. We begin by presenting our algorithm for the case of a linear gap penalty

function, and later show its generalization to affine gap penalty in Section 4.3. From hereon, we assume that

the sequence graph G(V‚ E‚ r) is a character-labeled graph, that is, r(v) 2 S‚ v 2 V . This assumption

simplifies the description of the algorithm. Note that it is straightforward to transform a graph from string-

labeled form to character-labeled form, and vice versa.

4.1. Alignment graph

In the literature on the classic sequence-to-sequence alignment problem, the problem is either formulated

as a dynamic programming problem or an equivalent graph shortest-path problem in an appropriately

constructed edge-weighted edit graph or alignment graph (Myers, 1991). However, formulating the

sequence-to-graph alignment problem as a dynamic programming recursion, while easy for DAGs through

the use of topological ordering, is difficult for general graphs due to the possibility of cycles. As it turns out,

formulation as a shortest-path problem in an alignment graph is still rather convenient, even for graphs with

cycles (Amir et al., 2000). The alignment graph, described below, is constructed using the given query

sequence, the sequence graph, and the scoring parameters.

The alignment graph is a weighted directed graph, which is constructed such that each valid alignment of

the query sequence-to-sequence graph corresponds to a path from source vertex s to sink vertex t in the

alignment graph, and vice versa (Fig. 3). The alignment cost is equal to the corresponding path distance

from the source to the sink. Note that the alignment graph is a multilayer graph containing m ‘‘copies’’ of

the sequence graph, one in each layer. A column of dummy vertices is required in addition to accommodate

the possibility of deleting a prefix of the query sequence. Edges that emanate from a vertex are equivalent

to the choices available while solving the alignment problem. A formal definition of the alignment graph

follows:

Definition 4.1 Alignment graph: Given a query sequence q, a sequence graph G(V‚ E‚ r), linear gap

penalty parameters Ddel‚ Dins, and a substitution cost parameter Dsub, the corresponding alignment graph is

a weighted directed graph Ga(Va‚ Ea‚ xa), where Va = (f1‚ . . . ‚ mg · (V [fdg)) [fs‚ tg is the vertex set,

and xa : Ea ! R�0 is the weight function defined as

FIG. 3. An example to illustrate the construction of an alignment graph (right) from a given sequence graph and a

query sequence (left). Multiple colors are used to show weighted edges of different categories in the alignment graph.

The red, blue, and green edges are weighted as insertion, deletion, and substitution costs, respectively. Optimal

alignment between the query and the sequence graph is computed by finding the shortest path from source to sink vertex

in the alignment graph.

6 JAIN ET AL.

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

https://github.com/haowenz/SGA

xa(x‚ y) =

Di‚ v x = (i - 1‚ u)‚ y = (i‚ v) 1 < i � m & (u‚ v) 2 E

Dins x = (i‚ u)‚ y = (i‚ v) 1 � i � m & (u‚ v) 2 E

Ddel x = (i - 1‚ v)‚ y = (i‚ v) 1 < i � m & v 2 V [fdg
for source and sink vertices :

D1‚ v x = s‚ y = (1‚ v) v 2 V

Ddel x = s‚ y = (1‚ d)

0 x = (m‚ v)‚ y = t v 2 V [fdg
for dummy vertices :

Di‚ v x = (i - 1‚ d)‚ y = (i‚ v) 1 < i � m v 2 V

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Edges (x‚ y) 2 Ea are defined implicitly, as those pairs (x‚ y) for which xa is defined above. Di‚ v =Dsub if

q[i] 6¼ r (v)‚ v 2 V , and 0 otherwise. Dsub denotes the cost of substituting q[i] with r (v).

Existing definitions of the alignment graph (Amir et al., 2000; Rautiainen and Marschall, 2017) did not

incorporate dummy vertices, which are needed to account for the deletions correctly. Using the alignment

graph, we reformulate the problem of computing an optimal alignment to that of finding the shortest path in

the alignment graph. Even though the alignment graph defined by Amir et al. (2000) has minor differences,

proof in their work can be easily adapted to state the following claim:

Lemma 4.1 [Amir et al. (2000)]. Shortest distance from the source vertex s to the sink vertex t in the

alignment graph Ga(Va‚ Ea‚ xa) equals cost of optimal alignment between the query q and the sequence

graph G(V‚ E‚ r).

One way of solving the above shortest path problem is to directly apply Dijkstra’s algorithm (Amir et al.,

2000; Antipov et al., 2015). However, it results in an O(mjV j log (mjVj) + mjEj) time algorithm. We next

show how to solve this problem in O(jVj + mjEj) time.

4.2. Proposed algorithm

While searching for a shortest path from the source to the sink vertex, we compute the shortest distances

from the source to intermediate vertices Vanfs‚ tg in the alignment graph. An edge from a vertex in layer i

is either directed to a vertex in the same layer or to a vertex in the next layer. As a result, the shortest

distances to vertices in a layer can be computed once the distances for the previous layer are known. This

also makes it feasible to solve for the layers 1 to m, one by one (Navarro, 2000). We use a two-stage

strategy to achieve linear O(jVj + jEj) runtime per layer. Before describing the details, we give an outline of

the algorithm and its two stages.

Any path from the source vertex to a vertex v in a layer must extend a path ending in the previous layer

using either a deletion or a substitution cost weighted edge. Afterward, a path that ends in the same layer

but not at v can be further extended to v using the insertion cost weighted edges if it results in the shortest

path to the source. Roughly speaking, the first stage executes the former task, while the second takes care of

the latter. The two stages together are invoked m times during the algorithm until the optimal distances are

known for the last layer (Algorithm 1). Input to the first stage InitializeDistance is an array of the shortest

distances of the vertices in previous layer sorted in nondecreasing order. This stage computes the ‘‘ten-

tative’’ distances of all vertices in the current layer because it ignores the insertion cost weighted edges

during the computation. It outputs the sorted tentative distances as an input to the second stage Propa-

gateInsertion. The PropagateInsertion stage returns the optimal distances of all vertices in the current layer

while maintaining the sorted order for a subsequent iteration.

The following are two important aspects of our algorithm. First, we are able to maintain the sorted order

of vertices by spending O(jV j) time per layer during the first stage (Lemma 4.2). Second, we propagate

insertion costs through the edges in O(jVj + jEj) time per layer during the second stage by eluding the

need for standard priority queue implementations (Lemmas 4.3–4.5). Both features exploit characteristics

specific to the alignment graphs.

4.2.1. The InitializeDistance stage. We compute tentative distances for each vertex in the current

layer by using shortest distances computed for the previous layer (Algorithm 2). Because all deletion and

substitution cost weighted edges are directed from the previous layer toward the current, this only requires a

SEQUENCE-TO-GRAPH ALIGNMENT 7

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

straightforward linear O(jV j + jEj) time traversal (lines 2–8). In addition, we are required to maintain the

current layer as per sorted order of distances. Note that vertices in the previous layer are already available

in sorted order of their shortest distances from s. A vertex v in the previous layer can assign only three

possible distance values (v:distance‚ v:distance +Dsub, or v:distance +Ddel) to a neighbor in the current

layer. By maintaining three separate lists for each of the three possibilities, we can create the three lists in

sorted order and merge them in O(jV j) time. The relative order of vertices in the current layer can be easily

determined in linear time by tracking the positions of their distance values in the merged list. As a result,

the current layer can be obtained in sorted form in O(jVj) time and O(jVj) space, leading to the following

claim.

Algorithm 1: Algorithm for sequence-to-graph alignment

Result: The length of shortest path from s to t

1 PreviousLayer = [s];
2 s:distance = 0;
3 for i = 1 to m do /* Do the computation layer by layer */

4 CurrentLayer = [(i‚ v1)‚ (i‚ v2)‚ . . . ‚ (i‚ vn)‚ (i‚ k)];
5 x:distance =1 8x 2 CurrentLayer;
6 InitializeDistance (PreviousLayer, CurrentLayer);

7 PropagateInsertion (CurrentLayer);

8 PreviousLayer = CurrentLayer;
9 end

10 return Min (PreviousLayer.distance);

Algorithm 2: Algorithm to initialize and sort layer before insertion propagation

Result: A sorted layer CurrentLayer with distances initialized usingPreviousLayer

1 Function InitializeDistance (PreviousLayer, CurrentLayer)

2 foreach x 2 PreviousLayer do

3 foreach y 2 x:neighbory & y 2 CurrentLayer do

4 if y:distance > x:distance + xa(x‚ y) then

5 y:distance = x:distance + xa(x‚ y);
6 end

7 end

8 end

9 Sort (CurrentLayer);

Lemma 4.2 Time and space complexity of the sorting procedure in Algorithm 2 is O(jV j).
4.2.2. The PropagateInsertion stage. Note that the tentative distance computed for a vertex is sub-

optimal if its shortest path from the source vertex traverses any insertion cost weighted edge in the cur-

rent layer. One approach to compute optimal distance values is to process vertices in their sorted distance

order (minimum first) and update the neighbor vertices, similar to Dijkstra’s algorithm. When processing

vertex v, the distance of its neighbor should be adjusted such that it is no more than v:distance +Dins.

Selecting vertices with minimum scores can be achieved using a standard priority queue implementa-

tion (e.g., Fibonacci heap); however, it would require O(jEj + jVj log jVj) time per layer. A key property

that can be leveraged here is that all edges being considered in this stage have uniform weights (Dins).

Therefore, we propose a simpler and faster algorithm using two First-In-First-Out queues (Algorithm 3).

The first queue q1 is initialized with sorted vertices in the current layer, and the second queue q2 is ini-

tialized as empty (line 4). The minimum distance vertex is always dequeued from either of the two queues

(line 8). As and when distance of a vertex is updated by its neighbor, it is enqueued to q2 (line 15).

Following lemmas establish the correctness and an O(jEj + jV j) time bound for the PropagateInsertion stage

in the algorithm.

8 JAIN ET AL.

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Algorithm 3: Algorithm to propagate insertions in the same layer

Result: A sorted layer CurrentLayer with optimal distance values

1 Function PropagateInsertion (CurrentLayer)

2 x:resolved = false 8x 2 CurrentLayer;
3 Queue q1 = ;, q2 = ;;
4 q1.EnqueueðCurrentLayerÞ;
5 CurrentLayer = [];
6 while q1 6¼ ; or q2 6¼ ; do

7 qmin = q1: Front() < q2: Front() ? q1 : q2;
8 x = qmin: Dequeue ();

9 if x:resolved = false then

10 x:resolved = true;

11 CurrentLayer: Append (x);

12 foreach y 2 x:neighbory & y:layer = x:layer do

13 if y:distance > x:distance +Dins then

14 y:distance = x:distance +Dins;
15 q2:y Enqueue (y);

16 end

17 end

18 end

19 end

Lemma 4.3 In each iteration at line 8, Algorithm 3 dequeues a vertex with the minimum overall distance

in q1 and q2.

Proof. The queue q1 always maintains its nondecreasing sorted order at the beginning of each loop

iteration (line 6) in Algorithm 3 as we never enqueue new elements into q1. We prove by contradiction that

q2 also maintains the order. Maintaining this invariant would immediately imply the above claim. Let i be

the first iteration where q2 lost the order. Clearly i > 1. Because i is the first such iteration, new vertices (say

y1‚ y2‚ . . . ‚ yk) must have been enqueued to q2 in the previous iteration (line 15), and the vertex (say x) that

caused these additions must have been dequeued (line 8). Note that the distance of all the new vertices, the

yi’s, equals x:distance +Dins: Therefore, the vertex before y1 (say ypre) must have a distance higher than y1.

However, this leads to a contradiction because if we consider the iteration when ypre was enqueued to q2,

the distance of the vertex that caused addition of ypre could not be higher than the distance of the vertex x.-

Lemma 4.4 Once a vertex is dequeued in Algorithm 3, its computed distance equals the shortest distance

from the source vertex.

Proof. Lemma 4.3 establishes that Algorithm 3 processes all vertices that belong to the current layer in

sorted order. Therefore, it mimics the choices made by Dijkstra’s algorithm (Cormen et al., 2009). -

Lemma 4.5 Algorithm 3 uses O(jVj + jEj) time and O(jV j) space to compute shortest distances in a layer.

Proof. Each vertex in the current layer enqueues its updated neighbor vertices into q2 at most once. Note

that the distance of a vertex can be updated at most once, and therefore, the maximum number of enqueue

operations into q2 is jV j. In addition, enqueue operations are never performed in q1. Accordingly, the

number of outer loop iterations (line 6) is bounded by O(jV j). The inner loop (line 12) is executed at most

once per vertex, therefore the amortized runtime of the inner loop is O(jVj + jEj). -

The above claims yield an O(m(jV j + jEj)) time algorithm for aligning the query sequence-to-sequence

graph. Assuming a constant alphabet, we can further tighten the bound to O(jV j + mjEj) by using a simple

preprocessing step suggested in Rautiainen and Marschall (2017). This step transforms the sequence graph

by merging all vertices with 0 in-degree into � jSj vertices. As a result, the preprocessing ensures that the

count of vertices in the new graph is no more than jEj + jSj without affecting the correctness. Summary of

the above claims is presented as a following theorem:

SEQUENCE-TO-GRAPH ALIGNMENT 9

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Theorem 4.6 Algorithm 1 computes the optimal cost of aligning a query sequence of length m to graph

G(V‚ E‚ r) in O(jV j + mjEj) time and O(jV j) space using a linear gap penalty cost function.

4.2.3. Traceback. O(jV j) space is required using the proposed algorithm if just the optimal alignment

score is desired. This is because we are able to process the alignment graph row by row. However, an

additional traceback stage is required to compute base-to-base alignments. As is typical for the classic

sequence-to-sequence alignment, we need to save intermediate values or decisions to recover the alignment

path. A naive solution to this problem requires O(mjVj) space by storing the distances corresponding to all

m layers in memory. It turns out that the classic linear time algorithms (Hirschberg, 1975) do not apply for

directed graphs. However, an algorithm that uses subquadratic space can be designed using ‘‘checkpoint-

and-recalculate’’ strategy (Grice et al., 1997; Rautiainen and Marschall, 2017), where we only save ev-

ery
ffiffiffiffi
m
p

th layer, resulting in an O(
ffiffiffiffi
m
p
jVj) space algorithm without incurring additional asymptotic cost

in time. Space requirement can be further reduced, but at the cost of increased time complexity (Grice

et al., 1997).

4.3. Generalization to affine gap penalty

In the dynamic programming algorithm for sequence-to-sequence alignment, affine gap penalty functions

are typically supported by using three scoring matrices instead of just one (Gotoh, 1982). Similarly, the

alignment graph can be extended to contain three subgraphs with substitution, deletion, and insertion cost

weighted edges, respectively (Rautiainen and Marschall, 2017). The edge weights are adjusted for the af-

fine gap penalty model such that cost for opening a gap is incurred whenever a path leaves the match

subgraph to either the insertion or the deletion subgraph (Fig. 4). Lemma 4.1 continues to hold true for the

alignment graph built for sequence-to-graph alignment using affine gap penalty.

Our previous two-stage algorithm using InitializeDistance and PropagateInsertion stages can be extended

to a five-stage algorithm for solving the shortest path problem in the new alignment graph. The alignment

graph is still processed one level at a time such that there are m iterations in total. The five stages leverage

the InitializeDistance-based procedure four times, and PropagateInsertion procedure once in each iteration.

At a particular level in an iteration, we refer to vertices in the match, deletion, and insertion subgraphs as

match, deletion, and insertion layers, respectively.

In each iteration, we have the following five stages: (1) begin by initializing optimal distances of vertices

in the deletion layer using distances of vertices in the above match and deletion layers, (2) initialize

distances of vertices in the current match layer using distances of vertices in the current deletion layer

and the above match layer, (3) the distances of vertices in the current match layer are then utilized to

FIG. 4. The above figure shows how to extend the construction of an alignment graph for sequence-to-graph align-

ment from linear gap penalty (Figure 3) to affine gap penalty. The alignment graph now contains three subgraphs

separated by the gray dashed lines. The deletion and insertion weighted edges in the alignment graph for linear gap

penalty are shifted to the deletion subgraph and insertion subgraph, respectively. Their weights are also changed to the

gap extension penalty. Besides, more edges are added to connect the subgraphs with each other. To keep the figure

legible, we only use the highlighted vertices as an example to illustrate the edges required to initiate or end any

gap. The weight of magenta-colored edges is the sum of gap open penalty and gap extension penalty, the weight of

orange-colored edges is the gap open penalty, and the weight of the black-colored edges is 0.

10 JAIN ET AL.

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

initialize the current insertion layer, (4) resolve distances in the current insertion layer using the insertion

propagation algorithm (Algorithm 3), and (5) the distances of vertices in the current insertion layer are used

to make a final update to the current match layer. It can be easily shown that distances of all vertices at the

current level are now optimal.

The properties that were leveraged to design faster algorithm for linear gap penalty functions continue to

hold in the new alignment graph. In particular, the sorting still requires linear time during the Initialize-

Distance stage, and insertion propagation is still executed over uniformly weighted edges in the insertion

subgraph. As a result, the two-stage algorithm can be extended to operate using affine gap penalty function

in the same asymptotic time and space as with the linear gap penalty function.

4.4. Lower bounds

It is natural to wonder whether there exist faster algorithms for solving the sequence-to-graph alignment

problem. As noted by Rautiainen and Marschall (2017), the sequence-to-sequence alignment problem is a

special case of the sequence-to-graph alignment problem because a sequence can be represented as a

directed chain graph with character labels. As a result, existence of either O(m1 - �jEj) or O(mjEj1 - �
)‚ � > 0

time algorithm for solving the sequence-to-graph alignment problem (for both acyclic or cyclic graphs) is

unlikely because it would also yield a strongly subquadratic algorithm for solving the sequence-to-sequence

alignment problem, further contradicting SETH (Backurs and Indyk, 2015). Notably, Equi et al. (2019)

prove that exact and approximate matching to graphs is an equally hard problem under SETH. An impli-

cation of this result is that the sequence-to-graph alignment is unlikely to have a faster ‘‘banded alignment’’

solution (Myers, 1986), for the problem variant where count of edits allowed is an input parameter.

4.5. Generalization to commonly used graphs

A sequence graph with character-labeled vertices provides a good abstraction for solving the alignment

problem on various types of graphs used in bioinformatics. Commonly used graphs can be converted into

an equivalent sequence graph. In the context of solving the alignment problem, equivalence implies that

any sequence (i.e., concatenation of vertex labels in a path) in the first graph exists if and only if it exists in

the second graph.

4.5.1. Directed graphs with labeled vertices. Splicing graphs (Heber et al., 2002), partial order

graphs (Lee et al., 2002), or variation graphs (Paten et al., 2017) with labeled vertices and directed edges

are equivalent to our definition of the sequence graphs. A vertex with a string label can be split into a chain

of character-labeled vertices to execute our algorithm.

4.5.2. Directed graphs with labeled edges. An alternative representation used for graphs is to put

labels on edges instead of vertices (Dilthey et al., 2015). The following two ways can be used to convert an

edge-labeled graph G(V‚ E) into an equivalent vertex-labeled graph G0(V 0‚ E0). The first approach is to

represent each edge in G as a vertex in G0. The out-neighbors of a vertex in G0 are defined by the

immediately reachable edges from its corresponding edge in G. Here jV 0j = jEj, but jE0j = O(jEj2), al-

though it is much more manageable in practice as jE0j = O(jEj � dmax) where dmax is the maximum out-

degree of a vertex in G. The second approach allows conversion while restricting the graph size to within a

small constant factor of the original graph. We split each edge into a pair of edges with a new vertex in the

middle, where the new vertex holds the label (Fig. 5). The two endpoints are left unlabeled or empty. In this

FIG. 5. An example to illustrate the conversion of an edge-labeled graph into the corresponding vertex-labeled graph.

SEQUENCE-TO-GRAPH ALIGNMENT 11

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

case, jV 0j = jEj + jV j and jE0j = 2jEj. A minor challenge that remains to be addressed is how to handle the

empty labels (denoted as e). Our previously proposed sequence-to-graph alignment algorithm assumes

nonempty labels in the graph. However, the alignment graph and the algorithm can be easily adapted to

handle e-labeled vertices using the following modifications. While defining the alignment graph, the cost of

insertion weighted edges between vertices (i‚ u) and (i‚ v) (1 � i � m) is modified to 0 if r (v) = �, and the

substitution cost Di‚ v is set to N whenever r (v) = �. The PropagateInsertion stage of the algorithm can be

adjusted to handle the 0-weighted edges without affecting the time and space complexity of the algorithm.

4.5.3. Regular expressions. Alignment of sequences against regular expressions is useful to locate

specific patterns (e.g., repeats, activation sites) in public databases, or text mining. In this context, we seek a

minimum-cost set of edits that converts a sequence to match a regular expression. Myers and Miller (1989)

discuss how to convert a regular expression R into an e-labeled nondeterministic automaton whose size,

measured in vertices or edges, is linear in jRj (Fig. 6). This automaton, likewise, can be considered a se-

quence graph, while allowing for empty labels e. In addition, the edges from source or sink vertices in the

alignment graph can be adjusted to force the alignment to begin or end at selected vertices, respectively.

This way, it is possible to solve the sequence to regular expression alignment problem in O(mjRj) time. Our

quadratic time complexity in this context matches with Myers and Miller (1989), but our algorithm has the

advantage of being simpler and generic.

4.5.4. Directed assembly graphs. Alignment-to-assembly graphs are useful for read error correction

(Salmela and Rivals, 2014; Wang et al., 2018; Limasset et al., 2019; Zhang et al., 2019) and genome

assembly (Antipov et al., 2015; Wick et al., 2017; Garg et al., 2018) applications. De Bruijn graphs and

overlap graphs, likewise, can be converted into a sequence graph for computing the alignments. Each

vertex in a de Bruijn graph represents a k-mer, and two vertices are connected if they have k - 1 base long

suffix/prefix overlap. Transforming a de Bruijn graph to a vertex-labeled sequence graph requires labeling

the vertices by using their k-mer value. For all vertices with in-degree 0, we split the k-mer string into a

chain of k characters, whereas for all vertices with in-degree � 1, we define the kth character of its k-mer as

its label (Fig. 7). This procedure remains correct even in the presence of self-loops, as a vertex with a self-

loop in a de Bruijn graph must be a homopolymer vertex. Overlap graphs, on the contrary, are vertex-

labeled graphs, where an edge signifies a suffix/prefix match. This graph also can be converted similarly, by

defining the edges and labels such that we avoid redundant overlaps along any path.

4.5.5. Bidirected graphs. Assembly graphs and variation graphs are often used in their bidirec-

tional form (Medvedev et al., 2007; Novak et al., 2017; Garrison et al., 2018) to incorporate the strand

orientation within the graph. We can process these by first converting the bidirectional graph into its

unidirectional form by splitting each vertex into two (one for each strand), followed by converting it into a

directed graph.

FIG. 6. An example to illustrate the conversion of a regular expression into a state-labeled nondeterministic au-

tomaton using the construction rules provided by Myers and Miller (1989).

FIG. 7. An example to illustrate the conversion of a de Bruijn graph (k = 3) into the corresponding character-labeled

sequence graph.

12 JAIN ET AL.

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

5. CONCLUSIONS AND OPEN PROBLEMS

The sequence-to-graph alignment problem is useful in the context of several applications in genomics,

pan-genomics, and transcriptomics. In this article, we show that the problem is N P-complete when

changes are allowed in the sequence graph, for any alphabet of size � 2. When changes are allowed in the

query sequence alone, we provide an asymptotically faster polynomial time algorithm that generalizes to

linear gap penalty and affine gap penalty functions. The proposed algorithms use elementary data structures

and therefore are simple to implement. Overall, the theoretical results presented in this work enhance the

fundamental understanding of the problem, and will aid the development of faster tools for mapping to

graphs.

The alignment problem for sequence graphs is a rich area with several unsolved problems. For the

intractable problem variants, the development of fast exact and approximate algorithms is fertile ground for

future research. The presented hardness proofs hold for general labeled graphs. As such, the problem com-

plexity remains open for special instances (e.g., de Bruijn graphs). For the polynomially solvable problem

variant, empirical evaluation of the proposed as well as existing approaches will help evaluate their

practical utility. It will be useful to explore better algorithms when a substitution matrix (e.g., PAM,

BLOSUM)-based scoring is desired. Finally, working toward robust indexing schemes and heuristics that

scale to large input graphs and different sequencing technologies is an active subject of research.

AUTHOR DISCLOSURE STATEMENT

The authors declare they have no competing financial interests.

FUNDING INFORMATION

This work is supported, in part, by the U.S. National Science Foundation grant CCF-1816027. Y.G. was

supported by the ACO Program at Georgia Institute of Technology.

REFERENCES

Amir, A., Lewenstein, M., and Lewenstein, N. 2000. Pattern matching in hypertext. J. Algorithms 35, 82–99.

Antipov, D., Korobeynikov, A., McLean, J.S., et al. 2015. hybridSPAdes: An algorithm for hybrid assembly of short

and long reads. Bioinformatics 32, 1009–1015.

Backurs, A., and Indyk, P. 2015. Edit distance cannot be computed in strongly subquadratic time (unless SETH is

false), 51–58. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing.

Beretta, S., Bonizzoni, P., Denti, L., et al. 2017. Mapping RNA-seq data to a transcript graph via approximate pattern

matching to a hypertext, 49–61. In International Conference on Algorithms for Computational Biology. Aveiro,

Portugal.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., et al. 2009. Introduction to Algorithms. MIT Press, Cambridge, MA, USA.

Dilthey, A., Cox, C., Iqbal, Z., et al. 2015. Improved genome inference in the MHC using a population reference graph.

Nat. Genet. 47, 682.

Eggertsson, H.P., Jonsson, H., Kristmundsdottir, et al. 2017. Graphtyper enables population-scale genotyping using

pangenome graphs. Nat. Genet. 49, 1654.

Equi, M., Grossi, R., Mäkinen, V., and Tomescu, A. I. 2019. On the complexity of string matching for graphs. In 46th

International Colloquium on Automata, Languages, and Programming (ICALP 2019). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik. Patros, Greece.

Gagie, T., Manzini, G., and Sirén, J. 2017. Wheeler graphs: A framework for BWT-based data structures. Theor.

Comput. Sci. 698, 67–78.

Garg, S., Rautiainen, M., Novak, A.M., et al. 2018. A graph-based approach to diploid genome assembly. Bioinfor-

matics 34, i105–i114.

Garrison, E., Sirén, J., Novak, A.M., et al. 2018. Variation graph toolkit improves read mapping by representing genetic

variation in the reference. Nat. Biotechnol. 36, 875–879.

Gotoh, O. 1982. An improved algorithm for matching biological sequences. J. Mol. Biol. 162, 705–708.

Grice, J.A., Hughey, R., and Speck, D. 1997. Reduced space sequence alignment. Bioinformatics 13, 45–53.

SEQUENCE-TO-GRAPH ALIGNMENT 13

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Guo, H., Liu, B., Guan, D., et al. 2018. Fast variation-aware read alignment with deBGA-VARA, 227–233. In 2018

IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Madrid, Spain.

Heber, S., Alekseyev, M., Sze, S.-H., et al. 2002. Splicing graphs and EST assembly problem. Bioinformatics

18(Suppl 1), S181–S188.

Heydari, M., Miclotte, G., Van de Peer, Y., et al. 2018. BrownieAligner: Accurate alignment of illumina sequencing

data to de Bruijn graphs. BMC Bioinformatics 19, 311.

Hirschberg, D.S. 1975. A linear space algorithm for computing maximal common subsequences. Commun. ACM 18,

341–343.

Huang, L., Popic, V., and Batzoglou, S. 2013. Short read alignment with populations of genomes. Bioinformatics 29,

i361–i370.

Iqbal, Z., Caccamo, M., Turner, I., et al. 2012. De novo assembly and genotyping of variants using colored de Bruijn

graphs. Nat. Genet. 44, 226.

Kavya, V.N.S., Tayal, K., Srinivasan, R., et al. 2019. Sequence alignment on directed graphs. J. Comput. Biol. 26,

53–67.

Kuosmanen, A., Paavilainen, T., Gagie, T., et al. 2018. Using minimum path cover to boost dynamic programming on

DAGs: Co-linear chaining extended, 105–121. In International Conference on Research in Computational Molecular

Biology. Springer, Paris, France.

Lee, C., Grasso, C., and Sharlow, M.F. 2002. Multiple sequence alignment using partial order graphs. Bioinformatics

18, 452–464.

Limasset, A., Cazaux, B., Rivals, E., et al. 2016. Read mapping on de Bruijn graphs. BMC Bioinformatics 17, 237.

Limasset, A., Flot, J.-F., and Peterlongo, P. 2019. Toward perfect reads: Short reads correction via mapping on

compacted de Bruijn graphs. bioRxiv. DOI: 10.1101/558395.

Liu, B., Guo, H., Brudno, M., et al. 2016. deBGA: Read alignment with de Bruijn graph-based seed and extension.

Bioinformatics 32, 3224–3232.

Manber, U., and Wu, S. 1992. Approximate string matching with arbitrary costs for text and hypertext, 22–33. In

Advances In Structural And Syntactic Pattern Recognition. World Scientific, Bern, Switzerland.

Medvedev, P., Georgiou, K., Myers, G., et al. 2007. Computability of models for sequence assembly, 289–301. In

International Workshop on Algorithms in Bioinformatics. Springer, Philadelphia, PA, USA.

Myers, E.W. 1986. An O(ND) difference algorithm and its variations. Algorithmica 1, 251–266.

Myers, E.W. 1991. An Overview of Sequence Comparison Algorithms in Molecular Biology. University of Arizona.

Department of Computer Science.

Myers, E.W. 2005. The fragment assembly string graph. Bioinformatics 21(Suppl 2), ii79–ii85.

Myers, E.W., and Miller, W. 1989. Approximate matching of regular expressions. Bull. Math. Biol. 51, 5–37.

Navarro, G. 2000. Improved approximate pattern matching on hypertext. Theor. Comput. Sci. 237, 455–463.

Navarro, G. 2001. A guided tour to approximate string matching. ACM Comput. Surv. (CSUR) 33, 31–88.

Nguyen, N., Hickey, G., Zerbino, D.R., et al. 2015. Building a pan-genome reference for a population. J. Comput. Biol.

22387–22401.

Novak, A.M., Hickey, G., Garrison, E., et al. 2017. Genome graphs. bioRxiv. DOI: 10.1101/101378.

Park, K., and Kim, D.K. 1995. String matching in hypertext, 318–329. In Annual Symposium on Combinatorial Pattern

Matching. Springer, Espoo, Finland.

Paten, B., Novak, A.M., Eizenga, J.M., et al. 2017. Genome graphs and the evolution of genome inference. Genome

Res. 27, 665–676.

Pevzner, P.A., Tang, H., and Waterman, M.S. 2001. An Eulerian path approach to DNA fragment assembly. Proc. Natl.

Acad. Sci. U S A. 98, 9748–9753.

Plesn, J. 1979. The NP-completeness of the hamiltonian cycle problem in planar diagraphs with degree bound two. Inf.

Process. Lett. 8, 199–201.

Rakocevic, G., Semenyuk, V., Lee, W.-P., et al. 2019. Fast and accurate genomic analyses using genome graphs.

Technical Report, Nature Publishing Group. Vol. 51, pgs. 354–362.

Rautiainen, M., and Marschall, T. 2017. Aligning sequences to general graphs in O(V + mE) time. bioRxiv. DOI:

10.1101/216127.

Rowe, W.P., and Winn, M.D. 2018. Indexed variation graphs for efficient and accurate resistome profiling. Bioin-

formatics 34, 3601–3608.

Salmela, L., and Rivals, E. 2014. Lordec: Accurate and efficient long read error correction. Bioinformatics 30:3506–

3514.

Sirén, J., Välimäki, N., and Mäkinen, V. 2014. Indexing graphs for path queries with applications in genome research,

375–388. In IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), vol. 11.

Thachuk, C. 2013. Indexing hypertext. J. Discrete Algorithms 18, 113–122.

Wang, J.R., Holt, J., McMillan, L., et al. 2018. Fmlrc: Hybrid long read error correction using an FM-index. BMC

Bioinformatics 19, 50.

14 JAIN ET AL.

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Wick, R.R., Judd, L.M., Gorrie, C.L., et al. 2017. Unicycler: Resolving bacterial genome assemblies from short and

long sequencing reads. PLoS Comput. Biol. 13, e1005595.

Zhang, H., Jain, C., and Aluru, S. 2019. A comprehensive evaluation of long read error correction methods. bioRxiv.

DOI: 10.1101/519330.

Address correspondence to:

Dr. Srinivas Aluru

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332

E-mail: aluru@cc.gatech.edu

SEQUENCE-TO-GRAPH ALIGNMENT 15

D
ow

nl
oa

de
d

by
 T

ul
an

e
U

ni
ve

rs
ity

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

09
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

