
Computational Biology and Chemistry 36 (2012) 42–54

Contents lists available at SciVerse ScienceDirect

Computational Biology and Chemistry

journa l homepage: www.e lsev ier .com/ locate /compbio lchem

A hyper-heuristic for the Longest Common Subsequence problem

Farzaneh Sadat Tabataba ∗, Sayyed Rasoul Mousavi
Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156, Iran

Article history:
Received 22 November 2011
Accepted 23 December 2011

Keywords:
Hyper-heuristic algorithms
Longest Common Subsequence
Tree search
Heuristic functions
Sequence analysis

The Longest Common Subsequence Problem is the problem of finding a longest string that is a subse-
quence of every member of a given set of strings. It has applications in FPGA circuit minimization, data
compression, and bioinformatics, among others. The problem is NP-hard in its general form, which implies
that no exact polynomial-time algorithm currently exists for the problem. Consequently, inexact algo-
rithms have been proposed to obtain good, but not necessarily optimal, solutions in an affordable time. In
this paper, a hyper-heuristic algorithm incorporated within a constructive beam search is proposed for the
problem. The proposed hyper-heuristic is based on two basic heuristic functions, one of which is new in
this paper, and determines dynamically which one to use for a given problem instance. The proposed algo-
rithm is compared with state-of-the-art algorithms on simulated and real biological sequences. Extensive
experimental reveals that the proposed hyper-heuristic is superior to the state-of-the-art methods with
respect to the solution quality and the running-time.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Longest Common Subsequence (LCS) problem is the prob-
lem of finding a longest string that is a subsequence of every
member of a given set of strings. A subsequence of a given string
is a string that can be obtained by deleting some characters from
the given string. LCS is used in molecular biology to compare DNA
or RNA sequences and to determine homology in macromolecules
(Bafna et al., 1995; Jiang et al., 2002; Sankoff and Kruskal, 1983;
Smith and Waterman, 1981). More similar sequences imply more
similarity in structures and functions of bimolecular sequences.
Also, it has applications, among others, in data compression (Storer,
1988), file comparison (Aho et al., 1983), text editing (Sankoff
and Kruskal, 1983), query optimization in databases (Sellis, 1988),
clustering Web users (Banerjee and Ghosh, 2001), and circuit min-
imization in field programmable gate arrays (FPGAs) (Brisk et al.,
2004).

The LCS can be optimally solved for two input strings, using
dynamic programming in O(m1.m2), where m1 and m2 are the
lengths of the input strings. However, the problem is NP-hard
in general (Garey and Johnson, 1990; Maier, 1978), and any
exact (optimal) algorithm proposed for the problem has to be
of exponential-time worst-case complexity unless P = NP,1 a case

∗ Corresponding author. Tel.: +98 03113915383; fax: +98 03113912451.
E-mail addresses: f.tabataba@ec.iut.ac.ir, farzaneh tabataba@yahoo.com

(F.S. Tabataba), srm@cc.iut.ac.ir (S.R. Mousavi).
1 Note that not every NP-hard problem is solvable in polynomial-time, or solvable

at all, even if P = NP.

unlikely to occur according to many people in the computer sci-
ence community. Existing exact algorithms include those based
on dynamic programming, tree search, and integer programming.
In Hakata and Imai (1992) and Irving and Fraser (1992), dynamic
programming algorithms were proposed to solve the problem in
O(mn), where n is the number of the input strings and m is the
length of the (longest) strings. Various improvements were per-
formed on the dynamic programming method in Eppstein et al.
(1992), Hakata and Imai (1992), Hirschberg (1975) and Irving and
Fraser (1992) to reduce the time complexity to O(mn−1), which is
still exponential in the number of strings. A more recent dynamic
programming algorithm was proposed in Wang et al. (2010a),
which is based on a divide-and-conquer technique to construct
dominant points. An integer programming formulation for the
LCS problem was devised in Singireddy (2003) with a time com-
plexity of O(mn). Hsu and Du (1984) developed a tree search
algorithm, which was further enhanced by Easton and Singireddy
(2007) who adopted a selection heuristic and two new types of
branch and bound pruning. The resulting algorithm, called Spe-
cialized Branching (SB), is exponential in the length of the LCS
(LLCS). The most recent tree-search method proposed for the prob-
lem, to the best of our knowledge, is an A* algorithm presented
in Wang et al. (2010b). Also, some parallel algorithms were pro-
posed to run exact LCS solvers on the multiple processors (Chen
et al., 2006; Korkin et al., 2008; Wang et al., 2009). Due to their
exponential complexities, all these algorithms are impractical for
large input sizes, hence the use of non-optimal solutions are
inevitable.

Extensive research has also been performed to devise non-
optimal algorithms for the LCS problem, which aim at finding ‘good’,

1476-9271/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compbiolchem.2011.12.004

dx.doi.org/10.1016/j.compbiolchem.2011.12.004
http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
mailto:f.tabataba@ec.iut.ac.ir
mailto:farzaneh_tabataba@yahoo.com
mailto:srm@cc.iut.ac.ir
dx.doi.org/10.1016/j.compbiolchem.2011.12.004
Aaron
FPGA circuit minimization, data compression, and bioinformatics, among others

Aaron
inexact algo- rithms have been proposed to obtain good, but not necessarily optimal, solutions in an affordable time

Aaron
incorporated 合併

Aaron
a constructive beam search

Aaron
determines dynamically

Aaron
state-of-the-art algorithms

Aaron
LCS is used in molecular biology to compare DNA or RNA sequences and to determine homology in macromolecules

Aaron
dynamic programming in O(m1 .m2)

Aaron
三種常見的方法：dynamic programming, tree search, and integer programming

Aaron
O(mn), where n is the number of the input strings and m is the length of the (longest) strings

Aaron
dominant points

Aaron
被採用 adopted

Aaron
called Spe- cialized Branching (SB), is exponential in the length of the LCS (LLCS).

Aaron
不切實際 impractical

Aaron
不可避免 inevitable

Aaron
設計出 devise

F.S. Tabataba, S.R. Mousavi / Computational Biology and Chemistry 36 (2012) 42–54 43

but not necessarily optimal, solutions within an affordable time. In
general, non-optimal algorithms may be classified into two broad
categories of approximation and heuristic algorithms. An approxi-
mation algorithm guarantees a bound on the approximation ratio,
the ratio of the best objective value, here the length of the optimal
solution, to the obtained objective value (the ratio is 1 if an opti-
mal algorithm). A heuristic algorithm, on the other hand, does not
provide such a guarantee, though it is usually of a superior per-
formance in practice. The first approximation algorithm proposed
for the LCS was Long Run (LR) with an approximation ratio of |˙|
(Chin and Poon, 1994; Jiang and Li, 1995). LR simply constructs a
string, as its output, using only a single character in ˙. However,
it does not usually give an impressive solution. Another approx-
imation algorithm called Expansion was introduced in Bonizzoni
et al. (2001), which is of the same approximation ratio of |˙|
but without the single-character restriction of LR. The complex-
ity of Expansion was O(nm4 lg m) which was further improved
in Tsai and Hsu (2002) using minimum-spanning-trees. Huang
et al. (2004) proposed two more approximation algorithms called
Best Next for Maximal Available Symbols (BNMAS) and Enhanced
Long Run (ELR). The complexity of these algorithms are, respec-
tively, O(|˙|2nm + |˙|3m) and O(|˙|nm). They proved that their
algorithms were of the same approximation ratio of |˙|and demon-
strated their successful performance in practice. In Shyu and Tsai
(2009), the authors compared BNMAS with Expansion and showed
that BNMAS is both more accurate and faster than Expansion espe-
cially when the size of the alphabet is small and the number of the
strings is large.

The second category of non-optimal solutions consists of heuris-
tic algorithms which do not normally guarantee a bound on
the approximation ratio. The term ‘heuristic’ here is general
and includes meta-heuristics (Blum and Roli, 2003) and hyper-
heuristics (Burke et al., 2003) as well. The Best-Next heuristic was
proposed in Fraser (1995) and Johetla et al. (1996) as a simple
heuristic method with the time complexity O(|˙|nm). This algo-
rithm was shown to be superior to the approximation algorithm LR
on real datasets. Guenoche and Vitte (1995), devised a linear-time
dynamic programming heuristic (DPH) which was further improved
in Guenoche (2004). In Easton and Singireddy (2008), the authors
referred to DPH as G&V and showed that it could obtain bet-
ter results than LR and Expansion. Easton and Singireddy (2008)
introduced their new algorithm called time horizon specialized
branching heuristic (THSB), based on the large-neighborhood search
paradigm, and shown that it outperformed DPH. In Shyu and Tsai
(2009), ant colony optimization (ACO) was used to address LCS. The
resulting algorithm was compared with Expansion and BNMAS on
random and biological datasets obtained from NCBI (NCBI), with
positive results. Recently, Blum et al. (2009) proposed a construc-
tive Beam Search algorithm, called BS, for the LCS problem. In their
algorithm, two different greedy functions were used to evaluate
and compare candidate solutions. BS algorithm is an extension of
a former approach introduced by Blum and Blesa (2007). In order
to compare their BS algorithm with previous leading-edge algo-
rithms in the literature, Blum et al. considered two configurations
for their algorithm; one called low time which is a fast version
of the algorithm aimed at producing quick solutions; the other
called high quality was intended for obtaining high quality solu-
tions but at an extra computation cost. They compared BS with
Expansion, Best-Next, G&V, THSB and ACO algorithms on exten-
sive datasets, previously used in Blum and Blesa (2007), Easton
and Singireddy (2008) and Shyu and Tsai (2009). The results indi-
cated that Blum et al.’s BS algorithm is superior to its predecessors
in terms of both the solution quality and the running-time, prov-
ing as the state-of-the-art. Since proposing BS by Blum et al.,
three more heuristic algorithms have been proposed. The first
one, called IBS-LCS, was inspired from BS though using a different

heuristic function (Mousavi and Tabataba, 2012). The second algo-
rithm, called MLCS-APP, is based on A* but with a limited number
of leaves in the corresponding search tree (Wang et al., 2010b).
The last one, called Deposition&Extention (DEA), which is also the
most recent heuristic algorithm for the problem to the best of our
knowledge, is based on a post-process technique (Ning, 2010). Nei-
ther IBS-LCS nor MLCS-APP, as reported in Mousavi and Tabataba
(2012) and Wang et al. (2010b), could outperform Blum et al.’s BS
over all the benchmarks used in Blum et al. (2009), although they
did so for some of the cases. In particular, IBS-LCS could not out-
perform BS over the so-called BB benchmark, but it did obtained
better average results on the other benchmarks used in Blum et al.
(2009). On the other hand, MLCS-APP was compared with BS on
only the so-called rat benchmark, i.e. on only 1 out of 5 bench-
marks, which is rather limited. Finally, DEA was not compared
with BS at all; it was only shown to be better than three primi-
tive algorithms, namely LR, Expansion, and THSB). In this paper,
a hyper-heuristic algorithm, HH-LCS, is proposed for the problem
which is compared with all the three algorithms BS, IBS-LCS, and
MLCS-APP on all the benchmarks used in Blum et al. (2009) and
Wang et al. (2010b) for fair comparisons. It is also compared with
DEA on two benchmarks used in Ning (2010). The proposed HH-
LCS algorithm outperforms all the other algorithms by providing
the best (average) solution quality in less (average) time, on all the
benchmarks. Hence, it proves as the new state-of-the-art heuristic
algorithm for LCS.

The rest of the paper is organized as follows. Section 2 provides
basic notations and definitions used in the rest of the paper. In
Section 3, we present the proposed hyper-heuristic algorithm. The
basic heuristic functions used in the hyper heuristic algorithm are
described in Section 4. Section 5 reports the experimental results,
and Section 6 concludes the paper.

2. Basic notations and definitions

We mainly follow the notations used in Mousavi and Tabataba
(2012). Let s be a string of length m. We use s[k], where k is an
integer between 1 and m inclusive, to indicate the kth charac-
ter of s. We also use s[1. . .k] to indicate the string of the first k
characters of s. We denote the length of s by |s|. Let s1 and s2 be
two strings of the lengths m1 and m2, respectively. Also let A1 = {i|
1 ≤ i ≤ m1} and A2 = {j| 1 ≤ j ≤ m2}. We say that s1 is a subsequence of
s2, write s1 ≺ s2, if there is an injective function g from A1 to A2 such
that: (1) ∀k ∈ A1, s1[k] = s2[g(k)] and (2) ∀k,k′∈A1, k < k’ ⇒ g(k) < g(k′).
Note that the function g is not necessarily unique. The null string,
i.e. the string of zero length, is trivially a subsequence of any
string.

Let x be a string and S be a nonempty set of strings. We write x ≺ S
if ∀si ∈ S, x ≺ si. Then, the LCS is defined, given the set S, as the prob-
lem of finding a longest string x such that x ≺ S. Each string in S is
called an input string. The set of the characters used in input strings
is called the alphabet and is denoted by ˙; we assume |˙| > 1. An
alphabet character is an element in ˙. The number of input strings is
denoted by n; that is, n = |S|. Because LCS can be efficiently solved for
n = 2, we assume n > 2. We further assume that S = {s1, . . ., sn}; that
is, the input strings are denoted by the small letter s indexed from
1 to n. We use mi to indicate |si| and assume mi > 0, i = 1, . . ., n. We
also use m to denote max{mi, i = 1, . . ., n} and (possibly indexed) x
to denote a candidate solution. A candidate solution x is called fea-
sible if x ≺ S; it is called infeasible otherwise. A feasible candidate
solution x is optimal if no other feasible solution of a greater length
exists.

For a feasible candidate solution x, we use pi(x) to indicate
the smallest integer k such that x ≺ si[1. . .k]. Then, qi(x) is defined
as mi − pi(x). Also, ri(x) indicates the string obtained by deleting

Aaron
An approxi- mation algorithm guarantees a bound on the approximation ratio, the ratio of the best objective value

Aaron
目標 objective

Aaron
Long Run (LR)

Aaron
Expansion

Aaron
using only a single character in ̇.

Aaron
without the single-character restriction of LR

Aaron
Best Next for Maximal Available Symbols (BNMAS)

Aaron
Enhanced Long Run (ELR)

Aaron
when the size of the alphabet is small and the number of the strings is large

Aaron
超啟發演
算
法

Aaron
近
似
演
算
法

Aaron
do not normally guarantee a bound on the approximation ratio.

Aaron
Best-Next heuristic

Aaron
dynamic programming heuristic (DPH)

Aaron
time horizon specialized branching heuristic (THSB)

Aaron
勝過 outperformed

Aaron
ant colony optimization (ACO)

Aaron
Beam Search algorithm, called BS

Aaron
previous leading-edge algo- rithms

Aaron
low time

Aaron
high quality

Aaron
G&V

Aaron
IBS-LCS

Aaron
MLCS-APP

Aaron
Deposition&Extention (DEA)

Aaron
post-process technique

Aaron
a hyper-heuristic algorithm, HH-LCS

Aaron
s be a string of length m

Aaron
s1 isasubsequenceof s2 , write s1 ≺ s2

Aaron
不重要、瑣碎的 trivially

Aaron
The set of the characters used in input strings is called the alphabet and is denoted by ̇; we assume | ̇| > 1

Aaron
A candidate solution x is called fea- sible if x ≺ S; it is called infeasible otherwise. A feasible candidate solution x is optimal if no other feasible solution of a greater length exists.

Aaron
可行的 feasible

Aaron
pi(x) to indicate the smallest integer k

Aaron
qi (x) is defined as mi − pi (x).

Aaron
S, as the prob- lem

Aaron
mi to indicate |si|

Aaron
ri (x) indicates the string obtained by deleting

44 F.S. Tabataba, S.R. Mousavi / Computational Biology and Chemistry 36 (2012) 42–54

s1 = d c a h b c f e c s2 = c a d a a f h c s3 = b d a c h b f c

r1(x) r2(x) r3(x)

x = d a

p1(x)= 3
q1(x) = 6

p2(x)= 4
q2(x) = 4

p3(x)= 3
q3(x) = 5

Fig. 1. An instance of the LCS problem with S = {s1, s2, s3}. A candidate solution is
x = da, for which pi(x), qi(x), and ri(x), i = 1, 2, 3, are illustrated.

the first pi(x) characters from si (see Fig. 1), and R(x) is defined
as the set {ri(x), i = 1, . . ., n}. A candidate solution xk is domi-
nated by another candidate solution xj if p(xj) ≤ p(xk), ∀i = 1, . . ., n.
By a random string, we mean a string each character of which
is a random alphabet character (obtained based on the uni-
form distribution). Finally, Pr(.) indicates the statistical probability
function.

3. The proposed algorithm

The beam search algorithm is a deterministic heuristic tree
search procedure, in its standard form. As a (constructive) beam
search, the algorithm starts with an initially singleton (the null
string) set B of candidate solutions and in each generation, builds
new longer (feasible) candidate solutions by adding alphabet
characters at their end. However, the number of feasible candi-
date solutions is restricted to the beam size ˇ. Fig. 2 shows the
tree structure of constructive beam search algorithm with ˇ = 2
and |˙| = 4 used for constructing common subsequences of two
strings.

Beam search is similar to the best-first search algorithm
in the sense that it uses a heuristic function to evaluate the
leaves but saves only ˇ best of them. It becomes a pure con-
structive greedy heuristic when ˇ is set to 1; it also turns
to the breath-first search if ˇ is large enough to keep all the
leaves. Therefore, the beam size ˇ is used to control a bal-
ance between the greediness and the exhaustiveness of the
search procedure. In order to determine the ˇ best candi-
date solutions, a heuristic function denoted h(x) is used to
evaluate each candidate solution x. Algorithm 1, adopted from
Mousavi and Tabataba (2012), presents a high level pseudo
code for our basic beam search algorithm BS-LCS for the LCS
problem.

Fig. 2. Tree structure of constructive beam search algorithm with ˇ = 2 and |˙| = 4
used for constructing common sequence between two strings.

Algorithm 1. The basic beam search algorithm BS-LCS for LCS.
//input: S = {s1,s2, . . ., sn}, n > 2, each si a string of at least one character
the alphabet of characters used in any of the strings is dente by ˙
//output: a string x such that x ≺ S
//parameter: the beam size ˇ
//parameter: the beam size !

//initialization
B = {“”} //the set of candidate solutions initially contains the null string only
finished = false
while Not finished
{

//step 1: extension
C = {}
for each xi ∈ B

for each letter l ∈ ˙
x = the string obtained by adding l at the end of xi

if feasible(x)
C = C ∪ {x}

//step 2: calculation of heuristic values
for each xi ∈ C

calculate heuristic value h(xi)//h(.) is the heuristic function

//step 3: dominance pruning
! Best List = a list of the ! best solutions in C, with respect to their

heuristic values
for each xi ∈ C

if xi is dominated by some member of ! Best List
C = C − {xi}

//step 4: selection
if C = {}

finished = true
else

B = a set of ˇ members of C which have the highest heuristic
values//B = C if |C| < ˇ
}
return an x ∈ B

There are four main steps in the while loop. In Step 1, each
candidate solution xi in B is extended by appending an alphabet
character to its end. For each xi in B, |˙| new candidate solutions are
generated, one per each letter in ˙. However, feasible solutions are
determined by feasible(.) function and kept in the set C. There-
fore, the set C contains at most ˇ|˙| (feasible) candidate solutions.
In Step 2, candidate solutions in C are evaluated by using the heuris-
tic function h(x), and the ! best of them are designated and kept in
a list called ! Best List to be used for possible dominance pruning.
That is, in Step 3, each member of C is checked against the desig-
nated best solutions in ! Best List to decide whether it is dominated
by any of them, in which case it is discarded from C. Finally, in Step
4, the (remaining) candidate solutions in C are compared and the
best ˇ of them are selected to construct the new set B of candidate
solutions. The Steps 1–4 are repeated within the while loop until
C becomes empty, in which case the algorithm returns a member
of B and terminates. The proposed algorithm runs in polynomial
time in the size of its inputs (n, m, and |

∑
|) and its parameters

(ˇ and !).
Our proposed hyper heuristic algorithm HH-LCS is built at the

top of the basic beam search algorithm BS-LCS described above.
Informally speaking, it acts as an outer layer to BS-LCS to deter-
mine dynamically which heuristic function to use within BS-LCS.
More specifically, there are two candidate heuristic functions for
h(.), one the heuristic function is a new heuristic function pro-
posed further in this paper and the other developed in Mousavi
and Tabataba (2012). We refer to these two heuristic functions in
the rest of the paper as h-power(.) and h-prob(.), respectively. The
HH-LCS algorithm is then determines which of h-power(.) and h-
prob(.) to use as for h(.) within BS-LCS. However, to this end, it
still uses BS-LCS algorithm; it invokes BS-LCS, twice once with h-
power(.) as h(.) and once with h-prob as h(.). These two runs
of BS-LCS are performed using a small beam size ˇh, in the favor
of low computation overhead. Based on the outcome of these two

Aaron
the first pi(x) characters from si

Aaron
R(x) is defined as the set {r(x), i=1,...,n}

Aaron
提出的 proposed

Aaron
決定論的超啟發搜索樹 a deterministic heuristic tree search procedure

Aaron
singleton (the null string) set B

Aaron
結構上的 constructive

Aaron
beam size ˇ

Aaron
best-first search algorithm

Aaron
saves only ˇ best of them

Aaron
the beam size ˇ is used to control a bal- ance between the greediness and the exhaustiveness of the search procedure

Aaron
BS-LCS

Aaron
step 1: extension

Aaron
step 2: calculation of heuristic values

Aaron
step 3: dominance pruning

Aaron
step 4: selection

Aaron
candidate

Aaron
B is extended

Aaron
ˇ| ̇|

Aaron
標出 designated

Aaron
best of them

Aaron
decidewhetheritisdominated by any of them

Aaron
best ˇ

Aaron
hyper heuristic algorithm HH-LCS

Aaron
分正式的 Informally

Aaron
h-power(.) and h-prob(.)

Aaron
a small beam size ˇh

Aaron
two candidate heuristic functions

F.S. Tabataba, S.R. Mousavi / Computational Biology and Chemistry 36 (2012) 42–54 45

runs of BS-LCS, either h-power(.) or h-prob(.) will be selected as the
final heuristic function h(.) used in the final run of the BS-LCS
algorithm, as illustrated in Algorithm 2.

Algorithm 2. The hyper-heuristic HH-LCS algorithm for LCS.
//input: S = {s1, s2, . . ., sn}, n > 2, each si a string of at least one character
the alphabet of characters used in any of the strings is dente by ˙
//output: a string x such that x ≺ S
//parameters: 1 – the beam size ˇh//the beam size for the trial phase, 2 –

the beam size ˇ/3- the beam size !
len1 = BS-LCS run with ˇh and h(.) = h-power(.)
len2 = BS-LCS run with ˇh and h(.) = h-prob(.)
if(len1 > len2)

return BS-LCS run with ˇ and h(.) = h-power(.)
else

return BS-LCS run with ˇ and h(.) = h-prob(.)

The basic heuristic functions h-power(.) and h-prob(.) will be
described in the subsequent section.

4. The basic heuristic functions

In this section, the basic heuristic functions h-power(.) and
h-prob(.) adopted in the hyper-heuristic algorithm HH-LCS are
described. The former is a new heuristic, whereas the latter was pre-
viously developed in Mousavi and Tabataba (2012). The motivation
for using a hyper-heuristic mechanism to dynamically select them
was the observation that, while both of these functions could yield
superior results, e.g. to those of Blum et al. (2009), neither could
outperform the other in all of the experimental cases. By dynami-
cally choosing which one to use, the average quality was observed
as to be better than those of their individual uses, as extensively
reported further in this paper. The next two sections describe these
two basic functions.

4.1. The basic heuristic function h-power(.)

In this section, the new heuristic function h-power(.) is
described. First we define qmin(x) = min{qi(x), i = 1, . . ., n}, for a can-
didate solution x. Then, the heuristic function h-power(.) is defined
as

h-power(x) =
(∏n

i=1
qi(x)

)"
× (qmin(x)) (1)

where 0 < " ≤ 1. This heuristic function is a more generalized form
of the heuristic #1 used in Blum et al. (2009). To be precise,
#1 = qmin(x); that is, #1 is a special case of h-power(x) where " = 0.
The motivation behind this generalization is that all the values
qi(x), i = 1, . . ., n, should be considered and not only qmin(x). For
example, consider the strings s1, s2, s3, and the candidate solu-
tion x1 and x2 shown in Fig. 3. As can be seen in Fig. 3, qmin(x1) = 5
whereas qmin(x2) = 4. Using the heuristic #1 = qmin(x) (which ignores
the other values qi(x1) and qi(x2), i = 1, 3), x1 evaluated as to be supe-
rior to x2. However, as can be seen in Fig. 3, x2 could lead to a much
better solution (abde) that the one obtained from x1 (de).

Our proposed heuristic function h-power(.) is based on all the
values qi, i = 1, . . ., n. However, to emphasize the relative impor-
tance of qmin(x), the control parameter ", 0 < " ≤ 1, is used. A smaller
value of " corresponds to higher importance of qmin. In fact, with
the constant ", as the number of input strings is increased, the value
of

(∏n
i=1qi(x)

)"
becomes very larger than qmin(x) and the value of

qmin(x) would have small or no effect on the value of h-power(x)
consequently. Therefore, we suggest the following strictly decreas-
ing, convex curve for " as a function of the number of input strings
in Fig. 4. This curve tends to zero for large number of input strings.

Moreover, as the similarity of the input strings is increased (it
means that the strings of the dataset are statistically dependent),
more common characters will be found in the suffix of the strings.

s1 = a b c d f m e h l

s3 = s a b d l t d m e

q1(x1)=5

x1 = d

s2 = t s t d a b c d e

q2(x1)=qmin=5

q3(x1)=5

s1 = a b c d f m e h l

s3 = s a b d l t d m e

q1(x2)=8

x2 = a

s2 = t s t d a b c d e

q2(x2)=qmin=4

q3(x2)=7

a b

Fig. 3. An instance of the LCS problem with S = {s1, s2, s3}and the effect of considering
all the values qi(x), i = 1, 2, 3, in evaluating candidate solutions. Candidate solution
x1 selected as better solution rather than x2 by #1 = qmin(x), whereas x2 is could yield
in better results.

In other words, the probability of finding the characters of the min-
imum suffix (rmin) in the other suffixes (ri(x)) increases. Therefore,
qmin(x) should be more effective in determining the value of the
heuristic. For this reason, a smaller value of " should be used to
achieve better result. Therefore, the slope of decreasing curve for
", can also be determined by the similarity of the given strings as
further described in Section 5.

4.2. The basic heuristic function h-prob(.)

In this section, the heuristic function h-prob(.), which was previ-
ously used (Mousavi and Tabataba, 2012), is described. In order to
evaluate and compare candidate solutions, the heuristic function
h-prob(.) is defined as follow:

h-prob(x) = Pr(s ≺ R(x)) (2)

where x is a candidate solution, and Pr(s ≺ R(x)) indicates the prob-
ability of s ≺ R(x), where s is a random string of length k. We call this
heuristic h-prob(.) (for a probabilistic heuristic). Note that h-prob(x)
is dependent not only on x but also on k. Eq. (5) at the end of this
section, is presented to determine a value for k. It is assumed that
the strings in S are ‘independent’. It means that for a given random
string s, Pr(s ≺ si) = Pr(s ≺ si|s ≺ sj), for all distinct strings si and sj in
S. Under this assumption, Pr(s ≺ R(x)) is calculated as follows:

Pr(s ≺ R(x)) =
n∏

i=1

Pr(s ≺ ri) (3)

ρ

n

1 Statistically Independent datasets

Statistically dependent datasets

Fig. 4. A strictly decreasing curve for " as a function of the number of input strings.
The control parameter " is used to emphasize the relative importance of qmin(x) in
heuristic function H-power.

Aaron
HH-LCS

Aaron
better than those of their individual uses

Aaron
dynamically select

Aaron
1 = qmin (x)

Aaron
= 0

Aaron
d

Aaron
d

Aaron
d

Aaron
a

Aaron
a

Aaron
a

Aaron
qmin=5

Aaron
qmin=4

Aaron
qi(x), i=1,...,n, should be considered and not only qmin(x)

Aaron
不能只考慮min q值，個別q值也要考慮

Aaron
x2 could lead to a much better solution (abde) that the one obtained from x1 (de)

Aaron
A smaller value of corresponds to higher importance of qmin

Aaron
the number of input strings

Aaron
strictly decreas- ing, convex curve

Aaron
Astrictlydecreasingcurveforasafunctionofthenumberofinputstrings

Aaron
字尾 suffix

Aaron
more common characters will be found in the suffix of the strings.

Aaron
相似 similarity

Aaron
as the similarity of the input strings is increased

Aaron
不能只考慮min q值，個別q值也要考慮

Aaron
為什麼要看最小字尾數？因為這是最大共有的字元數，所以理論上最小字尾數越大越好

Aaron
the probability of finding the characters of the min- imum suffix (rmin) in the other suffixes (ri(x)) increases. Therefore, qmin(x) should be more effective in determining the value of the heuristic.

Aaron
x is a candidate solution

Aaron
a random string of length k

Aaron
dependent not only on x but also on k

46 F.S. Tabataba, S.R. Mousavi / Computational Biology and Chemistry 36 (2012) 42–54

If r is a string of length q and s is a random string of length
k, q ≥ 0, k ≥ 0, then the fallowing equation is used to determine
Pr(s ≺ r) (Mousavi and Tabataba, 2012):

Pr(s ≺ r) =

1 if k = 0
0 if k > q

1
|˙|

Pr(s′ ≺ r′) + |˙| − 1
|˙|

Pr(s′ ≺ r′) otherwise
(4)

where s′ and r′ are the strings obtained by deleting the first char-
acters from s and r, respectively, when |s| > 0 and |r| > 0.

The probability Pr(s ≺ ri) is only dependent on |s| and |ri|, given
an alphabet ˙, because s is assumed to be random. Therefore, we
can simply substitute Pr(s ≺ ri) by P(k,q), where k = |s| and q = |ri|.
That is,

Pr(s ≺ r)=

1 if k = 0
0 if k > q

1
|˙|

P(k − 1, q − 1) + |˙| − 1
|˙|

P(k, q − 1) otherwise
(5)

The values P(k,q), 0 ≤ k ≤ m and 0 ≤ q ≤ m, are determined using
dynamic programming for more efficiency. In order to determine k
for the length of random string s, the following formula was used
in Mousavi and Tabataba (2012):

k = min{qi(x), i = 1, ..., n, x ∈ C}
|˙|

(6)

where C is the set of candidate solutions to be compared; k is set
to 1 if the above formula gives 0. Note that using this formula, k
is conversely proportional to |˙|. This is reasonable, because the
probability for finding a longer common sequence of R(x) decreases
as |˙| is increased.

In the next section we show the result of running HH-LCS on dif-
ferent benchmarks and compared it with most recent algorithms.

5. Experimental results

In this section, we compare the proposed algorithm HH-LCS
with (to our best knowledge) three heuristic algorithms proposed
for the LCS problem, namely BS (Blum et al., 2009), MLCS-APP
(Wang et al., 2010b), and DEA (Ning, 2010). In addition, we include
the results obtained by our basic BS-LCS algorithm once with h-
power(.) and once with h-prob(.) as the adopted heuristic function.
We implemented our algorithms in Java using the eclipse Platform.
To compare HH-LCS with BS and MLCS-APP, we use all the bench-
marks used in the corresponding papers (Blum et al., 2009; Wang
et al., 2010b), respectively. We also compared HH-LCS with DEA
over two benchmarks used in Ning (2010) (real dataset and sim-
ulated dataset obtained from the author’s web site2). Moreover,
we compare the results of HH-LCS with the results of the other
algorithms as reported in their respective papers.

To provide meaningful comparisons of run time, we used a rel-
atively old Pentium (R) IV desktop machine with 3.40 GHz clock
speed, 1 GB of RAM, and 2 MB of L2 cache in order to compare HH-
LCS with BS and MLCS-APP. The machine we used should even be
slower that of Blum et al. (2009), based on the CPU performance
tests benchmarks in cpu-benchmark; our machine’s benchmark is
ranked 541, whereas the benchmark’s rank for the machine used
in Blum et al. (2009) is 805 (it is said in Wang et al. (2010b) that a
machine with the same specification as the one used (Blum et al.,
2009) was used to run MLCS-APP for fair comparison). Because no
precise run-time of DEA was reported in Ning (2010), we did not
perform a run-time comparison with DEA and used a more recent

2 Downloaded from http://wwwpersonal.umich.edu/kning/Data/ on October
2010.

(laptop) machine with Intel(R) Core(TM)2 Due p8600CPU and 4 GB
of RAM.

We first describe how we determined the parameter value " for
power heuristic. As shown in Fig. 4, we used a curve for ". More
specifically, we used "(n) = a × exp(− b × n) + c, where a, b, and c
are constants to be determine experimentally. In order to deter-
mine these coefficients, at least three points of the curve must be
given. We obtained experimentally three points and calculated the
coefficients. However, we used three datasets used in Blum et al.
(2009) for these constants, two for the cases where the indepen-
dence condition holds and one for the cases where is does not. To
determine the required three points, we used the ACO-rat and ACO-
virus datasets for the former case and the BB datasets for the latter;
these datasets were previously used in Blum et al. (2009) and Shyu
and Tsai (2009), and they are also used in the subsequent section
to compare the proposed algorithm with BS. The resulting values
are, respectively (a = 1.82, b = 0.066, c = 0.07) and (a = 3.0, b = 0.24,
c = 0). Except for the BB benchmark, where the sequences are highly
related, we used the first set of values in all the experiments.

5.1. Comparison with BS

We used all the five benchmarks used in Blum et al. (2009),
namely BB, ES,3 ACO-random, ACO-rat, and ACO-virus.4 The BB and
ES benchmarks were originally used in Blum and Blesa (2007) and
Easton and Singireddy (2008), respectively, and the other three
datasets were previously used in Shyu and Tsai (2009). We set
ˇ = 200, ˇh = 10 and ! = 7. The results of comparing HH-LCS with
BS on these benchmarks are shown, respectively, in Tables 1–5.
The first three columns in these tables show, respectively, the size
of the alphabet, the number of input strings, and the length of the
strings. The next four columns report the results for BS, the first
two of which correspond to the low-time and the other two cor-
respond to the high-quality runs, as reported in Blum et al. (2009).
In the low-time run, as the name stands, low run time is of the
main concern, whereas high quality of the solutions is the main
goal in the high-quality run. For simplicity, we call these two types
of runs as BS-low-time and BS-high-quality, respectively. For each
run, both the (average) length of the returned LCS and the (aver-
age) running-time (in seconds) are shown. The next three pairs of
columns report the respective results for HH-LCS with, respectively,
the power heuristic (H-power), the probabilistic heuristic (H-prob),
and the hyper heuristic (HH-LCS). The best results are shown in
boldface.

Table 1 reports the results obtained by running the algorithms
on the BB benchmark. As shown in this table, in all the 8 cases, the
best results are obtained by one or more of our heuristics. In one
case only, the seventh case, BS-high-quality also obtains the same
best solution. The numbers of cases where H-power, H-prob, and
HH-LCS give the best quality are, respectively, 7, 3, and 7. Hence,
in most of the time, the best results are due to HH-LCS. For each
setting (

∑
, n, and m), 10 sets of sequences were generated and

the result for each row is the average of the common sequences’
length over all 10 instances. Therefore, the hyper heuristic may use
both probabilistic and power heuristics for each row. As a result,
the hyper heuristic algorithm could obtain better solutions than
both of the individual heuristics.

There are some statistics underneath the table which report
the improvements obtained by these three heuristics over

3 Downloaded from http://www2.imse.ksu.edu/∼teaston/teaston/publications.
php on 23 September 2009. We noticed inconsistencies with some of the instances
which we ignored.

4 Received from Dr. C. Blum; also available on NCBI using the accession numbers
specified at http://www.csie.mcu.edu.tw/∼sjshyu/resource/accno-aco lcs.html.

http://wwwpersonal.umich.edu/kning/Data/
http://www2.imse.ksu.edu/~teaston/teaston/publications.php
http://www2.imse.ksu.edu/~teaston/teaston/publications.php
http://www.csie.mcu.edu.tw/~sjshyu/resource/accno-aco_lcs.html
Aaron
r is a string of length q

Aaron
s is a random string of length

Aaron
where s′ and r′ are the strings obtained by deleting the first char- acters from s and r, respectively

Aaron
P(k,q), where k = |s| and q = |ri |

Aaron
dynamic programming

Aaron
candidate solutions

Aaron
a longer common sequence of R(x) decreases as | ̇| is increased.

Aaron
Java using the eclipse

Aaron
benchmark

Aaron
(n)=a×exp(−b×n)+c, where a, b, and c are constants to be determine experimentally.

Aaron
a = 1.82, b = 0.066, c = 0.07

Aaron
ˇ = 200, ˇh = 10 and = 7

Aaron
the size of the alphabet, the number of input strings, and the length of the strings.

Aaron
粗體字 boldface

Aaron
in most of the time, the best results are due to HH-LCS

F.S. Tabataba, S.R. Mousavi / Computational Biology and Chemistry 36 (2012) 42–54 47

Table 1
Comparison of power, probabilistic and hyper heuristics with Blum et al.’s beam search over BB dataset.

n m BS-low-time BS-high-quality H-power H-Prob Hyper heuristic
(HH-LCS)

LCS Time LCS Time LCS Time LCS Time LCS Time

|˙| = 2
10 1000 613.2 0.6 648 13.6 669.2 0.9 672.1 1.1 672 1.0

100 1000 531.6 6.3 541 72.5 555 2.2 554.2 2.4 555.9 2.5

|˙| = 4
10 1000 477.3 0.9 534.7 18.1 542 1.3 543.7 1.5 543.2 1.4

100 1000 350.7 9.3 369.3 121.6 381.2 2.8 361.7 2.8 381.2 3.0

|˙| = 8
10 1000 420 0.7 462.3 21.2 462.4 2.0 461.9 2.2 462.4 2.1

100 1000 241.5 10.6 258.7 154.7 267.4 3.6 240.9 3.5 267.4 3.8

|˙| = 24
10 1000 382.6 1.3 385.6 37.4 385.6 3.9 385.6 4.4 385.6 4.4

100 1000 140.3 13.5 147.7 268.3 148.6 5.0 130.5 4.9 148.6 5.3

Quality improvement with respect to BS-high-quality 1.81 −1.60 1.91
Speed up with respect to BS-high-quality 94.62 93.99 94.09
Quality improvement with respect to BS-low-time 7.91 4.30 8.02
Speed up with respect to BS-low-time −26.37 −42.38 −39.03

Table 2
Comparison the Length of Common Sequence over ES dataset produced by power, probabilistic and hyper heuristics with Blum et al.’s beam search.

n m BS-low-time BS-high-quality H-power H-Prob Hyper heuristic
(HH-LCS)

LCS Time LCS Time LCS Time LCS Time LCS Time

|˙| = 2
10 1000 579.9 0.7 592.6 14.8 611.6 0.8 610.2 0.9 611.2 1.0
50 1000 516.3 3.7 521.9 43.5 533.4 1.4 535.0 1.5 534.9 1.7

100 1000 502.1 7.4 506 78.6 515.1 2.2 517.3 2.5 517.3 2.6

|˙| = 10
10 1000 185.5 0.5 192.2 9.4 200.8 0.9 199.7 0.9 200.6 1.0
50 1000 127.9 1.5 129.6 18.8 134.6 1.3 134.6 1.4 134.6 1.5

100 1000 116.5 2.7 117.9 30.6 121.5 2.1 122.0 2.3 121.9 2.5

|˙| = 25
10 2500 214.3 2.7 224.3 51.5 233.0 2.8 231.6 3.1 232.4 3.5
50 2500 131.3 5.5 133 76.6 137.4 4.3 137.2 4.6 137.3 4.9

100 2500 116.3 9.1 118.1 118.6 120.9 7.0 121.1 7.7 121.0 7.9

|˙| = 100
10 5000 132.5 19.1 139.6 394.6 143.6 8.6 142.1 9.0 143.5 8.6
50 5000 67.9 27.8 69.5 490.2 70.9 13.0 70.4 13.6 70.8 13.6

100 5000 57.6 42.2 59 602 59.6 21.2 59.6 69.9 59.6 22.5

Quality improvement with respect to BS-high-quality 2.82 2.66 2.88
Speed up with respect to BS-high-quality 94.99 93.90 94.24
Quality improvement with respect to BS-low-time 5.22 5.04 5.27
Speed up with respect to BS-low-time 22.83 6.50 11.17

Table 3
Comparison the Length of Common Sequence over ACO-Random dataset produced by power, probabilistic and hyper heuristics with Blum et al.’s beam search.

n m BS low-time BS high quality H-power H-Prob Hyper heuristic
(HH-LCS)

LCS Time LCS Time LCS Time LCS Time LCS Time

|$| = 4

10 600 200 0.3 211 9.8 221 0.4 218 0.4 221 0.5
15 600 190 0.5 194 13.2 202 0.4 203 0.5 202 0.4
20 600 178 0.7 184 14.9 191 0.5 191 0.5 191 0.5
25 600 174 0.9 179 15.8 186 0.5 185 0.5 185 0.5
40 600 162 1.4 167 21 174 0.6 172 0.7 172 0.7
60 600 157 2.1 161 27.6 165 0.8 165 0.8 165 0.9
80 600 151 2.7 156 33.5 162 0.9 161 1.0 161 1.0

100 600 150 3.5 154 40.3 157 1.0 158 1.2 158 1.2
150 600 146 5 148 56.4 151 1.5 151 1.5 151 1.7
200 600 144 6.9 146 74.3 150 1.9 150 2.1 150 2.0

|˙| = 20

10 600 58 0.7 61 33.3 62 0.5 61 0.5 61 0.5
15 600 49 0.9 51 37.6 52 0.4 51 0.4 52 0.5
20 600 43 1.1 47 39.5 47 0.5 47 0.5 47 0.5
25 600 41 1.3 43 39.5 44 0.5 44 0.5 44 0.5
40 600 37 1.7 37 43.2 38 0.6 38 0.6 38 0.6
60 600 34 2.6 34 46.5 35 0.7 35 0.8 35 0.8
80 600 32 3.2 32 53.2 33 0.9 32 1.0 33 0.9

100 600 30 3.9 31 59.2 31 1.0 31 1.2 31 1.2
150 600 28 5.7 29 75.6 29 1.3 29 1.5 29 1.4
200 600 27 7.9 27 98 27 1.7 28 1.9 27 1.8

Quality improvement with respect to BS-high-quality 2.43 2.14 2.26
Speed up with respect to BS-high-quality 97.80 97.60 97.60
Quality improvement with respect to BS-low-time 5.42 5.12 5.24
Speed up with respect to BS-low-time 55.51 51.89 51.82

48 F.S. Tabataba, S.R. Mousavi / Computational Biology and Chemistry 36 (2012) 42–54

Table 4
Comparison the Length of Common Sequence over ACO-rat dataset produced by power and hyper and probabilistic heuristics with Blum et al.’s beam search.

n m BS-low-time BS-high-quality H-power H-Prob Hyper heuristic
(HH-LCS)

LCS Time LCS Time LCS Time LCS Time LCS Time

|˙| = 4

10 600 189 0.3 191 9.7 200 0.3 199 0.4 200 0.4
15 600 163 0.4 173 12.3 183 0.4 182 0.4 183 0.4
20 600 160 0.6 163 12.6 171 0.4 168 0.4 168 0.4
25 600 160 0.8 162 15.8 168 0.5 166 0.4 168 0.5
40 600 142 1.2 146 9.4 153 0.5 146 0.5 153 0.5
60 600 143 1.9 144 26.7 149 0.7 147 0.7 149 0.7
80 600 131 2.3 135 31.8 141 0.8 141 0.9 141 0.9

100 600 129 3 132 38.5 134 1.0 132 1.0 134 1.0
150 600 120 4.2 121 51.1 125 1.3 124 1.3 124 1.4
200 600 117 5.6 121 69.1 122 1.6 120 1.6 120 1.7

|˙| = 20

10 600 65 0.7 69 27.4 70 0.5 70 0.5 70 0.7
15 600 57 1.1 60 36.7 62 0.5 61 0.5 62 0.5
20 600 50 1.2 51 34.4 54 0.4 53 0.5 53 0.5
25 600 49 1.4 51 39 51 0.4 50 0.5 51 0.5
40 600 46 2 49 47 49 0.6 49 0.6 49 0.6
60 600 44 3.2 46 60.3 47 0.8 46 0.8 47 0.8
80 600 42 4 43 64.4 43 0.9 43 1.0 43 1.1

100 600 37 4.5 38 64.8 39 1.0 39 1.1 39 1.0
150 600 35 6.7 36 77.8 37 1.2 36 1.3 37 1.3
200 600 31 8.3 33 101 34 1.6 32 1.7 34 1.7

Quality improvement with respect to BS-high-quality 2.94 1.39 2.62
Speed up with respect to BS-high-quality 97.77 97.69 97.58
Quality improvement with respect to BS-low-time 6.35 4.74 6.03
Speed up with respect to BS-low-time 57.49 55.29 52.79

BS-high-quality and BS-low-time. For example, it can be seen that
the average quality improvements obtained by the power, proba-
bility and hyper heuristics over BS-high-quality are, respectively,
1.81, −1.60, and 1.91. As can be seen, the hyper heuristic has the
best average quality.

As can be observed in Tables 2–5, our algorithms perform even
better on the other benchmarks, compared to BS. Table 2 shows
that in all the cases, the best results are obtained by HH-LCS. In
8 out of the 12 cases, our algorithms perform in even less time
than those of BS-low-time. In all the remaining four cases, they

consume less time than those of the BS-high-quality. On average,
quality improvements of HH-LCS with power, probabilistic and
hyper heuristics over BS-high-quality are 2.82%, 2.66% and 2.88%,
respectively. These improvements over BS-low-time are 5.22%,
5.04% and 5.27%. The statistics shows that our algorithms con-
sume less time rather than BS-low-time on average. Again hyper
heuristic obtains the best average quality over this dataset.

We compared our algorithms with BS over ACO-random, ACO-
rat, and ACO-virus datasets and reported the results in Tables 3–5,
respectively. As can be seen in Table 3, all proposed heuristics could

Table 5
Comparison the Length of Common Sequence over ACO-virus dataset produced by power and hyper and probabilistic heuristics with Blum et al.’s beam search.

n m BS-low-time BS-high-quality H-power H-Prob Hyper heuristic
(HH-LCS)

LCS Time LCS Time LCS Time LCS Time LCS Time

|˙| = 2

10 600 203 0.4 212 11.6 224 0.4 225 0.5 225 0.5
15 600 192 0.5 193 15.4 202 0.4 203 0.5 202 0.4
20 600 179 0.7 181 17.2 191 0.5 189 0.5 189 0.5
25 600 178 0.9 185 17.9 191 0.5 193 0.5 193 0.6
40 600 158 1.3 162 21.9 165 0.6 168 0.6 165 0.6
60 600 153 2 158 29.1 164 0.8 165 0.8 164 0.8
80 600 148 2.6 153 36 156 0.8 158 0.9 158 1.0

100 600 149 3.4 150 43.9 152 1.1 158 1.2 158 1.2
150 600 143 5 148 64.5 150 1.5 156 1.7 156 1.7
200 600 143 6.8 145 84.5 144 1.8 154 2.1 154 2.1

|˙| = 20

10 600 67 0.7 75 27.2 75 0.5 75 0.5 75 0.6
15 600 58 1 63 38.6 63 0.5 63 0.5 63 0.5
20 600 55 1.2 57 40.3 60 0.5 60 0.5 60 0.5
25 600 50 1.4 53 38.9 55 0.6 54 0.5 55 0.5
40 600 47 2.1 49 48.4 49 0.7 49 0.7 49 0.7
60 600 44 3.1 45 56.1 47 0.8 47 1.0 47 1.0
80 600 43 4 44 67.4 46 1.0 45 1.1 46 1.2

100 600 41 5 43 74.2 44 1.1 44 1.5 44 1.3
150 600 43 7.8 44 108 45 1.8 45 1.8 45 1.9
200 600 43 11 43 140 43 2.0 44 2.2 43 2.1

Quality improvement(relative to Blum-h-q) 2.57 3.46 3.40
Speed up(relative to Blum-h-q) 97.94 97.76 97.75
Quality improvement(relative to Blum-l-t) 6.19 7.10 7.05
Speed up(relative to Blum-l-t) 56.67 53.44 52.95

Aaron
hyper heuristic has the best average quality

F.S. Tabataba, S.R. Mousavi / Computational Biology and Chemistry 36 (2012) 42–54 49

0
1
2
3
4
5
6
7
8

20015010080604025201510

BS-low-!me
H-power

n

!m
e

(s
ec

on
d)

m=600

0
1
2
3
4
5
6
7
8

20015010080604025201510

BS-low-!me
Hyper heuris!c

n

!m
e

(s
ec

on
d)

m=600

0

2

4

6

8

10

12

20015010080604025201510

BS-low-!me
H-power

!m
e

(s
ec

on
d)

n

m=600

0

2

4

6

8

10

12

20015010080604025201510

BS-low-!me
Hyper heuris!c

!m
e

(s
ec

on
d)

n

m=600

a b

dc

Fig. 5. (a) Comparison of power heuristic (H-power) to BS-low-time with respect to run-time growth, for the ACO-virus benchmark with |˙| = 4. (b) Comparison of hyper
heuristic (HH-LCS) to BS-low-time with respect to run-time growth, for the ACO-virus benchmark with |˙| = 4. (c) Comparison of power heuristic and BS-low-time with
respect to run-time growth, for the ACO-virus benchmark with |˙| = 20. (d) Comparison of (HH-LCS) and BS-low-time with respect to run-time growth, for the ACO-virus
benchmark with |˙| = 20.

obtain higher quality solutions than BS-low-time, whereas they
consume less time in all cases except in one (the first row). The
results of our algorithms in none of 20 cases are inferior to those of
BS-high-quality in term of solution quality. In 16 out of 20(80% of)
cases, power heuristic provides higher quality solutions than BS-
high-quality, while probabilistic and hyper heuristics outperform
BS-high-quality in 70% and 75% of cases, respectively. In summary,
quality improvements for HH-LCS with power, probabilistic and
hyper heuristics rather than BS-high-quality are 2.43%, 2.14% and
2.26%, respectively. The quality improvements with respect to BS-
low-time for our algorithms are 5.42%, 5.12% and 5.24%. On average,
power heuristic obtains the highest quality improvement on ACO-
random dataset.

Table 4 compares the results of HH-LCS with BS algorithm on
ACO-rat benchmark. As reported in Table 4, our algorithms pro-
vide better or as good performance as BS-high-quality (in term of
quality) in all cases, while they are also much faster. They are even
faster than BS-low-time, except for the first row. On average, the
speed up of HH-LCS with power, probabilistic and hyper heuristics
with respect to BS-low-time are 57.49%, 55.29% and 52.79% and the
average improvements are 6.35%, 4.74% and 6.03%, respectively. In
summary, power heuristic has the best performance on this dataset
again.

As can be seen in Table 5, HH-LCS with power heuristic can
produce higher or the same solution quality compared to BS-high-
quality except in the tenth row (95% of the cases) for ACO-virus
benchmark, whereas it performs faster than BS-low-time (average

speed up with respect to BS-low-time is 56.67%). In contrast to
other datasets, the probabilistic heuristic shows better results
than power heuristic on this dataset; therefore, hyper heuris-
tic could improve the performance of power heuristic. Quality
improvements of power, probabilistic and hyper heuristics with
respect to BS-low-time over ACO-virus benchmark are 6.19%, 7.10%
and 7.05%, respectively. Average improvements of our algorithms
over BS-high-quality are 2.57%, 3.46% and 3.40%.

With respect to the running-time, it is evident that HH-LCS is
more similar to BS-low-time than BS-high-quality. The running-
time for HH-LCS has even slower growth than that of BS-low-time.
Fig. 5 compares the growth of running-time of HH-LCS with BS-
low-time, by increasing the number of strings. As can be seen, the
running-time of BS-low-time grows rapidly, compared to our algo-
rithms. The difference between the running time of our algorithms
and BS-high-quality is even more significant, which is depicted in
Fig. 6. These figures show that our algorithms are much faster than
Blum algorithms, especially for large |˙| and n.

Table 6 summarizes the results of comparing HH-LCS with
BS-low-time and BS-high-quality over all the five benchmarks.
On average, the proposed hyper heuristic algorithm has the best
performance. With respect to solution quality, it achieves the
improvement ratio of 2.69% and 6.17% over BS-high-quality and
BS-low-time, respectively. Table 6 shows that power heuristic
obtains better solutions than probabilistic heuristic on average.
Quality improvements of power heuristic with respect to BS-
high-quality and BS-low-time are 2.59% and 6.06%, respectively.

Aaron
在20種撞下都不比較差 in none of 20 cases are inferior to

Aaron
BS-high-quality are 2.43%, 2.14% and 2.26%

Aaron
5.42%, 5.12% and 5.24%

Aaron
明顯 evident

Aaron
he running- time for HH-LCS has even slower growth than that of BS-low-time.

Aaron
描述 depicted

Aaron
our algorithms are much faster than Blum algorithms, especially for large | ̇| and n

Aaron
that power heuristic obtains better solutions than probabilistic heuristic on average.

50 F.S. Tabataba, S.R. Mousavi / Computational Biology and Chemistry 36 (2012) 42–54

0
10
20
30
40
50
60
70
80
90

10015020080604025201510
BS-high-quality
H-power

!m
e

(s
ec

on
d)

n

m=600

0
10
20
30
40
50
60
70
80
90

20015010080604025201510
BS-high-quality
Hyper heuris!c

n

!m
e

(s
ec

on
d)

m=600

0

20

40

60

80

100

120

140

160

20015010080604025201510

BS-high-quality
H-power

!m
e

(s
ec

on
d)

n

m=600

0

20
40

60

80
100

120

140
160

20015010080604025201510

BS-high-quality
Hyper heuris!c

!m
e

(s
ec

on
d)

n

m=600

a b

dc

Fig. 6. (a) Comparison of power heuristic (H-power) to BS-high-quality with respect to run-time growth, for the ACO-virus benchmark with |˙| = 4. (b) Comparison of hyper
heuristic (HH-LCS) to BS-high-quality with respect to run-time growth, for the ACO-virus benchmark with |˙| = 4. (c) Comparison of power heuristic and BS-high-quality
with respect to run-time growth, for the ACO-virus benchmark with |˙| = 20. (d) Comparison of (HH-LCS) and BS-high-quality with respect to run-time growth, for the
ACO-virus benchmark with |˙| = 20.

These values are, respectively, 1.99% and 5.43% for the probabilistic
heuristic.

In summary, HH-LCS provides superior solution quality than BS-
high-quality while using less time than BS-low-time, in almost all
the experimental cases. Although, in most of the cases the heuristics
H-power and H-prob result in good solutions, their performance
is relatively poor in a few cases. However, the hyper heuris-
tic overcomes their shortcoming in such cases and, on average,
yields superior results. It illustrates the effectiveness of hybridizing
heuristics, especially when they are complement.

5.2. Comparison with MLCS-APP

In order to compare HH-LCS with MLCS-APP algorithm, we used
all four benchmarks provided in Wang et al. (2010b). The first two
datasets used in Wang et al. (2010b) are Random DNA sequences

generated independently from the alphabet
∑

= {A,G,T,C}, which
we call DNA-Random1 and DNA-Random2, respectively. Table 7
shows the results of running IBS-LCS on the DNA-Random1
benchmark. The first three columns in this table show the size of
the alphabet, the number of input strings and the length of the
strings, respectively. The next two columns report the results for
MLCS-A* algorithm which is an exact algorithm proposed in Wang
et al. (2010b) and is only applicable for small datasets (datasets with
small number of strings and/or short strings). The sixth and seventh
columns show the results of the MLCS-APP algorithm. The next
six columns show the respective results for our algorithms with
the power heuristic (H-power), the probabilistic heuristic (H-prob),
and the hyper heuristic (HH-LCS). We used the beam size ˇ = 300
and ˇh = 10. As can be seen in Table 7, HH-LCS with power and
hyper heuristics provides optimum solution in all cases whereas
MLCS-APP algorithm cannot achieve the optimum solution in the

Table 6
Average improvement in solution quality and time over BS for each benchmark.

Benchmark Quality improvement
vs. BS-low-time

Quality improvement
vs. BS-high-quality

Time improvement vs.
BS-low-time

Time improvement vs.
BS-high-quality

H-power H-prob HH-LCS H-power H-prob HH-LCS H-power H-prob HH-LCS H-power H-prob HH-LCS

ES 5.22 5.04 5.27 2.82 2.66 2.88 22.83 6.5 11.17 94.99 93.9 94.24
BB 7.91 4.3 8.02 1.81 −1.6 1.91 −26.37 −42.38 −39.03 94.62 93.99 94.09
ACO-random 5.42 5.12 5.24 2.43 2.14 2.26 55.51 51.89 51.82 97.8 97.6 97.6
ACO-rat 6.35 4.74 6.03 2.94 1.39 2.62 57.49 55.29 52.79 97.77 97.69 97.58
ACO-virus 6.19 7.1 7.05 2.57 3.46 3.4 56.67 53.44 52.95 97.94 97.76 97.75
Total 6.06 5.43 6.17 2.59 1.99 2.69 43.21 36.89 37.16 97.09 96.75 96.78

Aaron
HH-LCS provides superior solution quality than BS- high-quality while using less time than BS-low-time

Aaron
the effectiveness of hybridizing heuristics

Aaron
MLCS-A* algorithm

Aaron
small datasets

Aaron
ˇ = 300 and ˇh = 10

F.S. Tabataba, S.R. Mousavi / Computational Biology and Chemistry 36 (2012) 42–54 51

Table 7
Comparison the Length of Common Sequence and computation time for power, probabilistic and hyper heuristics with MLCS-APP and MLCS-A* over DNA-Random1 dataset.

n m MLCS-A* MLCS-APP H-power H-Prob HH-LCS

LCS Time LCS Time LCS Time LCS Time LCS Time

|˙| = 4

4 100 46 0.05 46 0.31 46 0.17 46 0.17 46 0.08
5 100 43 0.53 43 0.28 43 0.13 43 0.14 43 0.08
6 100 40 3.30 40 0.27 40 0.08 40 0.08 40 0.08
7 100 37 25.39 37 0.23 37 0.08 37 0.08 37 0.08
8 100 36 93.42 36 0.23 36 0.08 36 0.08 36 0.08
9 100 35 195.1 34 0.23 35 0.08 34 0.08 35 0.08

Table 8
Comparison the Length of Common Sequence and computation time for power, probabilistic and hyper heuristics with MLCS-APP and MLCS-A* over DNA-Random2 dataset.

n m MLCS-A* MLCS-APP H power H Prob HH-LCS

LCS Time LCS Time LCS Time LCS Time LCS Time

|˙| = 4

5 100 43 0.53 43 0.28 43 0.08 43 0.09 43 0.08
5 120 51 1.03 51 0.36 51 0.11 51 0.11 51 0.11
5 140 60 5.73 59 0.42 60 0.14 60 0.14 60 0.14
5 160 70 8.80 69 0.50 70 0.16 70 0.17 70 0.17
5 180 77 25.47 76 0.56 76 0.20 76 0.19 76 0.20
5 200 84 70.47 83 0.63 85 0.22 84 0.22 84 0.22

Table 9
Comparison the Length of Common Sequence over ACO-rat dataset produced by power and hyper and probabilistic heuristics with MLCS-APP.

n m BS-high-quality MLCS-APP H-power H-Prob Hyper heuristic
(HH-LCS)

LCS Time LCS Time LCS Time LCS Time LCS Time

|˙| = 4

10 600 191 9.7 194 2.0 203 1.9 199 1.5 203 1.4
15 600 173 12.3 180 1.9 182 1.8 184 1.4 182 1.4
20 600 163 12.6 165 1.7 171 1.2 168 1.0 168 1.2
25 600 162 15.8 164 2.0 169 1.2 166 1.4 169 1.5
40 600 146 9.4 151 2.0 149 1.5 145 1.4 149 1.2
60 600 144 26.7 147 2.8 150 1.9 149 1.8 150 1.9
80 600 135 31.8 137 3.1 142 2.1 142 2.1 142 1.8

100 600 132 38.5 134 3.7 134 2.2 134 2.2 134 2.2
150 600 121 51.1 125 4.9 128 2.7 125 2.7 125 2.6
200 600 121 69.1 122 6.6 122 2.8 120 3.2 120 3.0

|˙| = 20

10 600 69 27.4 70 3.3 71 1.8 70 1.6 71 1.8
15 600 60 36.7 61 3.0 62 2.8 62 1.7 62 1.5
20 600 51 34.4 53 2.4 54 1.3 54 1.5 54 1.4
25 600 51 39 51 2.7 51 1.4 51 1.3 51 1.3
40 600 49 47 48 2.9 49 1.5 49 1.6 49 1.6
60 600 46 60.3 46 3.7 47 1.9 46 2.2 47 2.0
80 600 43 64.4 43 3.9 43 3.5 44 2.3 43 2.0

100 600 38 64.8 38 4.3 39 2.4 39 2.3 39 2.1
150 600 36 77.8 35 5.2 37 2.3 36 2.5 37 2.4
200 600 33 101 33 7.0 34 2.8 33 3.2 34 3.0

Quality improvement with respect to MLCS APP 1.99 1.03 1.70
Speed up with respect to MLCS APP 36.05 41.09 42.89

last row. Also, HH-LCS consumes less than half the time consumed
by MLCS-APP algorithm.

In Table 8, we compare HH-LCS with MLCS-A* and MLCS-APP
over DNA-Random2 benchmark. We set ˇ = 300 and ˇh = 10. It can
be seen that our algorithms can provide optimum solution for all
heuristics in all cases except for the fifth row. In addition, HH-
LCS with H-power heuristic provides higher quality solutions than
optimal solution produced by MLCS-A* in the sixth row. (We care-
fully verified the obtained solution,5 which indicates an issue in
Wang et al.’s report or in their implementation of MLCS-A*.) Table 8

5 The common sequence produced by power heuristic over the last instance of
DNA-random2 benchmark is = “TGAAAAAAGGCTTCGGGTCGGATACCGAAGCAGCC-
AGGGGCGTCGCCCAGTGTGGTGGTTCCAAATGGGGATATAAGAGTTACTG” which its
length is 85.

indicates the superiority of HH-LCS compared to MLCS-APP with
respect to both the solution quality and the running-time.

Wang et al. (2010b) compared their algorithm with BS only using
ACO-rat dataset previously introduced in Section 5.1. They com-
pared MLCS-APP with BS-high-quality and provided almost better
solutions in terms of both quality and time. Table 9 compares the
result of our algorithms with MLCS-APP on ACO-rat. We set ˇ = 450
and ˇh = 10. As can be seen in this table, HH-LCS with the power
heuristic provides better or as good performance as MLCS-APP (in
terms of quality) in all but one case. Another observation is that HH-
LCS with the power heuristic achieves, on average, better solutions
than the probabilistic and hyper heuristics. On average, compared
to the MLCS-APP, HH-LCS with the power, probabilistic and hyper
heuristics provides 1.99%, 1.03% and 1.70% improvements in solu-
tion quality, respectively, while performing faster than MLCS-APP
(note that we have used a machine even slower than the machine

Aaron
ˇ = 300 and ˇh = 10

Aaron
ˇ = 450 and ˇh = 10.

52 F.S. Tabataba, S.R. Mousavi / Computational Biology and Chemistry 36 (2012) 42–54

Table 10
Comparison the result of power, probabilistic and hyper heuristics with MLCS-APP over protein sequences selected from Pfam dataset, n = 8, ˙ = 20, average strings’ length
almost 200.

Family ID (accession number) Optimal common sequence MLCS-APP H-power H-Prob Hyper heuristic (HH-LCS)

Length LCS LCS Time LCS Time LCS Time

AP endonuc 2 (PF01261) 30 29 30 0.25 30 0.25 30 0.27
DUF2077 (PF09850) 35 35 35 0.33 35 0.33 35 0.31
NikM 40 40 40 0.30 40 0.30 40 0.38
(PF10670)
Nop25 (PF09805) 67 67 67 0.52 67 0.52 67 0.52
Exon PolB (PF10108) 76 76 76 0.45 76 0.48 76 0.42
Frag1 (PF10277) 93 93 93 0.63 93 0.55 93 0.56
G6PD bact (PF10786) 105 105 105 0.52 105 0.58 105 0.55
Adeno hexon C (PF03678) 136 136 136 0.28 136 0.30 136 0.33

used in Wang et al. (2010b)). The last row (Speedup) of Table 9
reports the time improvement of our algorithms in comparison
with MLCS-APP.

The fourth benchmark used by Wang et al. consists of eight
protein domain families selected from Pfam database (Finn et al.,
2008). Eight sequences of approximately the same length (around
200 amino acids) were chosen from each family. The first column
includes the names of the protein families. The second column is
the length of optimal common sequence and the third column is the
result of applying MLCS-APP algorithm on this dataset. Table 10
shows that HH-LCS with all the heuristics can achieve optimum
solution in all cases whereas MLCS-APP provides 7 optimal solu-
tions in 8 cases. We set ˇ = 200 and ˇh = 10. Wang et al. did not
report run time for this benchmark.

Tables 7–10 demonstrate that HH-LCS outperforms MLCS-APP
in terms of both the quality and the run time.

5.3. Comparison with Deposition&Extention algorithm (DEA)

The DEA algorithm was not compared BS (which was the state-
of-the-art); it was only compared with three primitive algorithms,
namely LR, Expansion, and THSB. However, we compare the result
of our algorithms with DEA over two real and simulated dataset
used in Ning (2010) and show that our algorithms significantly
outperforms DEA.

The real dataset are DNA and protein sequences randomly
selected from NCBI (NCBI-viruses) and SwissProt (Swiss-Prot) web-
sites, respectively. We obtained this dataset from Ning’s website.
The first three columns of Table 11 show the size of the alphabet, the
number of input strings and the length of the strings, respectively.
For each setting ($, n, and m), there are 10 sets of sequences ran-
domly selected from corresponding databases and the results are
the averages of the common sequences’ length over all 10 instances.

DEA used two different heuristics called MF (Most Front) and MC
(Min Change). The next two columns report the result of DEA with
MF and MC heuristics, respectively. The next six columns show the
respective values for our algorithms with the power (H-power),
the probabilistic (H-prob) and the hyper heuristics (HH-LCS). As
shown in Table 11, on average, our algorithm with the power
heuristic, probabilistic heuristic and hyper heuristic provides 23%,
24.83% and 25.01% improvements in the solution quality, respec-
tively, compared to DEA with MC heuristic. Quality improvements
for HH-LCS compared to DEA with MF heuristic are 19.61%, 21.38%,
and 21.56%, respectively. Note that for each row of the Table 11,
10 sets of sequences are averaged to get the result. Therefore, as
can be observed in the second and the third rows of this table, the
hyper heuristic can provide higher quality solutions than the indi-
vidual power and probabilistic heuristics. Also, on average, HH-LCS
with hyper heuristics outperforms both power and probabilistic
heuristics over this dataset.

We have also compared our algorithms with DEA over the sim-
ulated dataset used in (Ning, 2010). Ning generated 4-character
sequences from $ = {A,T,G,C}. Each character is distributed among
sequences with specified alphabet content (%). It means that "%
of each sequence consists of two characters G and C. Table 12
shows that on average our algorithm with the power, probabilis-
tic and hyper heuristics provide 3.47%, 4.32% and 4.28% quality
improvements, respectively, compared to DEA with MC heuris-
tic. Also, quality improvements of HH-LCS with these heuristics
compared to DEA using MF heuristic are 4.15%, 5.01%, and 4.97%,
respectively.

Ning tested DEA algorithm on another simulated benchmark but
did not express its alphabet content for it explicitly. Therefore, we
could not determine which file he used for testing his algorithm.
(We asked for the benchmarks and codes but did not receive any
response.)

Table 11
Comparison the Length of Common Sequence for power and hyper and probabilistic heuristics with DEA algorithm (MF and MC heuristics) over real dataset (Ning, 2010).

n m DEA H power H Prob HH-LCS

(MF) (MC) LCS Time LCS Time LCS Time

|˙| = 4

100 100 14.9 15.8 18.5 0.27 18.3 0.33 18.4 0.27
100 500 98.6 94.3 118.4 2.10 117.8 2.14 118.7 2.31
100 1000 198.2 191.4 240.9 5.44 243.5 5.47 243.6 5.67
500 100 9.8 10.7 12.3 0.88 12.3 1.09 12.3 0.92
500 500 65.8 71.0 89.2 8.37 92.6 8.87 92.6 9.26
500 1000 142.9 152.1 185.0 21.30 200.6 22.24 200.8 23.11

|˙| = 20

100 100 2.5 2.8 3.1 0.15 3.1 0.18 3.1 0.17
100 500 24.8 22.0 30.6 1.81 30.5 1.87 30.6 2.01
500 100 0.9 0.9 0.9 0.83 0.9 0.77 0.9 0.81
500 500 18.5 13.7 20.8 7.81 21.3 7.54 21.3 8.04

1000 100 0.1 0.1 0.1 1.44 0.1 1.56 0.1 1.56
1000 500 14.1 11.7 16.8 13.21 17.3 13.00 17.3 13.45

Quality improvement with respect to DEA(MC) 23.00 24.83 25.01
Quality improvement with respect to DEA(MF) 19.61 21.38 21.56

Aaron
HH-LCS with all the heuristics can achieve optimum solution in all cases

Aaron
The DEA algorithm was not compared BS

Aaron
% of each sequence consists of two characters G and C

F.S. Tabataba, S.R. Mousavi / Computational Biology and Chemistry 36 (2012) 42–54 53

Table 12
Comparison the Length of Common Sequence for power and hyper and probabilistic heuristics with DEA algorithm (MF and MC heuristics) over simulated dataset (Ning,
2010).

n m ˇ1 (%) DEA H power H Prob HH-LCS

(MF) (MC) LCS Time LCS Time LCS Time

|˙| = 4

100 1000 10 443.2 446.0 461.2 8.76 462.7 9.36 462.5 9.17
100 1000 20 389.8 391.2 407.7 7.86 410.4 8.45 410.4 8.63
100 1000 30 337.5 338.7 355.4 7.16 357.9 7.59 357.9 7.69
100 1000 40 285.1 290.0 302.6 6.33 304.2 6.76 304.2 6.81
100 1000 50 243.6 250.0 268.4 5.81 269.5 6.29 269.5 6.20

|˙| = 4

1000 1000 10 419.8 418.8 425.4 67.07 428.9 67.01 428.7 69.19
1000 1000 20 369.0 369.7 375.2 63.18 379.7 65.72 379.1 67.57
1000 1000 30 320.7 320.3 325.8 60.23 330.3 60.36 330.3 62.57
1000 1000 40 272.1 272.5 277.5 55.97 280.8 54.29 280.5 57.63
1000 1000 50 224.8 226.7 235.3 51.61 237.8 48.53 237.8 52.52

Quality improvement with respect to DEA(MC) 3.47 4.32 4.28
Quality improvement with respect to DEA(MF) 4.15 5.01 4.97

As mentioned before, no precise run-time of DEA was reported
in Ning (2010). Ning reported that for the datasets with n ≥ 1000
and m ≥ 1000, DEA took less than 10 min whereas the maximum
run time for HH-LCS (for n = 5000 and m = 1000) is about 5 min.

In summary, Tables 1–12 indicate that HH-LCS provides higher
quality solutions than BS, MLCS-APP and DEA in most of the exper-
iments while it even takes less time. This suggests the HH-LCS is
the new state-of-the-art heuristic algorithm for the LCS.

6. Conclusion

Various optimal and non-optimal algorithms have already been
proposed for the LCS problem. The optimal algorithms are of expo-
nential complexity due to the NP-hardness of the problem, hence
not affordable in practice for large or even moderate size prob-
lem instances. The non-optimal algorithms proposed so-far include
approximation, simple heuristic and metaheuristic algorithms. Our
proposed hyper-heuristic algorithm in this paper is deterministic
and based on beam search, initially proposed by Blum et al. for
the LCS problem, although it has its own distinct features as spec-
ified in this paper. The hyper heuristic mechanism is responsible
for dynamically deciding which basic heuristic function to use in
the main beam search algorithm. There are two candidate heuristic
functions for this purpose, one h-power(.) proposed for the first time
in this paper for the LCS problem and the other h-prob(.), recently
proposed in Mousavi and Tabataba (2012). The motivation behind
incorporating them within a hyper heuristic mechanism was that
neither of them was observed to be able to dominate the other in the
experimental cases (while each providing superior solutions than
those of existing algorithms in the literature). Taking the advantage
of beam search, it is dynamically decided which heuristic function
better suits a given problem instance. To that end, a low-cost beam
search, i.e. one with a small beam size, is run twice, once per each
of the candidate heuristic functions, and based on the results, the
best heuristic is selected for the final run of the algorithm. Although
this mechanism does not guarantee that the better choice (with
respect to a given problem instance) is always made, it results in
higher (average) solution quality compared to the case an individ-
ual heuristic function is always used. This improvement costs the
extra light runs of beam search, i.e., with the small beam size, which
was less than 5% in our experimental cases. The proposed algo-
rithm was extensively compared with three most recent published
algorithms of the non-optimal family over several real biological
benchmarks with positive results.

Possible avenues for future work include the incorporation of
further heuristic functions within the hyper-heuristic framework
and to increase the precision of the hyper-heuristic mechanism in
choosing the right heuristic function for a given problem instance.

The proposed algorithm was extensively compared with BS,
MLCS-APP, and DEA algorithms, with evident positive results. This
suggests that the proposed hyper-heuristic algorithm, HH-LCS is
the current state-of-the-art heuristic algorithm for LCS.

Acknowledgement

The authors would like to thank Dr. C. Blum, Dr. T. Easton, and
Mr. Q. Wang for making available their datasets.

References

Aho, A.V., Ullman, J.D., Hopcroft, J.E., 1983. Data Structures and Algorithms. Addison-
Wesley, Reading, MA.

Bafna, V., Muthukrishnan, S., Ravi, R., 1995. Computing similarity between RNA
strings. In: 6th Annual Symposium on Combinatorial Pattern Matching, Espoo,
Finland, pp. 1–16.

Banerjee, A., Ghosh, J., 2001. Clickstream clustering using weighted longest common
subsequences. In: Proceedings of the Web Mining Workshop at the 1st SIAM
Conference on Data Mining, pp. 33–40.

Blum, C., Blesa, M.J.,2007. Probabilistic beam search for the longest common sub-
sequence problem. In: Proceedings of the 2007 International Conference on
Engineering Stochastic Local Search Algorithms: Designing, Implementing and
Analyzing Effective Heuristics. Springer-Verlag, Brussels, Belgium.

Blum, C., Blesa, M.J., López-Ibáñez, M., 2009. Beam search for the longest common
subsequence problem. Computers and Operations Research 36, 3178–3186.

Blum, C., Roli, A., 2003. Metaheuristics in Combinatorial Optimization: Overview
and Conceptual Comparison, vol. 35. ACM, pp. 268–308.

Bonizzoni, P., Vedova, G.D., Mauri, G., 2001. Experimenting an approximation algo-
rithm for the LCS. Discrete Applied Mathematics 110, 13–24.

Brisk, P., Kaplan, A., Sarrafzadeh, M.,2004. Area-efficient instruction set synthesis
for reconfigurable system-on-chip designs. In: Proceedings of the 41st Annual
Design Automation Conference. ACM, San Diego, CA, USA, pp. 395–400.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S., 2003. Hyper-
heuristics: an emerging direction in modern search technology. In: Hillier, F.S.
(Ed.), Handbook of Metaheuristics, vol. 57. Springer, New York, pp. 457–474.

Chen, Y., Wan, A., Liu, W., 2006. A fast parallel algorithm for finding the longest
common sequence of multiple biosequences. BMC Bioinformatics 7, S4.

Chin, F., Poon, C., 1994. Performance analysis of some simple heuristics for comput-
ing longest common subsequences. Algorithmica 12, 293–311.

cpu-benchmark. http://cpubenchmark.net/.
Easton, T., Singireddy, A., 2007. A specialized branching and fathoming technique for

the longest common subsequence problem. International Journal of Operations
Research 4, 98–104.

Easton, T., Singireddy, A., 2008. A large neighborhood search heuristic for the longest
common subsequence problem. Journal of Heuristics 14, 271–283.

Eppstein, D., Galil, Z., Giancarlo, R., Italiano, F.G., 1992. Sparse dynamic programming
II: convex and concave cost functions. Journal of the Association for Computing
Machinery 39, 546–567.

Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J.J., Hotz, H.-R.R., Ceric, G.,
Forslund, K., Eddy, S.R., Sonnhammer, E.L., Bateman, A., 2008. The pfam protein
families database. Nucleic Acids Research 36, D281–D288 (Database issue).

Fraser, C.B., 1995. Subsequences and Supersequences of Strings. University of Glas-
gow.

Garey, M., Johnson, D., 1990. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman & Co. Ltd., New York, NY.

Guenoche, A., 2004. Supersequence of masks for oligo-chips. Journal of Bioinformat-
ics and Computational Biology 2 (3), 459–469.

http://cpubenchmark.net/
Aaron
This suggests the HH-LCS is the new state-of-the-art heuristic algorithm for the LCS.

Aaron
The optimal algorithms are of expo- nential complexity due to the NP-hardness of the problem

Aaron
approximation, simple heuristic and metaheuristic algorithms

Aaron
beam search

Aaron
it is dynamically decided which heuristic function better suits a given problem instance

Aaron
Although this mechanism does not guarantee that the better choice

Aaron
the case an individ- ual heuristic function is always used

Aaron
途徑 avenues

Aaron
合併 incorporation

54 F.S. Tabataba, S.R. Mousavi / Computational Biology and Chemistry 36 (2012) 42–54

Guenoche, A., Vitte, P., 1995. Longest common subsequence with many strings: exact
and approximate methods. Technique et Science Informatiques 14 (7), 897-915.

Hakata, K., Imai, H.,1992. The longest common subsequence problem for small
alphabet size between many strings. In: Proceedings of the Third International
Symposium on Algorithms and Computation, vol. 650. Springer-Verlag, pp.
469–478.

Hirschberg, D.S., 1975. A linear space algorithm for computing maximal common
subsequences. Communication of the Association for Computing Machinery 18,
341–343.

Hsu, W.J., Du, M.W., 1984. Computing a longest common subsequence for a set of
strings. BIT Numerical Mathematics 24, 45–59.

Huang, K.S., Yang, C.B., Tseng, K.T., 2004. Fast algorithms for finding the common
subsequence of multiple sequences. In: Proceedings of International Computer
Symposium, pp. 90–95.

Irving, R.W., Fraser, C.,1992. Two algorithms for the longest common subsequence
of three (or more) strings. In: Proceedings of the Third Annual Symposium on
Combinatorial Pattern Matching, vol. 644. Springer-Verlag, Berlin, pp. 214–229.

Jiang, T., Li, M., 1995. On the approximation of shortest common supersequences and
longest common subsequences. SIAM Journal on Computing 24, 1122–1139.

Jiang, T., Lin, G., Ma, B., Zhang, K., 2002. A general edit distance between RNA struc-
tures. Journal of Computational Biology 9, 371–388.

Johetla, T., Smed, J., Hakonen, H., Raita, T., 1996. An efficient heuristic for the LCS
problem. In: Third South American Workshop on String Processing, WSP’96, pp.
126–140.

Korkin, D., Wang, Q., Shang, Y., 2008. An efficient parallel algorithm for the multiple
longest common subsequence (MLCS) problem. In: International Conference on
Parallel Processing (ICPP), pp. 354–363.

Maier, D., 1978. The Complexity of Some Problems on Subsequences and Superse-
quences, vol. 25. ACM, pp. 322–336.

Mousavi, S.R., Tabataba, F., 2012. An improved algorithm for the longest common
subsequence problem. Computers and Operations Research 39, 512–520.

NCBI-viruses. http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/viruses.html.
NCBI National Center for Biotechnology Information (NCBI). http://www.ncbi.

nlm.nih.gov/.
Ning, K., 2010. Deposition and extension approach to find longest common subse-

quence for thousands of long sequences. Computational Biology and Chemistry
34, 149–157.

Sankoff, D., Kruskal, J., 1983. Time Warps, String Edits and Macromolecules: The
Theory and Practice of Sequence Comparisons. Addison-Wesley.

Sellis, T.K., 1988. Multiple-query optimization. ACM Transactions on Database Sys-
tems (TODS) 13, 23–52.

Shyu, S.J., Tsai, C.-Y., 2009. Finding the longest common subsequence for multi-
ple biological sequences by ant colony optimization. Computers and Operations
Research 36, 73–91.

Singireddy, A., 2003. Solving the longest common subsequence problem in bioin-
formatics. Master, Kansas State University, KS, Manhattan.

Smith, T.F., Waterman, M.S., 1981. Identification of common molecular subse-
quences. Journal of Molecular Biology 147, 195–197.

Storer, J.A., 1988. Data Compression: Methods and Theory. Computer Science Press
Inc.

Swiss-Prot Release, 45.5, 2005. http://us.expasy.org/sprot/.
Tsai, Y.T., Hsu, J.T., 2002. An approximation algorithm for multiple longest common

subsequence problems. In: Proceeding of the 6th World Multiconference on
Systemics, Cybernetics and Informatics, SCI2002, pp. 456–460.

Wang, Q., Korikin, D., Shang, Y., 2010a. A fast multiple longest common subsequence
(MLCS) algorithm. IEEE Transactions on Knowledge and Data Engineering.

Wang, Q., Korkin, D., Shang, Y., 2009. Efficient dominant point algorithms for the
multiple longest common subsequence (MLCS) problem. In: International Joint
Conference on Artificial Intelligence (IJCAI), Pasadena, CA, USA, pp. 1494–1500.

Wang, Q., Pan, M., Shang, Y., Korkin, D., 2010b. A fast heuristic search algorithm for
finding the longest common subsequence of multiple strings. In: Conference on
Artificial Intelligence (AAAI), Atlanta, GA, USA, pp. 1287–1292.

http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/viruses.html
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://us.expasy.org/sprot/

	A hyper-heuristic for the Longest Common Subsequence problem
	1 Introduction
	2 Basic notations and definitions
	3 The proposed algorithm
	4 The basic heuristic functions
	4.1 The basic heuristic function h-power(.)
	4.2 The basic heuristic function h-prob(.)

	5 Experimental results
	5.1 Comparison with BS
	5.2 Comparison with MLCS-APP
	5.3 Comparison with Deposition&Extention algorithm (DEA)

	6 Conclusion
	Acknowledgement
	References

