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Abstract
The similarity of two one-dimensional sequences is usually measured by the long-
est common subsequence (LCS) algorithms. However, these algorithms cannot be 
directly extended to solve the two or higher dimensional data. Thus, for the two-
dimensional data, computing the similarity with an LCS-like approach remains wor-
thy of investigation. In this paper, we utilize a systematic way to give the generalized 
definition of the two-dimensional largest common substructure (TLCS) problem by 
referring to the traditional LCS concept. With various matching rules, eight pos-
sible versions of TLCS problems may be defined. However, only four of them are 
shown to be valid. We prove that all of these four TLCS problems are NP-hard and 
APX-hard. To accomplish the proofs, two of the TLCS problems are reduced from 
the 3-satisfiability problem, and the other two are reduced from the 3-dimensional 
matching problem.
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1  Introduction

The similarity or distance of one-dimensional data can usually be measured by 
the algorithms for the longest common subsequence (LCS) problem [3, 17–21, 
32] or the edit distance problem [31]. These problems have been extensively stud-
ied for several decades since 1970.

However, with the increasing motivation for computing the similarity of higher 
dimensional data, the LCS algorithms may not be applicable on various practi-
cal domains. For example, to find the functionality of the secondary structure of 
RNA and the tertiary structure of proteins [8], and to compute the similarity of 
the pictures for identifying hot spots in clinical diagnosis and criminal investiga-
tion are applications with data dimension higher than one. The demand for com-
puting the similarity of two-dimensional data is increasing. In 1977, Knuth et al. 
[25] presented a method for finding the pattern matching in one-dimensional data. 
And then the researches for computing two-dimensional data focused on pattern 
matching [7, 26]. Therefore, finding the similarity of data with two or higher 
dimensions by LCS-like definitions becomes more interesting.

In 1987, Chang et  al. [11] presented a way of representing a two-dimensional 
picture by 2D strings. With this method, one can transform a picture into a one-
dimensional string with iconic indices [35]. They also presented three types of simi-
larity relation between two iconic objects. Chang et  al. [10] proposed a similarity 
retrieval algorithm, called 2D-string-LCS, to retrieve the most similar picture whose 
type similarity is the largest in the image database. In 1992, Lee and Hsu [28] pro-
posed another similarity retrieval definition with 2D C-strings. The most previous 
researches of 2D strings focused on the similarity retrieval of images, pattern match-
ing, image database design and its variants [9, 10, 12, 16, 27–29, 34]. With theoreti-
cal interest, in 2000, Guan et al. [16] proved that the problems of finding maximum 
similar subpictures of relations type-0 and type-1 of 2D strings are NP-hard.

With another problem developing way, some researchers [2, 6] directly study the 
relationship of two matrices. They seemed not to know the above research progress 
on the 2D strings. Without transforming the two-dimensional data into 2D strings 
and iconic indices, in 1998, Baeza-Yates [6] presented a method to compute the edit 
distance between two matrices. In 2008, Amir et al. [2] gave another similarity defi-
nition of two matrices, which is the two-dimensional largest common substructure 
(TLCS, which was shortened as 2D LCS by Amir et al., but it is called TLCS in this 
paper.) problem. The matching rules of the TLCS problem given by Amir et al. are 
too strict to represent the matrix similarity. In fact, the definition of Amir et al. on 
the TLCS problem is exactly the same as the type-1 relation in 2D strings [11, 16]. 
However, there is no connection between 2D strings and the work of Amir et  al. 
Amir et al. proved the NP-hardness of the TLCS problem with another way.

In this paper, we present more general definitions of the TLCS problem. We first 
give eight possible matching rules for the TLCS problem. Then, we show that four 
of them are valid, and the others are invalid. Among these valid generalized TLCS 
problems, P(ENE) (introduced later) is exactly the same as type-0 relation in 2D 
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strings [11, 16]. The NP-hardness proof of type-0 relation in 2D strings [16] can 
also be applied to the proof that P(ENL) (introduced later) is NP-hard.

The organization of this paper is given as follows. In Sect. 2, we will give some 
notations, and review the picture retrieval problem and the TLCS problem. In Sect. 3, 
we will present the formal definitions of two-dimensional largest common substructure 
(TLCS) problems with our matching rules. In Sect. 4, we prove that these TLCS prob-
lems are NP-hard and APX-hard. Finally, in Sect. 5, we will give our conclusions.

2 � Preliminaries

In this section, we first present the notations used in this paper in the following. Let 
S be a sequence of elements, where S = s1s2s3 … s|S|.

•	 S is called a sequence or a string.
•	 si is the ith element of S.
•	 |S| represents the length of S, i.e., the number of elements in S.
•	 Si..j = sisi+1si+2 … sj denotes a substring starting from the ith element and ending 

at the jth element of S.

Let A and B be two matrices, with sizes rA × cA and rB × cB respectively, 
where A = a1,1, a1,2 , … , a1,cA , a2,1, a2,2 , … , a2,cA , … , arA,1 , arA,2,… , arA,cA and 
B = b1,1, b1,2 , … , b1,cB , b2,1, b2,2,… , b2,cB ,… , brB,1, brB,2 , … , brB,cB . In addition, each 
ai,j ∈ �, 1 ≤ i ≤ rA, 1 ≤ j ≤ cA , and each bp,q ∈ �, 1 ≤ p ≤ rB, 1 ≤ q ≤ cB.

•	 ai,j is the entry at the ith row and the jth column of matrix A.
•	 ai,∗ denotes the ith row and a∗,j denotes the jth column of matrix A.
•	 rA represents the number of the rows and cA represents the number of columns of 

matrix A.
•	 �A = rA × cA represents the size of matrix A, i.e., the number of elements in A.

2.1 � The Picture Retrieval Problem

In the pictorial information retrieval problem, the goal is to retrieve pictures which 
satisfy a certain picture query criterion. For example, one may want to find all pic-
tures with a car to the right of a tree. In 1987, Chang et  al. [11] proposed a way 
for representing the two-dimensional data with 2D strings. The problem of pictorial 
information retrieval can be regarded as the 2D subsequence matching problem.

A 2D string can be represented with (Sr, Sc) , where Sr and Sc denote the row rela-
tion and column relation, respectively. To represent the spatial relation, three special 
symbols T = { ‘=’, ‘<’, ‘:’ } are used. For two objects, ‘=’ represents the same spa-
tial relation, ‘<’ means the below-above spatial relation in Sr , or the left-right spatial 
relation in Sc . ‘:’ represents that two objects are at the same position, that is, the 
same coordinate. Figure 1 shows an example for the 2D string.
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There are many ways for describing 2D strings, including absolute 2D strings, 
normal 2D strings, 2D C-strings and so on [9–11, 27–29].

Furthermore, Chang et al. defined three different types of matches. Let ai1,j1 and 
ai2,j2 be two distinct objects (elements) in matrix A, and bp1,q1 and bp2,q2 be two dis-
tinct objects in matrix B. Suppose that ai1,j1 matches to bp1,q1 and ai2,j2 matches to bp2,q2 
with type-i relation. The definitions are given as follows [11].

•	 type-0: (i1 − i2) × (p1 − p2) ≥ 0 and (j1 − j2) × (q1 − q2) ≥ 0

•	 type-1: [(i1 − i2) × (p1 − p2) > 0 or i1 − i2 = p1 − p2 = 0] and [(j
1
− j

2
) × (q

1
− q

2
) 

> 0 or j1 − j2 = q1 − q2 = 0]

•	 type-2: i1 − i2 = p1 − p2 and j1 − j2 = q1 − q2

In 2000, Guan et al. [16] proved that the problems of finding maximum similar sub-
pictures of relations type-0 and type-1 are NP-hard by reducing from the 3-satisfi-
ability (3SAT) problem [13, 33].

2.2 � The Two‑Dimensional Largest Common Substructure Problem

In 2008, Amir et al. [2] defined the two-dimensional largest common substructure 
(TLCS, which originally was named as two-dimensional longest common substruc-
ture and shortened as 2D-LCS by Amir et  al.) problem. With the concept of the 
one-dimensional LCS, they defined the TLCS as the largest identical substructure 
which is obtained from two input matrices by deleting zero or more of their entries. 
A substructure is obtained from a matrix by deleting some entries but preserving the 
orientation of remaining entries in the plane. In a common substructure of two input 
matrices, the orientations of any two common elements (matches) are the same as 
those in the input matrices. In the one-dimensional LCS, the LCS is ordered on a 
line. The concept is also applicable in the two-dimensional problem as well. Hence, 
the TLCS problem is to find the maximal identical symbols which preserve their 
order in the two matrices. The formal TLCS definition and matching rules are given 
as follows.

Definition 1  [2] Two-dimensional largest common substructure (TLCS) problem
Input: Matrix A of size �A = rA × cA and matrix B of size �B = rB × cB.
Output: The maximum domain size of a one-to-one function 

f ∶ {1,… , rA} × {1,… , cA} → {1,… , rB} × {1,… , cB} such that ai,j = bf (i,j) = bp,q , 
(i, j) ∈ domain(f ) . For every pair (i1, j1), (i2, j2) ∈ domain(f ) that (p1, q1) = f (i1, j1) 
and (p2, q2) = f (i2, j2) , the following holds:

Fig. 1   An example of the 2D 
string defined by Chang et al. 
[11], where the 2D string 
is ( d ∶ e < b = c < a = a , 
a = d ∶ e < b < a = c)
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•	 i1 < i2 if and only if p1 < p2.
•	 j1 < j2 if and only if q1 < q2.
•	 i1 = i2 if and only if p1 = p2.
•	 j1 = j2 if and only if q1 = q2.

Amir et al. also proved that the TLCS problem is NP-hard by reducing from the 
k-clique problem. In fact, the TLCS problem defined by Amir et al. (Definition 1) is 
exactly the same as the similarity relation of type-1 on 2D strings, which has been 
proved to be NP-hard [16]. However, Amir et al. did not refer to the papers studying 
the latter problem [11, 16].

As an example, Fig. 2 shows three matrices A, B and C. It is clear that matrix B 
can be obtained by rotation within some columns of matrix A. Thus, A and B are 
more similar than A and C. However, the TLCS size of A and B is equal to that of 
A and C, which are both 3. Consequently, in this paper, we propose some different 
matching rules to disclose more similarity as how we look.

2.3 � Approximability Classes

Definition 2  [1, 14, 15] NP optimization (NPO) problem
An NPO problem F is represented by a 4-tuple (∮

F
, SolF, ojF, optF) , explained as 

follows. 

	 (i)	 ∮
F
 is the set of the instances of F, and ∮

F
 is recognizable in polynomial time.

	 (ii)	 SolF(I) denotes the set of the feasible solutions with instance I ∈ ∮
F
 . SolF(I) 

should be recognized in polynomial time and there exists a polynomial func-
tion p such that ∀sol ∈ SolF(I), |sol| ≤ p(|I|).

Fig. 2   The TLCS of matrix A 
and matrix B or matrix C with 
the definition of Amir et al., 
where the answers are shown 
by the boldface symbols. a The 
TLCS of matrices A and B. b 
The TLCS of matrices A and C 

(a)

(b)
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	 (iii)	 ojF(I, sol) denotes the objective function, which is an integer and nonnegative 
function, where I ∈ ∮

F
 and sol ∈ SolF(I).

	 (iv)	 optF ∈ {max,min} means that F is a maximization or minimization problem.

Solving an NPO problem F with I ∈ ∮
F
 corresponds to find a feasible solution 

sol ∈ SolF(I) which maximizes ojF(I, sol) over all feasible solutions if optF = max or 
minimizes ojF(I, sol) if optF = min [15]. Taking the TLCS problem as an example, 
let ∮

TLCS
 be the set of all possible pairs of matrices. Let I be an instance of matrices 

A and B, with |A| = rA × cA and |B| = rB × cB . For a solution sol of instance I, there 
is a polynomial function p(x) = x , such that |sol| ≤ rA × cA and |sol| ≤ rB × cB . We 
have ojF(I, sol) = |sol| for instance I and any solution sol ∈ Sol(I) . Also, we have 
optTLCS = max , because we want to find the common substructure with maximal 
size.

Given I ∈ ∮
F
 , we denote optF(I) as the optimal solution set for I. The approxima-

tion ratio is defined as RatF = max{
|optF(I)|
ojF(I,sol)

,
ojF(I,sol)

|optF(I)|
 }. It is clear that the ratio is 

always greater than or equal to 1. The closer to 1 the approximation ratio is, the bet-
ter performance the algorithm has.

Definition 3  [30] Approximability (APX) problem
An NPO problem F is in APX  if F can be approximated within a constant c, that 

is , there exists a polynomial-time algorithm D such that for all instances I ∈ ∮
F
 , 

D(I) ∈ SolF and RatF(D(I)) ≤ c , where RatF(D(I)) is the approximation ratio of F.

L-reduction was proposed by Papadimitriou and Yannakakis [30] in 1991. In var-
ious proofs of APX  problems, L-reduction is the easiest and the most restrictive 
one.

Definition 4  [30] L-reduction
Given two NPO problems F and G, and a polynomial-time transformation 

f ∶ F → G , f is an L-reduction from F to G if there exist positive constants � and � 
such that the following conditions hold for every instance I of F. 

	 (i)	 |optG(f (I))| ≤ � ⋅ |optF(I)|,
	 (ii)	 For every feasible solution sol of f(I) with objective value ojG(f (I), sol) = oj2 , 

we can find a solution, in polynomial time, sol′ of I with ojF(I, sol�) = oj1 such 
that |optF(I) − oj1| ≤ �|optG(f (I)) − oj2|.

A problem is APX-complete if it is in APX  and it is APX-hard [5]. Unless 
P=NP , an APX-hard problem is not in PTAS (polynomial time approximation 
scheme) [5]. An optimization problem in PTAS has an algorithm that can produce 
a solution within a factor 1 + � (or 1 − � for a maximization problem) of the optimal 
solution in polynomial time, where � is any fixed constant. Unless P=NP , PTAS is 
a proper subset of APX  [22].
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For example, the Euclidean traveling salesman problem is in PTAS [4]. However, 
the maximum 3-satisifiability bounded by K (MAX 3SAT-K) problem with K ≥ 3 is 
MAXSNP-complete, proved by Papadimitriou and Yannakakis [30], where each 
variable appears in at most K clauses. And, the maximum 3-dimensional matching 
bounded by K (MAX 3DM-K) problem with K ≥ 3 is MAXSNP-complete, proved 
by Kann [23], where each symbol appears at most K times in input. It should be 
noticed that MAXSNP ⊆ APX  and MAXSNP-complete ⊆ APX-complete [30]. 
Thus, MAX 3SAT-K and MAX 3DM-K are both APX-complete. In addition, their 
proofs also imply that 3SAT-K and 3DM-K (without maximization) are both NP

-complete.

Definition 5  [30] Maximum 3-satisifiability bounded by 3 (MAX 3SAT-3) problem
Input: A set of variables X, and a set of disjunctive clauses C over the variables X, 

where each clause consists of at most three variables, and each variable occurs in at 
most K = 3 clauses.

Output: Truth assignment of X for the maximal number of satisfied clauses.

For example, suppose that there is a set X = {x1, x2, x3, x4} and 
C = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x2) ∧ (x1 ∨ x2 ∨ x4) , where the number of each vari-
able occurrences in C is bounded by 3. C is satisfied by {x1, x2, x3, x4} , and the num-
ber of satisfied clauses is 3.

Definition 6  [23] Maximum 3-dimensional matching bounded by 3 (MAX 3DM-
3) problem

Input: A set M ⊆ X × Y × Z , where X, Y and Z are disjoint finite sets. Each ele-
ment of X, Y and Z occurs in M at most K = 3 times.

Output: The 3-dimensional matching M′ with the maximal size, where M′ ⊆ M 
and each element of X, Y and Z occurs in M′ at most once.

For example, suppose that there is a set M = {(x1, y1, z1) , (x1, y3, z3) , (x2, y3, z2) , 
(x3, y2, z4) , (x1, y2, z2)} , where each element of X, Y and Z occurs at most 3 times. 
Then M� = {(x1, y1, z1), (x2, y3, z2), (x3, y2, z4)} is the maximum 3-dimensional 
matching of M.

The 3-dimensional matching (3DM) problem (without bound K) is the general 
version, which determines if there exists a 3-dimensional matching with a constant 
size k. In 1972, Karp presented some NP-complete problems, including the 3DM 
problem [24].

3 � Problem Definitions

In this section, we present our formal definitions of the two-dimensional largest 
common substructure (TLCS) problem and give some properties.
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3.1 � Operator Definitions

To find the similarity of the two-dimensional data, we extend the concept for defin-
ing the one-dimensional LCS problem to the TLCS problem. The inputs of the TLCS 
problem are two matrices of characters, and we aim to find the largest common sub-
structure. We regard matrix A of size rA × cA as the index set TA = {(i, j)|1 ≤ i ≤ rA 
and 1 ≤ j ≤ cA} . A substructure of A is defined as an index subset of TA . A common 
substructure U of two matrices A and B is defined as a set of index pairs, one from 
A and the other from B, which obey the matching rules. Since each index of A or 
B has two tuples, U consists of four-tuples. That is, the set of matching index pairs 
is defined as U = { (i, j, p, q) | ai,j = bp,q , and the matching rules are obeyed.}. The 
matching rules determine whether every two matches (two four-tuples) are allowed 
or not. We will introduce the matching rules in detail later. In the following, we first 
present the definition of the TLCS problem, which is the generalization of Defini-
tion 1 given by Amir et al. [2].

Definition 7  Two-dimensional largest common substructure problem (TLCS)
Input: Matrix A with size �A = rA × cA and matrix B with size �B = rB × cB.
Output: The set U of four-tuple indices of A and B with maximum cardinality, 

where every two elements in U obey the matching rules (given later).

The goal of the TLCS problem is to find the maximum number of matches such 
that every two matches satisfy the matching rules (determining whether the two 
matches are valid or not). In other words, the TLCS problem aims to find the larg-
est common substructure U between two character matrices. In Fig. 3, we show an 
example for the TLCS definition with the matching rule P(ENL), one of the match-
ing rules we define (explained later).

In the traditional one-dimensional LCS problem, two matching rules have to 
be obeyed for one common sequence: (1) no duplicate match; and (2) no cross-
ing matches. Similarly, in the TLCS problem, these two rules are still applica-
ble. However, the concept of no crossing matches becomes more complicated in 
TLCS. In other words, the orientation of TLCS would be more various, and the 
matching rules would become more diverse. In the TLCS problem, there are eight 
possible directions in the orientation. They are left, right, upper, lower, upper left, 
upper right, lower left and lower right. Therefore, we divide the two-dimensional 
matching rules into two parts, logical operator and orientation. The logical oper-
ator combines the relationship between rows and columns. For logical operators, 

Fig. 3   An example of the TLCS 
with P(ENL) of two matrices
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there are two possible ways, one is And (N) for considering both the orientation of 
rows and columns together, and the other is Or (R) for treating rows and columns 
as independent. The formal definition of logical operators is given as follows.

Definition 8  Logical operator
And (N): both row and column relationships are satisfied.
Or (O): the row relationship or the column relationships is satisfied.

For two elements ai1,j1 and ai2,j2 , there are two different conditions of the orien-
tation. Corner means that i1 ≠ i2 and j1 ≠ j2 , and side means that i1 = i2 or j1 = j2.

There are two possible corner rules. Suppose two elements ai1,j1 and ai2,j2 
are in matrix A, and bp1,q1 and bp2,q2 are in matrix B, where (i1, j1, p1, q1) , 
(i2, j2, p2, q2) ∈ U . For the row relationship, if i1 < i2 in matrix A, we may stipu-
late either p1 < p2 or p1 ≤ p2 , but not p1 > p2 in matrix B, because the orien-
tation should be preserved. Similarly, for the column relationship, there are 
still two feasible cases, q1 < q2 or q1 ≤ q2 , when j1 < j2 . On the other hand, if 
i1 > i2 in matrix A, we may have either p1 > p2 or p1 ≥ p2 in matrix B. We denote 
p1 < p2 or p1 > p2 as less than (L), and p1 ≤ p2 or p1 ≥ p2 as less than or equal 
to (E) when i1 < i2 or i1 > i2 , respectively. The definition of the corner is given as 
follows.

Definition 9  Corner: let two elements ai1,j1 and ai2,j2 be in A where i1 ≠ i2 
and j1 ≠ j2 . And let two elements bp1,q1 and bp2,q2 be in matrix B. (i1, j1, p1, q1) , 
(i2, j2, p2, q2) ∈ U.

Less than (L): p1 < p2 when i1 < i2 , and q1 < q2 when j1 < j2.
Less than or equal to (E): p1 ≤ p2 when i1 < i2 , and q1 ≤ q2 when j1 < j2.

In Fig.  4, we show examples for the definition of corners. Suppose the ele-
ment ai1,j1 is of character � , and ai2,j2 is marked by dark in matrix A. In matrix B, 
the allowed positions of element bp2,q2 are illustrated by dark cells if (i1, j1, p1, q1) , 
(i2, j2, p2, q2) ∈ U.

For the definition of side, if i1 = i2 and j1 < j2 , then we need to keep only the 
column orientation because we could say that the element (i1, j1) is on the left side 
of (i2, j2) . There are also two possible side rules, less than (L) and less than or 
equal to (E). In addition, we also define rule A for Amir et al. [2].

Definition 10  Side: Let two elements ai1,j1 and ai2,j2 be in matrix A where i1 = i2 
or j1 = j2 . And let two elements bp1,q1 and bp2,q2 be in matrix B. (i1, j1, p1, q1) , 
(i2, j2, p2, q2) ∈ U.

Less than (L): p1 < p2 when i1 < i2 and j1 = j2 . q1 < q2 when i1 = i2 and j1 < j2.
Less than or equal to (E): p1 ≤ p2 when i1 < i2 and j1 = j2 . q1 ≤ q2 when i1 = i2 

and j1 < j2.
Amir’s rule (A): p1 < p2 and q1 = q2 when i1 < i2 and j1 = j2 . p1 = p2 and q1 < q2 

when i1 = i2 and j1 < j2.
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Figure 5 shows two examples for the definition of sides. Suppose ai1,j1 is of char-
acter � , and ai2,j2 is marked by dark in matrix A. In matrix B, the allowed positions 
of element bp2,q2 are presented by dark cells if (i1, j1, p1, q1) , (i2, j2, p2, q2) ∈ U.

Fig. 4   Examples for illustrating 
corners. a Matrix A. b The defi-
nition of corners with logical 
operator N. c The definition of 
corners with logical operator O

(a)

(b)

(c)

(a)

(b)

Fig. 5   Two examples for illustrating the definition of sides
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3.2 � Problem Definitions

When we define a TLCS problem, we partition the definitions into three parts and 
denote the TLCS problem as P(corner, operator, side), where operator denotes the 
logical operator for dealing with the relationship between the row index and col-
umn index, corner and side represent the row and column relationship. Accordingly, 
there are 2 × 2 × 2 different versions of problems, two possible values (L, E) for cor-
ner, two possible values (And, Or) for operator, and two possible values (L, E) for 
side. Besides, the TLCS problem defined by Amir et al. is expressed as P(LNA). Let 
ai1,j1 and ai2,j2 be in matrix A, and bp1,q1 and bp2,q2 be in matrix B, where (i1, j1, p1, q1) , 
(i2, j2, p2, q2) ∈ U . Then we present the matching rules of the eight possible versions 
of the TLCS problem in the following.

P(LNL): P(Less than, aNd,Less than)

	 (i)	 i1 < i2, j1 < j2 → p1 < p2 and q1 < q2
	 (ii)	 i1 < i2, j1 > j2 → p1 < p2 and q1 > q2
	 (iii)	 i1 < i2, j1 = j2 → p1 < p2
	 (iv)	 i1 = i2, j1 < j2 → q1 < q2

P(LNE): P(Less than, aNd, less than orEqual to)

	 (i)	 i1 < i2, j1 < j2 → p1 < p2 and q1 < q2
	 (ii)	 i1 < i2, j1 > j2 → p1 < p2 and q1 > q2
	 (iii)	 i1 < i2, j1 = j2 → p1 ≤ p2
	 (iv)	 i1 = i2, j1 < j2 → q1 ≤ q2

P(ENL): P(less than orEqual to, aNd, Less than)

	 (i)	 i1 < i2, j1 < j2 → p1 ≤ p2 and q1 ≤ q2
	 (ii)	 i1 < i2, j1 > j2 → p1 ≤ p2 and q1 ≥ q2
	 (iii)	 i1 < i2, j1 = j2 → p1 < p2
	 (iv)	 i1 = i2, j1 < j2 → q1 < q2

P(ENE): P(less than orEqual to, aNd, less than orEqual to)

	 (i)	 i1 < i2, j1 < j2 → p1 ≤ p2 and q1 ≤ q2
	 (ii)	 i1 < i2, j1 > j2 → p1 ≤ p2 and q1 ≥ q2
	 (iii)	 i1 < i2, j1 = j2 → p1 ≤ p2
	 (iv)	 i1 = i2, j1 < j2 → q1 ≤ q2

P(LOL): P(Less than, Or, Less than)

	 (i)	 i1 < i2, j1 < j2 → p1 < p2 or q1 < q2
	 (ii)	 i1 < i2, j1 > j2 → p1 < p2 or q1 > q2
	 (iii)	 i1 < i2, j1 = j2 → p1 < p2
	 (iv)	 i1 = i2, j1 < j2 → q1 < q2
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P(LOE): P(Less than, Or, less than orEqual to)

	 (i)	 i1 < i2, j1 < j2 → p1 < p2 or q1 < q2
	 (ii)	 i1 < i2, j1 > j2 → p1 < p2 or q1 > q2
	 (iii)	 i1 < i2, j1 = j2 → p1 ≤ p2
	 (iv)	 i1 = i2, j1 < j2 → q1 ≤ q2

P(EOL): P(less than orEqual to, Or, Less than)

	 (i)	 i1 < i2, j1 < j2 → p1 ≤ p2 or q1 ≤ q2
	 (ii)	 i1 < i2, j1 > j2 → p1 ≤ p2 or q1 ≥ q2
	 (iii)	 i1 < i2, j1 = j2 → p1 < p2
	 (iv)	 i1 = i2, j1 < j2 → q1 < q2

P(EOE): P(less than orEqual to, Or, less than orEqual to)

	 (i)	 i1 < i2, j1 < j2 → p1 ≤ p2 or q1 ≤ q2
	 (ii)	 i1 < i2, j1 > j2 → p1 ≤ p2 or q1 ≥ q2
	 (iii)	 i1 < i2, j1 = j2 → p1 ≤ p2
	 (iv)	 i1 = i2, j1 < j2 → q1 ≤ q2

In the above eight matching rules, we can find that P(ENE) is exactly the same as 
the type-0 relation of 2D strings [11, 16] and P(LNA), defined by Amir et al., is 
exactly the same as the type-1 relation [11, 16]

In the above definitions, not all matching rules can form a valid TLCS prob-
lem. A valid matching rule should be symmetric. That is, the optimal solution of 
two matrices A and B should also be the optimal solution of matrices B and A.

Let Rx denote the binary relation for satisfying P(x) matching rule, where  
x ∈ { LNL, LNE, ENL, ENE, LOL, LOE, EOL, EOE } . Let ai1,j1 and ai2,j2 be two 
distinct elements in matrix A, and bp1,q1 and bp2,q2 be two distinct elements in 
matrix B. We say that (i1, j1, i2, j2) Rx (p1, q1, p2, q2) if they satisfy the matching 
rule x. Furthermore, the TLCS problem with matching rule x is a valid problem if 
and only if the binary relation Rx is symmetric.

Lemma 1  The binary relation RENL is symmetric.

Proof  Suppose (i1, j1, i2, j2) RENL (p1, q1, p2, q2) . Here, we want to prove that 
(p1, q1, p2, q2) RENL (i1, j1, i2, j2) is true.

To prove the symmetry of RENL , four cases are considered as follows. 

Case 1	� ai1,j1 and ai2,j2 are corner, bp1,q1 and bp2,q2 are corner.
Case 2	� ai1,j1 and ai2,j2 are side, bp1,q1 and bp2,q2 are side.
Case 3	� ai1,j1 and ai2,j2 are corner, bp1,q1 and bp2,q2 are side.
Case 4	� ai1,j1 and ai2,j2 are side, bp1,q1 and bp2,q2 are corner.
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In cases 1 and 2, the condition of the orientation of the ai1,j1 , ai2,j2 and bp1,q1 , bp2,q2 
are the same. Hence, if (i1, j1, i2, j2) RENL (p1, q1, p2, q2) , then (p1, q1, p2, q2) RENL 
(i1, j1, i2, j2) . In rule (i) of P(ENL), p1 ≤ p2 and q1 ≤ q2 when i1 < i2 and j1 < j2 . 
Hence, in case 3, it should be: (1) p1 < p2 , q1 = q2 ; or (2) p1 = p2 , q1 < q2 . In these 
two conditions, according to P(ENL) rules (iii) and (iv) respectively, (p1, q1, p2, q2) 
RENL (i1, j1, i2, j2) is true. Consequently, RENL is symmetric in case 3. Similarly, case 
4 is also symmetric. Thus, RENL is symmetric. 	�  ◻

With similar proofs (omitted here), we have the following lemma.

Lemma 2  The binary relations RENE , RLOL and RLOE are symmetric.

By the above two lemmas, the following theorem can be obtained.

Theorem 1  Each of the TLCS problem with P(ENL), P(ENE), P(LOL) and P(LOE) 
is valid.

In Fig.  6, we present an example for showing that RENL is symmetric. In 
Fig.  6a, b, suppose ai1,j1 = � and ai2,j2 is marked by dark in matrix A. In matrix 
B, the allowed positions of element bp2,q2 are illustrated by dark cells. In Fig. 6c, 
d, we can find that (2, 2, 3, 3) RENL (2, 2, 2, 3) and (2, 2, 2, 3) RENL (2, 2, 3, 3), 
respectively. This example can also be applied to RENE , RLOL and RLOE.

Lemma 3  The binary relations RLNL , RLNE , REOL and REOE are not symmetric.

(a) (b)

(c) (d)

Fig. 6   Examples of the valid matching rule for P(ENL). a The definition of corner for P(ENL). b The 
definition of side for P(ENL). c An example for P(ENL). d Another example for P(ENL)
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Proof  For each binary relation, we give an example to show that it is not symmetric. 
It is clear that (2, 2, 2, 3) RLNL (2, 2, 3, 3). However, (2, 2, 3, 3) RLNL (2, 2, 2, 3) is 
not true. Hence, RLNL is not symmetric.

Similarly, (2,  2,  2,  3) RLNE (2,  2,  3,  3). However, (2,  2,  3,  3) RLNE (2,  2,  2,  3) 
is not true. (2, 2, 3, 3) REOL (2, 2, 2, 1). Rule (iv) of P(EOL) can be rewritten as 
[i1 = i2, j1 > j2 → q1 > q2] . Thus, (2, 2, 2, 1) REOL (2, 2, 3, 3) is not true. (2, 2, 3, 3) 
REOE (2, 2, 2, 1). Rule (iv) of P(EOE) can be rewritten as [i1 = i2, j1 > j2 → q1 ≥ q2] . 
However, (2, 2, 2, 1) REOE (2, 2, 3, 3) is not true.

Thus, this lemma holds. 	�  ◻

Figure 7 illustrates an example that RLNE is not symmetric. In Fig. 7a, b, suppose 
ai1,j1 = � and ai2,j2 is marked by dark in matrix A. In matrix B, the allowed positions 
of element bp2,q2 are illustrated by dark cells. It is clear that in Fig. 7c, (2, 2, 2, 3) 
RLNE (2, 2, 3, 3), but in Fig. 7d, (2, 2, 3, 3) RLNE (2, 2, 2, 3) is not true.

With Lemma 3, we get the following result.

Theorem 2  The problems P(LNL), P(LNE), P(EOL) and P(EOE) are not valid.

We summarize the possible TLCS problems with various matching rules in 
Table 1. In the table, (i1, j1) and (i2, j2) are in matrix A, and the relation inside each 
cell indicates the relation between (p1, q1) and (p2, q2) in matrix B. Taking P(ENL) 
as an example, two matching elements in the corner positons of matrix A with 
[i1 < i2 and j1 < j2] means that [p1 ≤ p2 and q1 ≤ q2] in matrix B. And two match-
ing elements in the side positons of matrix A with [i1 < i2 and j1 = j2] means that 
p1 < p2 in matrix B. RA and CA represent row alignment and column alignment, 

(a) (b)

(c) (d)

Fig. 7   An example of the invalid matching rule for P(LNE). a The definition of corner for P(LNE). b 
The definition of side for P(LNE). c An example for the valid P(LNE) matching rule. d An example of an 
invalid matching rule for P(LNE), which shows that RLNE is not symmetric with respect to c 
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respectively. Row alignment means that the two-dimensional matrix is mapped 
into a one-dimensional sequence by the row-major scheme. Hence, the row align-
ment only considers the order of the rows. Similarly, the column alignment cor-
responds to the column-major scheme.

Definition 11  Let CUx denote the largest common substructure (optimal solution) 
of P(x), x ∈ {ENL , ENE, LOL, LOE,RA,CA, LNA} , where RA and CA denote the 
problem with the row alignment and column alignment, respectively. And, let |CUx| 
denote its size.

In the above definition, for example, CUENL denotes the largest common sub-
structure of P(ENL), and |CUENL| denotes its size. CUENL is represented by the 
maximal set of the four-tuples of the matching index pairs {(i, j, p, q) | ai,j = bp,q , 
and the P(ENL) matching rule is obeyed.} . The solution sizes of these TLCS 
problems can be partially ordered. Figure  8 illustrates the solutions with two 
input matrices A and B shown in Fig. 8a. We can see that with different matching 
rules, it is possible to obtain a different solution with the same input. We have the 
following Theorem.

Theorem  3  |CULNA| ≤ |CUENL| ≤ (|CUENE| , |CULOL|) ≤ |CULOE| , and 
|CULNA| ≤ (|CURA| , |CUCA|) ≤ |CULOL| ≤ |CULOE|.

Here, we do not give the formal proof. With the definitions of these TLCS 
problems, one can easily show the correctness of the above theorem. We illustrate 
the conceptual solutions in Fig.  9, from which the above theorem can also be 
verified.

Table 1   The TLCS problems with various matching rules. Here, (i
1
, j
1
) and (i

2
, j
2
) are in matrix A, and 

each cell in column (i
1
, i
2
) indicates the relation between (p

1
, p

2
) of matrix B and in column (j

1
, j
2
) indi-

cates the relation between (q
1
, q

2
)

Problem Operator Corner Side Valid

i
1
< i

2
j
1
< j

2
i
1
< i

2
j
1
> j

2
i
1
< i

2
j
1
= j

2
i
1
= i

2
j
1
< j

2

RA and < < < = < Y
CA < > < = < Y
LNA < < < > < = = < Y
LNL < < < > < < N
LNE < < < > ≤ ≤ N
ENL ≤ ≤ ≤ ≥ < < Y
ENE ≤ ≤ ≤ ≥ ≤ ≤ Y
LOL or < < < > < < Y
LOE < < < > ≤ ≤ Y
EOL ≤ ≤ ≤ ≥ < < N
EOE ≤ ≤ ≤ ≥ ≤ ≤ N
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4 � Proofs of NP‑Hardness and APX‑Hardness

In this section, we prove that P(ENL), P(ENE), P(LOL) and P(LOE) are NP-hard 
and APX -hard.

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 8   Comparison of solution sizes of various TLCS problems. a Matrices A and B. b–h The solutions 
of various TLCS problems

(a)

(b)

Fig. 9   The conceptual solutions of various TLCS problems. a The solution of corners for various TLCS 
problems. b The solution of sides for various TLCS problems
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4.1 � NP‑Hardness of P(ENL) and P(ENE)

Guan et al. [16] proved that the maximum similar subpicture problems of type-0 
and type-1 are NP-hard by reducing from 3SAT. Note that type-0 is exactly 
the same as P(ENE). In addition, P(ENL) can also be proved to be NP-hard by 
reducing from 3SAT with the same transformation. The transformation �ENL is 
described as follows. The instance of 3SAT is represented by a set of Boolean 
variables X = {x1, x2,⋯ , xn} , and a Boolean formula C = C1 ∧ C2 ∧⋯ ∧ Cm , 
where each clause has the form Ct = (vt,1 ∨ vt,2 ∨ vt,3) , 1 ≤ t ≤ m , vt,1 = x�t,1 or x�t,1  , 
vt,2 = x�t,2 or x�t,2  , vt,3 = x�t,3 or x�t,3  , 1 ≤ �t,1 ≠ �t,2 ≠ �t,3 ≤ n . Matrices A and B of 
P(ENL), where |A| = |B| = 2n × 3m , are constructed as follows [16].

Figure 10 shows an example of transformation �ENL . Every two rows of A or B cor-
respond to one variable of 3SAT, but they are in reverse order in A and B. Every 
three columns of A or B correspond to one clasue of 3SAT, but they are in reverse 
order in A and B. Rows 1 and 2 correspond to x1 and x1 in matrix A, but they are for 
x1 and x1 in matrix B, respectively. Columns 1, 2 and 3 correspond to the first, sec-
ond and third literals in matrix A, but they are for the third, second and first literals 
in matrix B, respectively. For example, l2

1
, l2
2
 and l2

3
 correspond to C2 = (x1 ∨ x3 ∨ x2).

In transformation �ENL , if lt
u
 is selected into the solution CUENL , then it means 

that its corresponding element vt,u in Ct is assigned to be true. Any pair of ele-
ments lt

1
 , lt

2
 and lt

3
 are never selected in CUENL at the same time (proved in Lemma 

4). It implies that if one of the literals in Ct is true, then Ct is true for 3SAT. 
Accordingly, |CUENL| ≤ m.

Lemma 4  Suppose that ai1,j1 = bp1,q1 = lt
u
 and ai2,j2 = bp2,q2 = lt

u�
 , where 

1 ≤ u ≠ u′ ≤ 3 . Then (ai1,j1 , bp1,q1 ) and (ai2,j2 , bp2,q2 ) cannot be both in CUENL.

Proof  If u < u′ , then j1 < j2 and q1 > q2 do not obey the column relationship of cor-
ner for P(ENL). Similarly, if u > u′ , then j1 > j2 and q1 < q2 do not obey the column 
relationship of corner for P(ENL). Thus, the lemma holds. 	�  ◻

(1)ai,j =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

lt
u

⎧
⎪
⎨
⎪
⎩

if i = 2� − 1, j = 3(t − 1) + u, where the uth literal of Ct is x� ;

if i = 2�, j = 3(t − 1) + u, where the uth literal of Ct is x� ;

u = 1, 2, 3;

� otherwise.

(2)bi,j =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

lt
u

⎧
⎪
⎨
⎪
⎩

if i = 2�, j = 3t + 1 − u, where the uth literal of Ct is x� ;

if i = 2� − 1, j = 3t + 1 − u, where the uth literal of Ct is x� ;

u = 1, 2, 3;

� otherwise.
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Suppose that two elements lt
u
 and lt′

u′
 correspond to the same variable x� , one for x� 

and the other for x�  , where t ≠ t′ and 1 ≤ u, u′ ≤ 3 . They cannot be both in CUENL . 
It is proved in the following lemma.

Lemma 5  Suppose that Ct and Ct′ have a common variable, t ≠ t′ , one is x� and 
the other is x�  , ai1,j1 = bp1,q1 = lt

u
 , and ai2,j2 = bp2,q2 = lt

�

u�
 . Then (ai1,j1 , bp1,q1 ) and 

(ai2,j2 , bp2,q2 ) cannot be both in CUENL.

Proof  If Ct contains x� and Ct′ contains x�  , then i1 < i2 and p1 > p2 do not obey the 
row relationship of corner for P(ENL). Similarly, if Ct contains x�  and Ct′contains x� , 
then i1 > i2 and p1 < p2 do not obey the row relationship of corner for P(ENL). 	�  ◻

Except the conflict conditions mentioned in Lemmas 4 and 5, any other pair of 
matchings can be both in CUENL.

With Lemmas 4 and 5, 3SAT reduces to P(ENL), and thus we have the following 
result.

Theorem 4  The TLCS problem with P(ENL) is NP-hard.

The proof for P(ENL) can be applied to P(ENE).

(a)

(b)

Fig. 10   An example of transformation �ENL for proving the NP-hardness of P(ENL). a Instance sets X 
and C in 3SAT. b Matrices A and B of P(ENL), constructed from X and C 
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Theorem 5  [16] The TLCS problem with P(ENE) is NP-hard.

4.2 � APX ‑Hardness of P(ENL) and P(ENE)

For proving the APX-hardness, we use the same transformation �ENL from the MAX 
3SAT-3 problem, instead of the 3SAT problem, to P(ENL) and P(ENE).

Theorem 6  The TLCS problem with P(ENL) is APX-hard.

Proof  For instance I, let k = |optMAX 3SAT−3(I)| . We have 
optENL(f (I)) = k = |optMAX 3SAT−3(I)| . For each sol ∈ SolENL(f (I)) with |sol| = oj2 , 
we can get corresponding sol� ∈ SolMAX 3SAT−3(I) with |sol�| = oj1 = oj2 . 
|optMAX 3SAT−3(I) − oj1| = k − oj1 = k − oj2 = |optENL(f (I)) − oj2| . Hence, �ENL is an 
L-reduction from MAX 3SAT-3 to P(ENL) with � = 1 and � = 1 . 	�  ◻

The proof for P(ENL) can be applied to P(ENE), thus the following theorem is also 
obtained.

Theorem 7  The TLCS problem with P(ENE) is APX-hard.

4.3 � NP‑Hardness of P(LOL) and P(LOE)

We prove that P(LOL) and P(LOE) are NP-hard by reducing from the 3DM problem. 
The transformation �LOL for P(LOL) is described as follows. The input instance of 3DM 
is represented by a set M = {M1,M2,⋯ ,Mm} ⊆ X × Y × Z , where X, Y and Z are dis-
joint finite sets, |M| = m , and |X| + |Y| + |Z| = n . Let Mt = (x� , y�′ , z��� ) ∈ M , where 
1 ≤ t ≤ m , x� ∈ X , y�� ∈ Y , z��� ∈ Z , 1 ≤ � ≤ |X| , 1 ≤ �′ ≤ |Y| and 1 ≤ �′′ ≤ |Z| . The 
matrices A and B of P(LOL) are constructed as follows, where |A| = m × (2m + n) and 
|B| = (m + nm) × 5m.

Figure 11 shows an example of �LOL , where m = 3 and n = 6 . Each row in matrix A 
and every submatrix of size (m + nm) × 5 = 21 × 5 in matrix B correspond to one 

(3)ai,j =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

lt
u
if i = t, and j = 2(t − 1) + u, u = 1, 2;

lt
x
if i = t, and j = 2m + �;

lt
y
if i = t, and j = 2m + �X� + ��;

lt
z
if i = t, and j = 2m + �X� + �Y� + ���;

� otherwise.

(4)bi,j =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

lt
u
if i = t, and j = 5(m − t) + 3 + u, u = 1, 2;

lt
x
if i = m(1 + �) − (t − 1), and j = 5(m − t) + 1;

lt
y
if i = m(1 + �X� + ��) − (t − 1), and j = 5(m − t) + 2;

lt
z
if i = m(1 + �X� + �Y� + ���) − (t − 1), and j = 5(m − t) + 3;

� otherwise.
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element Mt of M. lt
x
 , lt

y
 and lt

z
 correspond to elements x� , y�′ and z�′′ of Mt . lt1 and lt

2
 are 

the expanded symbols generated from Mt.
In matrix A of Fig. 11, row t corresponds to Mt , columns 1 to 6 are for lt

1
 and lt

2
 , 

columns 7 and 8 are for x1 and x2 , respectively, columns 9 and 10 are for y1 and y2 , 
respectively. In matrix B, columns 11 to 15 are for M1 , columns 6 to 10 are for M2 
(reverse order). Rows 1 to 3 correspond to lt

1
 and lt

2
 . Rows 4 to 6 correspond to x1 , in 

which rows 4, 5 and 6 are for M3 , M2 and M1 (reverse order), respectively. Rows 7 
to 9 correspond to x2 , in which rows 7, 8 and 9 are for M3 , M2 and M1 , respectively. 
Rows 10 to 15 are for Y, and rows 16 to 21 are for Z.

Each symbol, except � and � , appears exactly once in matrix A and once in matrix 
B. Obviously, |CULOL| ≤ 5m (including all symbols, but excluding � and � ). To 
obtain a tighter bound, for one element Mt ∈ M , exactly one of two possible matches 
(lt
1
, lt
2
) and (lt

x
, lt
y
, lt
z
) can be made between A and B. Thus, 2m ≤ |CULOL| ≤ 3m.

(a)

(b)

Fig. 11   An example of transformation �LOL for proving the NP-hardness of P(LOL). a An input set M of 
the 3DM problem. b Matrices A and B of P(LOL), constructed from M 
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In the following, we will prove that |CULOL| = 2m + k if and only if there exists 
a 3-dimensional matching with size k in M. Moreover, if |CULOL| = 2m + k and 
(lt
x
, lt
y
, lt
z
) are three of the common elements in CULOL , then Mt will be picked as one 

match in the optimal solution of M. The formal proof is accomplished by the follow-
ing lemmas.

Lemma 6  Suppose that ai1,j1 = bp1,q1 = lt
u
 , where u = 1, 2 , and ai2,j2 = bp2,q2 = lt

v
 , 

where v = x, y, z . Then (ai1,j1 , bp1,q1 ) and (ai2,j2 , bp2,q2 ) cannot be both in CULOL.

Proof  By the transformation �LOL defined in (3) and (4), it is clear that i1 = i2 , 
j1 < j2 , p1 < p2 and q1 > q2 . We have that j1 < j2 and q1 > q2 do not obey the col-
umn relationship of side ( i1 = i2 ) in P(LOL). Thus, (ai1,j1 , bp1,q1 ) and (ai2,j2 , bp2,q2 ) 
cannot be both in CULOL . 	�  ◻

Lemma 7  Suppose that Mt and Mt′ have a common element, ai1,j1 = bp1,q1 = lt
v
 and 

ai2,j2 = bp2,q2 = lt
�

v
 , where v = x, y, z and t ≠ t′ . Then (ai1,j1 , bp1,q1 ) and (ai2,j2 , bp2,q2 ) 

cannot be both in CULOL.

Proof  Assume that t < t′ . By the transformation �LOL defined in (3) and (4), it is 
clear that i1 < i2 , j1 = j2 , p1 > p2 and q1 > q2 . We have that i1 < i2 and p1 > p2 do 
not obey the row relationship of side ( j1 = j2 ) in P(LOL). A similar result can be 
obtained when t > t′ . Therefore, (ai1,j1 , bp1,q1 ) and (ai2,j2 , bp2,q2 ) cannot be both in 
CULOL . 	�  ◻

Except the conflict conditions in Lemmas 6 and 7, any other pair of matchings 
can be both in CULOL.

Lemma 8  |CULOL| = 2m + k if and only if there exists a 3-dimensional matching 
with size k.

Proof  If there exists a 3-dimensional matching with size k, it is obvious that in �LOL , 
2(m − k) + 3k = 2m + k elements in matrix A can be matched with elements in B.

With Lemma 6, we pick up either 2 or 3 elements from each row in A. If 3 ele-
ments are picked up in one row of A, then lt

x
 , lt

y
 and lt

z
 are the targets. It means that 

Mt is picked up in the solution of 3DM. If |CULOL| = 2m + k , it means that k rows 
of A are picked up with 3 elements. With Lemma 7, the picked elements are all dis-
tinct in X, Y or Z. Therefore, by �LOL , the matches we pick up in matrices A and B of 
P(LOL) correspond to a 3-dimensional matching with size k. 	�  ◻

With Lemma 8, 3DM reduces to P(LOL), and thus we have the following result.

Theorem 8  The TLCS problem with P(LOL) is NP-hard.

Similarly, the reduction and Lemma 8 can also be applied to P(LOE), thus we 
have the following result.
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Theorem 9  The TLCS problem with P(LOE) is NP-hard.

4.4 � APX ‑Hardness of P(LOL) and P(LOE)

For proving the APX -hardness of P(LOL) and P(LOE), we use the same trans-
formation �LOL from the MAX 3DM-3 problem, instead of the 3DM problem, to 
P(LOL) and P(LOE).

If there is a matching (x, y, z) ∈ optMAX 3DM-3 , then at most 6 matches may not 
be in optMAX 3DM-3 . For example, if (x, y, z) ∈ optMAX 3DM-3 , then (x, y1, z1) , (x, y2, z2) , 
(x1, y, z1) , (x2, y, z2) , (x1, y1, z) , (x2, y2, z) cannot be in optMAX 3DM-3 . It is clear that 
m ≤ (6 + 1)k = 7k , where k = |optMAX 3DM-3|.

Theorem 10  The TLCS problem with P(LOL) is APX-hard.

Proof  For instance I, let k = |optMAX 3DM-3(I)| . We have |optLOL(f (I))| = 2m + k ≤
14k + k = 15k . That is, |optLOL(f (I))| ≤ 15|optMAX 3DM-3(I)| . Thus, � = 15 . For each 
sol ∈ SolLOL(f (I)) with |sol| = oj2 , we can get corresponding sol′ ∈ SolMAX 3DM-3(I) 
with |sol�| = oj1 ≥ oj2 − 2m , since three elements picked up in one row of A of 
P(LOL) corresponds to one picked Mt of MAX 3DM-3, and two or fewer elements 
picked up in one row of A of P(LOL) corresponds to nothing in MAX 3DM-3. It implies 
|optMAX 3DM-3(I) − oj

1
| = k − oj

1
≤ k − (oj

2
− 2m) = (2m + k) − oj

2
= |optLOL(f (I)) − oj

2
| . Hence, 

�LOL is an L-reduction from MAX 3DM-3 to P(LOL) with � = 15 and � = 1 . 	�  ◻

Similarly, the same reduction and proof can also be applied to P(LOE), thus 
we have the following result.

Theorem 11  The TLCS problem with P(LOE) is APX-hard.

5 � Conclusion

In this paper, we present the more general definitions of the two-dimensional 
largest common substructure (TLCS) problems with various matching rules. 
To meet different demands, we present different types of corners, operators and 
sides. With various combinations of corners, operators and sides, we define four 
valid TLCS problems, including P(ENL), P(ENE), P(LOL) and P(LOE). We 
prove that all of these four TLCS problems are NP-hard and APX -hard. In the 
future, it is worthy to design approximation algorithms for the TLCS problems. It 
is also interesting to discover whether these problems are APX -complete or not.
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