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Abstract

Protein sequence matching presently fails to identify many structures that are highly

similar, even when they are known to have the same function. The high packing densi-

ties in globular proteins lead to interdependent substitutions, which have not previ-

ously been considered for amino acid similarities. At present, sequence matching

compares sequences based only upon the similarities of single amino acids, ignoring

the fact that in densely packed protein, there are additional conservative substitutions

representing exchanges between two interacting amino acids, such as a small-large pair

changing to a large-small pair substitutions that are not individually so conservative.

Here we show that including information for such pairs of substitutions yields

improved sequence matches, and that these yield significant gains in the agreements

between sequence alignments and structure matches of the same protein pair. The

result shows sequence segments matched where structure segments are aligned. There

are gains for all 2002 collected cases where the sequence alignments that were not

previously congruent with the structure matches. Our results also demonstrate a signif-

icant gain in detecting homology for “twilight zone” protein sequences. The amino acid

substitution metrics derived have many other potential applications, for annotations,

protein design, mutagenesis design, and empirical potential derivation.
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amino acid similarities, amino acid substitution matrix, interdependent amino acid
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1 | INTRODUCTION

The rapid advances in genome sequencing and structural biology pro-

vide an opportunity to improve the understanding of the relationship

between protein sequence and structure.1 Sequence matching is

extremely important since it is by far the most commonly used com-

putation in biology. The results from sequence matching serve as fun-

damental data for many studies.2-13 When utilizing the massive data

of protein sequences, the combination of Basic Local Alignment

Search Tool (BLAST)14 with amino acid substitution matrices is power-

fully informative.

There is a long history of the development of a wide variety of

substitution matrices. The point accepted mutation (PAM) matrices

were the first set of substitution matrices developed by Margaret

Dayhoff are based on 1572 point mutations in the phylogenetic trees

of 71 families of closely related proteins. The blocks substitution

matrix (BLOSUM) family of substitution matrices15 developed in 1992

are the most commonly used still, in part because of s use in BLAST at

NCBI. The BLOSUM62 matrix is the default matrix for protein
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sequence matching there and remains the standard substitution

matrix in protein sequence database searches and sequence matching.

Miyazawa and Jernigan16 introduced another type of substitution

matrix based on the empirical amino acid contact frequencies. Muller

et al17 developed the variable time maximum likelihood (VTML) sub-

stitution matrices based on divergent alignments for identifying dis-

tantly related protein sequences. More specific substitution matrices

were developed for different families of proteins18 or different types

of structures.19 Yamada and Tomii20 reported a matrix based on prin-

cipal component analysis and the variabilities across existing substitu-

tion matrices. Several reports have utilized sequence neighbors and

sequence triplets21,22 to develop a pairwise or three-way dependent

matrix, but these are only for nearest neighbors along a sequence.

Other substitution matrices23-28 include some that have focused on

the details of the matching method itself. None of the above men-

tioned approaches account for the interdependences of substitutions

at longer separations in sequence.

People have also used structure information to derive substitution

matrices. A straightforward way is to use protein structure alignment to

extract the amino acid substitution information, based on the nearest

residues in the two proteins in the match. Prlic et al derived substitution

matrices from a set of protein structure pairs with high structural simi-

larity but low sequence identity.29 The Johnson and Overington matrix

also considered regions in the structure alignment, where the gaps

occur.30 Blake and Cohen extracted substitutions from the superposi-

tion of protein structures to target the “twilight zone” (protein

sequences with identity lower than 20%) in protein sequence

matching.31 Teodorescu generated substitution matrices by combining

the energy information from protein structures with substitution matri-

ces derived from sequence data.32 However, only the BLOSUM substi-

tution matrices have come into common e due to their limited

improvements. Our own group recently explored the approach of devel-

oping different substitution matrices for different structure families but

obtained relatively small gains.33 In a predecessor to this paper, we

developed a new substitution matrix that combined BLOSUM62 matrix

with the correlated pair information from multiple sequence alignments

(MSAs)34 to show in a proof of principle that this can bring structure

matches and sequence matches into agreement. That substitution

matrix permits too many substitutions and was found to give false posi-

tives in homolog detection. The major challenge of incorporating struc-

tural information into a substitution matrix is to resolve the conflicting

substitution information extracted from structures and sequences.

Studies from our group have developed knowledge-based poten-

tials derived by mining residue contact information in protein structures

that have proven to be the most successful type of potentials for

assessing the quality of modeled protein structures at critical assess-

ment of protein structure prediction (CASP).35-37 From this, we can

hypothesize that the important interactions are those between neigh-

boring residues. Globular proteins are tightly packed, almost at the den-

sity the most densely packed spheres.38,39 The packing density is also

related in detail to sequence entropies and amino acid conservation40,41

because of the free volume around a given amino acid. In a densely

packed environment, it is possible that these interdependences extend

over long distances. One mutation may trigger a chain reaction that

leads to a requirement for multiple coordinated mutations at its succes-

sive neighboring positions. The simplest of these dependences should

be manifested in be a pair of coevolving positions. At two physical adja-

cent positions in a structure, a large-small pair of amino acids might be

substituted with a small-large pair without disrupting the structure, or a

charged (+−) pair might be substituted with a (−+) pair. These types of

compensatory mutations can lead directly to substitutions at a single

position that would not be considered to be so similar, but at the same

time are maintaining the protein stability with closely similar free ener-

gies between the substituted structures. Since spatially close residues

are often evolutionarily correlated, this means that coevolving residues

has passed through correlated mutations in the history of evolution,

and this is the underlying reason why it's possible to make a connection

between sequence and structure information by using these types of

correlations.

The big data of protein sequences contain important information

about correlated mutations. Such correlations can be detected by

coevolution analysis methods. Mutual information based on the asso-

ciation of information entropy between a pair of residue positions is

being widely and successfully used as a straightforward way to predict

coevolved residues in structures from the apparent correlations in a

sequence multiple alignment. The results are confounded by indirect

correlations through intermediates.42,43 Dunn et al added in an aver-

age product correction to mutual information to remove the back-

ground correlation signals from random noise and phylogenetic

components.44 Direct coupling analysis (DCA)45,46 was used to extract

the direct correlations to predict the residue pairs in immediate spatial

contact. To achieve a similar goal, Jones et al introduced protein

sparse inverse of covariance, a precision matrix based approach to fil-

ter indirect correlations.47

In the present study, we develop an approach to derive a new sub-

stitution matrix from a large set of sequence data that accounts for

these interdependent substitutions and is intrinsically reflecting the

structure information. The approach is shown in Figure 1. We first cal-

culate the evolutionary correlation among pairs of positions in a MSA

for a given protein family. Then filter to retain those pairs that have sig-

nificant correlation with the additional requirement that they should be

spatially close in the corresponding protein structure. Finally, the substi-

tution matrix is derived from the interdependent amino acid substitu-

tions contained in those pairs. Our results show that our new matrix is

able to make congruent the sequence alignments and the structure

matches. It also yields significant gains in identifying structural homo-

logs for “twilight zone” sequences. We call this new amino acid substi-

tution matrix “ProtSub” for Protein Substitutions.

2 | MATERIALS AND METHODS

2.1 | Datasets

One of the biggest challenges is to select a training dataset that

covers as many protein families as possible and at the same time
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contains high-quality MSAs, that also have at least one representative

protein structure for each family. A reliable coevolution correlation

evaluation requires a large number of well aligned, diverse sequences.

We chose to use the Pfam-A database48 because it is the largest pro-

tein domain family database that contains high-quality MSAs. The

accuracy of Pfam MSAs is better because of their human curation.

The selection of the training dataset is based on a balance among

three criteria: (a). the coverage of protein families; (b). the number of

MSAs that are suitable for coevolution calculation; (c) the quality of

the representative structures. To test the ProtSub matrix, we use

datasets from the (Class, Architecture, Topology and Homology

(CATH)49 database and ASTRAL in structural classification of proteins

— extended (SCOPe) database50 and follow the same testing schemes

widely used in other studies. Both datasets have served as the “gold”
standard for homolog detection test from previous studies. The test-

ing dataset from the CATH database contains 4184 homolog families

with a total of 8901 protein sequences. The testing dataset from the

ASTRAL database contains 1454 homolog families and a total of 4066

sequences in the ASTRAL20 database. These two datasets ensure

extensive coverage of homolog families and folding topologies.

2.2 | Extract coevolution correlations from
multiple sequence alignments

In this study, we use 2320 Pfam-A MSAs to extract the coevolution

correlations. Each family contains at least 1000 sequences and has at

least one representative of an experimentally determined structure. In

each MSA, only “ungapped” positions are considered in the calcula-

tion. Here an “ungapped” position is defined as a position containing

fewer than 10% of gaps. In this study, we use mutual information to

extract the coevolution correlations. Methods like DCA that predict

residue contacts may lead to a biased sampling of interdependent

substitutions. The transitive correlations resulting from mutual infor-

mation also contain important information of interdependent substi-

tutions, which should be considered in the process of sequence

matching. The mutual information between two positions in a MSA is

defined as:

Ii,j =
Xq

Ai ,Bj
f Ai,Bj

� �
log

f Ai,Bj

� �

f Aið Þf Bj

� � , ð1Þ

where q equals to 21, is the number of amino acid types and counts

gaps as a 21st type of amino acid. While the number of sequence in

the MSA data is sufficiently large, we use frequencies to approximate

the probabilities. f(Ai) is the frequency of a single amino acid type A

observed at position i. f(Ai, Bj) is the joint frequency for observing the

co-occurrence of two amino acid types A and B at positions i and j.

Both single and pair frequencies are weighted by the redundancy of

the sequences in the MSA (see §1 for details about weight calcula-

tion). We calculate z-scores for all the mutual information based on

the approach described in reference51 and use a z-score threshold of

3.0 to define the significantly correlated pairs (See §2 Figure S1).

2.3 | Selecting correlated positions with observed
proximate residues

False positive may be included when evaluating coevolution correla-

tions. With all of the structure information available in the training

dataset, we can use observed residue proximity to remove a signifi-

cant number of these false positives. Here we limit the selected corre-

lated position pairs to residue pairs that are structurally proximate.

The tip atoms which are the heavy atoms on the terminal ends of each

amino acid side chain (C-alpha for Glycine) have previously been used

by Liang's group52,53 to achieve higher specificities in empirical

F IGURE 1 Derivation of the ProtSub amino acid substitution matrix. Pairs of residue positions having significant correlations in the multiple
sequence alignments are filtered to retain only those correlated pairs in close contact (red) and discarding others (blue). 2320 Pfam domains were
used to derive the sequence correlations. The resulting ProtSub substitution matrix is based on the cumulative information from all of these
structural domains (see §4 in Supporting information for the list of domains whose multiple sequence alignments are used, together with the
representative structures)
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potential functions and for characterizing binding sites. In this study,

proximate residues are defined by tip atoms from different residues

that fall within a distance of 4.5 Å. Using tip atoms helps identify

groups of proximate residues with large sequence separations that are

most likely to be interacting.

2.4 | Derive a new matrix from contextual
substitutions

The elements in an amino acid substitution matrix are substitution

scores. A substitution score describes the tendency of one type of

amino acid being substituted, or not, by another type of amino acid.

The result of the coevolution calculation indicates that coevolution

correlation is ubiquitous throughout every protein family. Most amino

acid mutations do not occur independently, but depend on their struc-

tural context. By extracting substitution frequencies from correlated

positions selected from the previous step, we embed the dependence

information of substitutions into a new set of substitution scores.

Similar to the original BLOSUM series of matrices, we also derive sub-

stitution scores using log-odds ratio:

s A,Bð Þ= λlog f A,Bð Þ
f Að Þf Bð Þ , ð2Þ

where f(A, B) is the joint frequencies and f(A)f(B) are the expected sin-

gle amino acid type frequencies. λ is a scalar factor, optimized to give

the best homolog detection performance based on the training

dataset (2320 Pfam domains). A semi-heuristic strategy is used here

to optimize λ. First, a coarse set of values over a broad range of λ is

investigated and then refined over a smaller interval, iteratively. The

initial iteration scans through a range of values between 1.0 and 5.0

with a large interval of 0.5. The procedure stops when the stepping

interval is less than 0.1. The outcome is to assign λ to be 2.4 in the

final ProtSub matrix.

3 | RESULTS

We compare ProtSub with two substitution matrices, BLOSUM and

VTML200, which are reported to have the best performance in homo-

log detection from previous studies.27 Comparisons of the new substi-

tution matrix for ProtSub with BLOSUM62, and VTML200 are shown

in Figure 2. These differences are calculated by individually sub-

tracting the corresponding elements in BLOSUM62 and VTML200

from the ProtSub matrix. Overall, ProtSub agrees more closely with

BLOSUM62 than with VTML200. When compared with BLOSUM62,

there are 63 out of the 210 elements changed. The major differences

are on diagonal, instead of W being the most conserved, C is now the

most conserved amino acid in the new ProtSub substitution matrix. It

is difficult, however, to draw any particular conclusion about cyste-

ines. The large score for cysteine in the matrix originates from its rela-

tively low frequency of occurrence in the training dataset. The log-

odd ratio calculation means that a rarer amino acid tends to have a

F IGURE 2 The ProtSub matrix and the comparison of amino acid substitution matrices between ProtSub and BLOSUM62, and between
ProtSun and VTML200. The panel on the left shows the 210 nonsymmetrical elements of the ProbSub substitution matrix. The upper triangle of
the panel on the right shows the differences between ProbSub and BLOSUM62 and the lower triangle shows the differences between ProtSub
and VTML200. Increased scores are shown in red and decreased scores are in blue. A total of 63 of the 210 scores are changed (38 increases,
25 decreases) from BLOSUM62. A total of 139 of the 210 scores are changed (59 increases, 80 decreases) from VTML200
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larger diagonal score (conservation or self-substitution). In a MSA,

conserved disulfides can mean higher conservation levels, which lead

to low coevolution correlations. The criteria for selecting coevolved

residues filter them out. In this case, those non-conserved cysteines

considered in the matrix derivation appear to be relatively rarer than

other types of amino acids. ProtSub permits more substitution among

hydrophobic amino acids (L, V, M, F). There are also many small devia-

tions scattered among the polar amino acids. Larger differences are

seen between ProtSub and VTML200. There are 139 elements chan-

ged in total. In this figure, there are more discernible colored areas

roughly separating matrix into two red and blue regions. The red

region shows that ProtSub allows more substitutions between hydro-

phobic and polar amino acids. In contrast, the blue region stands for a

slight trend of reduced values among the polar amino acids. Overall,

the range of scores in ProtSub lies between BLOSUM62 and

VTML200. In the BLOSUM62 comparison, there are 41 positive

scores, which sum up to 148. There are 144 negative scores summing

up to −303. Whereas ProtSub has 46 positive scores adding up to

183 and 140 negative scores which sum up to −312. The VTML200

comparison has much larger differences, with 53 positive scores

summing up to 202, and 132 negative scores sum up to −369. The

main reason for these differences is that probsub includes information

about the correlated substitutions. Due to the compensatory effect,

the amino acids at two positions may swap positions during mutation.

This results in some substitutions that seem not so similar if only the

substitutions at a single position are considered. Second, compared

with BLOSUM62 and VTML200, ProtSub has a much larger training

data set with longer alignment lengths, means that it is a more com-

plete sample. Also, the longer sequences allow longer-range

interdependent substitutions to be reflected in the substitution

scores. Finally, as the scaling factor λ adjusts the magnitude of the

overall score, some differences are also adjusted accordingly. There

will be further discussion about in the discussion section.

3.1 | Better sequence alignments of structurally
similar parts

In this study, we claim that using correlated substitutions integrates

structural information into the new sequence substitution matrix. So

F IGURE 3 Sequence alignment with ProtSub is best in successfully matching the alignments of the specific structure segments, A. Structure
match of protein structures PDB ID: 3CSK and 3FVY are both Dipeptidyl Peptidase III enzymes and one domain is considered here (3CSK,
184-259 and 3FVY, 172-250). The two protein structures are nearly identical. The structure alignment matches the one helix (H) and three β
strands (B1, B2, B3). The paired colors in the key indicate which part of the structures should be aligned in the sequence alignment. B, the
sequence alignment generated with BLOSUM62 does not appropriately match any of the structure features. The sequence alignments generated
by ProtSub are shown in C, with excellent matches of the secondary structure elements. D, the match with VTML200 aligns H, B1, B2 similarly to
ProtSub but provides no alignment for B3. ProtSub produces a sequence alignment strongly agreeing with the structure alignment. The root mean
squared deviation (RMSD) based on the sequence alignments for ProtSub is 5.32 Å over 69 aligned amino acids. BLOSUM62 has 20 aligned
amino acids with a RMSD of 20.17 Å and VTML200 has 62 aligned amino acids with a RMSD of 8.7 Å. The sequence alignments are generated
using Needleman-Wunsch in the EMBOSS software, with the default gap penalty (10.5 for the gap open and 0.5 for the gap extension)
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the sequence alignments generated with this matrix should agree

more closely with the results of structure alignments. There are a sub-

stantial number of known cases where two evolutionarily related pro-

teins have almost identical folds but their sequences are not at

present considered to be similar. We extract in total 2002 non-

redundant pairs of sequences from the CATHS20 dataset that have

this feature. (see §3 in Supporting information for the list of protein

structures from the CATH database). We have made certain that: (a)

there are at least two pairs of sequences selected from each homolog

family; and (b) the selected sequences do not contain any Pfam

domains used in deriving the new matrix. We use the global alignment

procedure in the European molecular biology open software suite

(EMBOSS) to align each pair of sequences54,55 and use template

modeling align (TM-align)56 to generate the structure alignments.

(Note: we also carried out the structure alignments with CEalign57

and found only minor differences in the overall results.) As a result,

ProtSub achieves better agreements between the sequence alignment

and the structure alignment for these cases. An example of an

improved alignment in Figure 3 shows that the aligned sequence seg-

ments are positioned to agree with the structural alignment. The sum-

mary of sequence alignments for all 2002 cases under a default gap

penalties (gap opening: 10, gap extension: 0.5) is shown in Figure 4

for the changes. The number of identities is slightly higher in compari-

son with the corresponding BLOSUM62 match, but slightly lower

than with VTML200. The substitution scores for ProtSub are higher

than for BLOSUM62 and VTML200. The number of gaps is reduced

substantially over BLOSUM62 and only very slightly more than with

VTML200.

In order to measure the extent of agreement between a sequence

alignment and a structure alignment, the root mean squared deviation

(RMSD) is calculated from the structure alignment for residue pairs in

the aligned sequence segments as specified in the sequence align-

ment. To obtain a comprehensive comparison, we iterate different

gap penalties with a fixed interval to generate sequence alignments.

Gap opening penalty ranges from 1 to 21 in steps of 1.0, gap exten-

sions from 0 to 10 in steps of 5.0. The mean RMSD of all 2002 cases

is calculated based on sequence alignments generated for different

gap opening and gap extension combinations, as shown in Figure 5.

The results clearly demonstrate that ProtSub matches the structurally

similar parts better than BLOSUM62. ProtSub and VTML200 yield

similar results when the gap penalties are low, but starting at a gap

opening value of 13, and gap extension parameter of five, ProtSub

does slightly outperform VTML200 for other higher gap penalties.

3.2 | ProtSub performs better for matching
“twilight zone” homolog protein sequences

Sequence matching can successfully distinguish between pairs of pro-

tein sequences when the sequence identity is high. The results

become unreliable, however, for matching “twilight zone” sequences

(<20% sequence identity). To test the performance for homolog

detection with the ProtSub matrix, we make the best-to-best compar-

ison among the new ProtSub, BLOSUM62, and VTML200 matrices.

Each sequence in the test dataset is queried against the whole

dataset. Each query is also performed for all 11 build-in gap opening

and extension combinations in BLAST: (2, 9), (2, 8), (2, 7), (2, 6), (1, 11),

(1, 10), (1, 9), (2, 11), (2, 10), (1, 13), and (1, 12). Then the best result

for each matrix is selected to make the comparison. To avoid the bias

from testing on only a single dataset, we perform the same all-to-all

homolog testing on both the datasets of ASTRALS20 from SCOPe

and CATHS20 from CATH database. These are the two datasets with

human curated classification information for “twilight zone” protein

sequences, both having less than 20% sequence identity. The

ASTRAL20 dataset is a subset of the SCOPe database. This dataset

has been commonly proposed as a “gold” standard for evaluating the

performance of homology search methods. After removing sequences

that contain Pfam domains used in the training dataset for developing

the ProtSub matrix, the ASTRAL20 has in total 1454 homolog families

and 4066 sequences with no greater than 20% identity to one

another; The CATHS20 contains 4184 homolog families and 8901

protein sequences, which also have no more than 20% identity to one

another. The results demonstrate that ProtSub outperforms for both

BLOSUM62 and VTML200 in homolog detection on both datasets

(Figure 6).

To evaluate the performance, we use coverage vs errors per

query (CVE), a method developed by Price, et al.58 The CVE curves

are similar to receiver operating characteristic curves, but present the

results in a way that is directly interpretable and suitable for sequence

analysis. The “coverage” on the Y-axis is defined as the fraction of

true positive homologs that have scores above a certain threshold;

this reflects the sensitivity of the matrix. On the X-axis, “errors per

query” (EPQ) acts as an indicator of selectivity, which shows the num-

ber of non-homologous sequences above the threshold divided by the

number of queries. The EPQ axis in a CVE plot is on a log scale to

show performance over a wide error range. These homolog searches

are performed in an all-to-all fashion, which takes each one of

sequences in the dataset as a query sequence to search against all

others. In order to generate the CVE curves, the results of all queries

are sorted in the order of decreasing statistical significance (using e-

values from BLAST). In this case, by traversing the sorted list from top

to bottom, the coverage is accumulated by counting the true positive

homologs. We test all possible gap opening and gap extension

F IGURE 4 Performance of three substitution matrices. The
average sequence identity and sequence similarity from the use of
ProtSub, BLOSUM62, and VTML200 for 2002 sequence matches
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parameters (as used by BLAST) and find the optimal set of gap param-

eters for each matrix. The CVE curves shown in Figure 6 are best-to-

best performance comparisons. The gap penalties for the ProtSub

matrix that give the best performance are (2, 9) and (2, 6) for

CATHS20 and ASTRAL20, respectively. For the CATHS20 dataset,

the three substitution matrices perform similarly when the tolerance

for errors is low. After the tolerance reaches around one error per

30 queries (−1.5 on the X-axis), ProtSub outperforms the other two

matrices. VTML200 performs slightly better at the beginning and per-

forms similar to ProtSub on the rest of the curve. For the ASTRAL20

dataset, ProtSub outperforms the others from around one error per

160 queries (−2.2 on the X-axis). For both test datasets, BLOSUM62

perform the worst. The advantage of ProtSub increases as the error

tolerance increases.

4 | DISCUSSION

The combination of BLAST with BLOSUM62 has been the most com-

monly used procedure for matching sequences for many years. A

comparative study showed that VTML200 gave the best detection

performance in detecting homologs for sequences having low

sequence similarity in comparison with the commonly used BLOSUM,

PAM and other series of matrices.27 Since the BLOSUM62 and

VTML200 derivations were based on a significantly smaller set of

sequence alignments, there are gains from utilizing the present much

larger sets of structure and sequence data. In addition, our results

show gains over BLOSUM62 and VTML200 because of utilizing more

diverse data: utilizing compensating substitutions for closely inter-

acting residues and MSAs of larger domains. The major improvement

in the performance of protein sequence matching derives substantially

from incorporating structural information into the ProtSub matrix.

4.1 | Comparing the BLOSUM BLOCK dataset
with Pfam multiple sequence alignments

The calculation of log-odds ratios in ProbSub is similar to BLOSUM62

but the training data that is used to derive amino acid substitutions is

different. The BLOSUM series of matrices were derived from more

F IGURE 5 Normalized root mean squared deviation (RMSD) based on sequence alignments. For most of gap opening and extension
combinations, the aligned segments from ProtSub have lower average RMSD than from BLOSUM62 and VTML200 in the structure alignments
for the 2002 H-level cases

F IGURE 6 Coverage vs errors plots of the best-to-best comparison of homolog detection between Protsub and BLOSUM62, VTML200. The
left panel shows the test results for the ASTRAL20 dataset and the right panel shows the results for the CATHS20 dataset. The ordinate is the
coverage, which is defined as the fraction of true positive homologs that have scores above a certain threshold. The abscissa is the error rate,
which is defined as the number of non-homologous sequences above the threshold divided by the number of queries on a log-scale
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than 2000 ungapped local alignments called blocks. Each block align-

ment is considered to be a conserved region in a protein family.

Blocks are generated using the PROTOMAT tool.15 PROTOMAT is a

two-step system that first extracts motifs from raw sequence data

with the help of an amino acid substitution matrix and then generates

block alignments using motifs. The block alignments that were used to

generate BLOSUM matrices are refined iteratively, that is, a new sub-

stitution matrix is obtained by using the block alignment generated

for the first time, then PROTOMAT uses this matrix to refine the

block again, and finally uses the refined block to generate the final

BLOSUM matrices.

In this study, we extract correlated mutations using Pfam-A

MSAs. The Pfam-A database uses a Hidden Markov Model (HMM)

based on a probabilistic modeling technique to construct the align-

ments for different protein domain families. For each protein domain

family, a small-scale seed alignment is first generated from the raw

protein sequence data. This seed alignment is curated by humans to

increase the accuracy. The seed alignments are also compared with

several existing databases including CATH,49 SCOPe,50 and evolution-

ary classification of protein domains (ECOD)59 as a quality control.

Using the HMM profile extracted with the seed alignment, the final

full alignments are generated by searching a large-scale protein

sequence database, such as Uniprot.

The ungapped block method is robust and fast for the conserved

regions of the protein sequences in the database. However, gaps may

occur in conserved regions. The restriction of no gap not only puts a

limitation on the true positive coverage but also can lead to truncation

of domains. Thus, the major difference between block alignments and

Pfam-A alignments is that block alignments include short conserved

regions, while Pfam-A alignments provide complete domains. As a

result, the correlated mutations are underestimated due to the trunca-

tion of domains in the short ungapped block alignments. The block

alignments used to generate the matrix contain approximately 27 000

sequences. The data has exploded recently. Here, we use more than

3000 MSAs of Pfam-A domain families, and each has more than 1000

sequence available. Our sequence number for training is more than

124 million (12 438 029) in total. The blocks used by the Henikoffs to

develop the BLOCK matrices were around 60 residues in length, and

so these necessarily are omitting most of the relatively common

longer-range effects.

F IGURE 7 Comparison of the original matrix (1.0) with the scaled matrix (2.0) in the global alignment test. The scaled matrices are less
sensitive to gap penalties than the original matrices
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4.2 | The extent of permitted substitutions in a
substitution matrix affects test results

The test results are strongly affected by the amount of permitted sub-

stitutions permitted by a given substitution matrix, which reflects the

probabilities in the training dataset. In the procedure of aligning

sequences, adding log-odds scores can be thought of as multiplying

the corresponding probabilities all together. As shown in Figure 2, the

extent of permitted substitutions with ProtSub lies between that of

BLOSUM62 and VTML200 and closer to BLOSUM62. In both tests,

F IGURE 8 Comparison of the original matrix (1.0) and the scaled matrix (2.0) in the homolog detection test. For all three matrices
(BLOSUM62, VTML200, ProtSub), scaled matrices perform worse than the original matrices

JIA AND JERNIGAN 9



ProtSub performs best and the results are closer to VTML200 than to

BLOSUM62. In part, it appears that VTML200 achieves its results by

being too permissive in accepting substitutions.

4.3 | The scale of the scores affects the test
results

The scale of the scores in a substitution matrix can also affect its per-

formance in both tests. Multiplying a substitution matrix by a constant

changes the λ in Equation (2) but does not alter the matrix's implicit

target frequencies. Such a scaling corresponds to using a different

implicit base for the logarithm. For global alignments, multiplying all

scores by a fixed positive number has no effect on the relative scores

of different ungapped alignments.60 However, when gaps are

included, the scale of the scores does affect the final alignment. To

test the scaling effect, we generated matrices that scale the original

scores of the three substitution matrices (BLOSUM62, VTML200, and

ProtSub) by scaling factors up to 2.0. Then we perform the same tests

using those scaled matrices. As a result, we find that the larger the

scale of the matrix, the more insensitive it is to gap penalties. In the

global alignment test, matrices with a larger scale of scores do gener-

ate more compact alignments than the original matrices (Figure 7).

However, in the homolog detection test, they yield significantly larger

numbers of false positives than do the original matrices (Figure 8). It is

consistent with the point made by Karlin and Altschul that scaling a

substitution matrix will affect local alignments.61

5 | CONCLUSION

Applications of ProtSub can advance molecular, genomic, structural,

and evolutionary biology. A few of its most important gains will be

improved gene annotations such as in Figure 3, improved protein

structure predictions, improved evaluations of the effects of muta-

tions, and better tools for carrying out protein design. The ability to

identifying broader sets of homologs can help researchers identify

related proteins in different organisms.62 In the field of comparative

genomics, it can also provide useful information for identifying func-

tions of proteins across diverse species.

DATA AND CODE AVAILABILITY

The Python scripts used for calculating the mutual information and

deriving conditional substitution matrices are available on GitHub:

https://github.com/jkjium/contactGroups; Pfam MSAs used in this

study were taken from the Pfam database (version 31.0): https://

pfam.xfam.org/. The list of Pfam Domains and the percentage of resi-

due positions used for the final ProtSub matrix derivation are pro-

vided in the Supporting information §4 Table S2. The listed residue

positions are given in Supporting information §5 with the surface

accessibility calculated using NAccess tool63 and the secondary struc-

ture evaluated by d(DSSP) software.64

The “twilight zone” sequences and PDB structures used for

sequence alignment comparisons are from CATH (CATHS20) data-

base: https://www.cathdb.info. The global alignments are generated

by using the Needleman–Wunsch method from EMBOSS https://

www.ebi.ac.uk/Tools/emboss/. The structure alignments are gener-

ated with the TM-align tool. The list of PDB IDs used for structure

matching is given in Table S1 and the list of Pfam IDs used is provided

in Table S2. The new ProtSub substitution matrix is provided in

EMBOSS format in the Supporting information §6.
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