
J. Parallel Distrib. Comput. 68 (2008) 399–409
www.elsevier.com/locate/jpdc

Research Note

A high performance algorithm for static task scheduling in heterogeneous
distributed computing systems

Mohammad I. Daoud, Nawwaf Kharma∗

Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve, West, S-H-961 Montreal, Que., Canada H3G 1M8

Received 19 September 2006; received in revised form 30 April 2007; accepted 9 May 2007
Available online 28 July 2007

Abstract

Effective task scheduling is essential for obtaining high performance in heterogeneous distributed computing systems (HeDCSs). However,
finding an effective task schedule in HeDCSs requires the consideration of both the heterogeneity of processors and high interprocessor
communication overhead, which results from non-trivial data movement between tasks scheduled on different processors. In this paper, we
present a new high-performance scheduling algorithm, called the longest dynamic critical path (LDCP) algorithm, for HeDCSs with a bounded
number of processors. The LDCP algorithm is a list-based scheduling algorithm that uses a new attribute to efficiently select tasks for scheduling
in HeDCSs. The efficient selection of tasks enables the LDCP algorithm to generate high-quality task schedules in a heterogeneous computing
environment. The performance of the LDCP algorithm is compared to two of the best existing scheduling algorithms for HeDCSs: the HEFT
and DLS algorithms. The comparison study shows that the LDCP algorithm outperforms the HEFT and DLS algorithms in terms of schedule
length and speedup. Moreover, the improvement in performance obtained by the LDCP algorithm over the HEFT and DLS algorithms increases
as the inter-task communication cost increases. Therefore, the LDCP algorithm provides a practical solution for scheduling parallel applications
with high communication costs in HeDCSs.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Task scheduling; Directed acyclic graph; Heuristics; Parallel processing; Heterogeneous systems

1. Introduction

A distributed computing system, or DCS, is a group of pro-
cessors connected via a high speed network that supports the
execution of parallel applications. The efficiency of execut-
ing parallel applications on DCSs critically depends on the
method used to schedule the tasks of the parallel application
onto the available processors. In DCSs, interprocessor commu-
nication is an unavoidable overhead of the execution of parallel
programs. This overhead occurs when tasks allocated to dif-
ferent processors exchange data. The creation of high quality
task schedules becomes more critical when the parallel appli-
cation is executed on DCSs with heterogeneous processors, or
HeDCSs (heterogeneous distributed computing systems). In ad-
dition to the tradeoff between the speedup gained through par-
allelization and the overhead of interprocessor communication,
scheduling algorithms for HeDCSs have to consider the various

∗ Corresponding author. Fax: +1 514 848 2802.
E-mail address: kharma@ece.concordia.ca (N. Kharma).

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.05.015

execution times of the same task on different processors. A
faulty scheduling decision in HeDCSs may limit the per-
formance of the system by the capabilities of the slowest
processors.

In general, task scheduling algorithms for DCSs are classi-
fied into two classes: static and dynamic. In static scheduling
algorithms, all information needed for scheduling, such as the
structure of the parallel application, the execution times of indi-
vidual tasks and the communication costs between tasks, must
be known in advance. There are several techniques to estimate
such information [18]. Static task scheduling takes place during
compile time before running the parallel application. In con-
trast, scheduling decisions in dynamic scheduling algorithms
are made at run time. The objective of dynamic scheduling al-
gorithms includes not only creating high quality task sched-
ules, but also minimizing the run time scheduling overheads
[4,6,8,9,11,14,20]. In this paper, static scheduling is addressed,
as it allows the use of sophisticated scheduling algorithms to
create high quality task schedules without introducing run time
scheduling overheads.

http://www.elsevier.com/locate/jpdc
mailto:kharma@ece.concordia.ca


400 M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 68 (2008) 399–409

Static task scheduling for DCSs, in general, is shown to
be an NP-complete problem [9,13,16,17], and many static
scheduling algorithms based on heuristics are proposed in
the literature [1–4,7,9–11,13,15–19]. One important class of
scheduling heuristics is list-based algorithms [14]. In list-based
scheduling algorithms, each task is assigned a given priority.
Three steps are then repeated until all tasks of the parallel ap-
plication are scheduled: task selection, processor selection and
status update. The highest-priority unscheduled task is selected
for scheduling during the task selection phase. In the processor
selection phase, the selected task is assigned to the processor
that minimizes a predefined cost criterion. Finally, the status
of the system is updated in the status update phase. At the end
of this process, a valid schedule is obtained [1,11,13,16–18].
Examples of list-based algorithms are: heterogeneous ear-
liest finish time (HEFT) [17], critical path on a processor
(CPOP) [17], critical path on a cluster (CPOC) [11], dynamic
level scheduling (DLS) [16], modified critical path (MCP)
[18], mapping heuristic (MH) [15] and dynamic critical path
(DCP) [13].

Many parallel applications have long execution times and
hence, they require high quality task schedules to minimize
their run times. Moreover, in typical scientific and engineering
applications, compile time, including the static scheduling time,
is much lower than run time. Hence, increasing scheduling
complexity to create high quality task schedules, which reduce
the run time of parallel applications, will improve the overall
performance of DCSs.

HeDCSs, such as heterogeneous clusters, are in common
use. To obtain high-performance in HeDCSs, efficient schedul-
ing algorithms that are developed specifically for HeDCSs
must be used to schedule the tasks of parallel applications.
There are several algorithms for task scheduling on HeDCSs,
such as: HEFT, CPOP, DLS, MH, levelized min time (LMT)
[10] and heterogeneous N-predecessor duplication (HNPD)
[5]. Topcuoglu et al. [17] presented a performance comparison
study of the HEFT, CPOP, DLS, MH and LMT algorithms for
different values of DAG size, communication to computation
cost ratio (CCR) and parallelism factor (the DAG size, CCR,
and parallelism factor will be defined in Section 5). In their
study, the performance of the HEFT algorithm outperforms
the CPOP, DLS, MH and LMT algorithms. Moreover, the
performance of the DLS algorithm outperforms the MH and
LMT algorithms. The CPOP algorithm and the DLS algorithm
achieved comparable results. The performance of the HEFT
and HNPD algorithms is compared in [5], where the latter
combines both list-based scheduling and multiple task duplica-
tion. When the number of processors is equal to one-forth the
number of tasks, the HEFT algorithm outperforms the HNPD
algorithm for CCR values less than or equal to one, while the
HNPD algorithm outperforms the HEFT algorithm for CCR
values greater than 1. On the other hand, for unlimited num-
ber of processors the HNPD algorithm outperforms the HEFT
algorithm. Since the HNPD algorithm employs multiple task
duplication, the HNPD algorithm requires a greater number
of processors than the HEFT algorithm to achieve the same
schedule length.

In this paper, a new list-based algorithm, called the longest
dynamic critical path (LDCP) algorithm, for static task schedul-
ing in HeDCSs with limited numbers of processors is presented.
The motivation behind this algorithm is to generate the high-
quality task schedules that are necessary to achieve high per-
formance in HeDCSs with limited numbers of processors. The
remainder of this paper is organized as follows: in Section 2,
we define the research problem and some necessary terms. Sec-
tion 3 introduces the problem of assigning task priorities in
HeDCSs along with a new attribute to effectively address this
problem. Section 4 introduces the LDCP algorithm. Simulation
results are presented in Section 5. Finally, a conclusion and an
overview of future work are given in Section 6.

2. Problem definition

In static task scheduling for HeDCSs, the parallel application
is represented by a directed acyclic graph, or DAG, defined
by the tuple (T, E), where T is a set of n tasks and E is a set
of e edges. Each task ti ∈ T represents a task in the parallel
application, and each edge (ti , tj ) ∈ E represents a precedence
constraint and a communication message between tasks ti and
tj . If (ti , tj ) ∈ E, then the execution of tj ∈ T cannot be started
before ti ∈ T finishes its execution. The source task ti of an
edge (ti , tj ) is a parent of the sink task tj , while tj is a child
of ti . A task with no parents is called an entry task, and a task
with no children is called an exit task. Associated with each
edge (ti , tj ) is a value di,j that represents the amount of data
to be transmitted from task ti to task tj [2,9,13,17].

The HeDCS is represented by a set P of m processors that
have diverse capabilities. The n × m computation cost matrix
W stores the execution costs of tasks. Each element wi,j ∈ W
represents the estimated execution time of task ti on pro-
cessor pj . All processors are assumed to be fully connected.
Communications between processors occur via independent
communication units; this allows for concurrent execution of
computation tasks and communications between processors
[2,17]. The computation costs of tasks are assumed to be
monotonic. In other words, if the computation cost of task ti on
processor pj is higher than that on processor pk , then the com-
putation costs of any task on pj is higher than or equal to that on
processor pk .

The communication cost between two processors pk and pl

depends on the network initialization at processors pk and pl in
addition to the communication time on the network. The time
required to initialize the network at the sender and receiver
processors is considered to be ignorable compared to the com-
munication time on the network [2,9]. The data transfer rate
between any two processors on the network is assumed to be
fixed and constant [2,9]. Therefore, the communication cost of
an edge (ti , tj ) is equal to the amount of data transmitted from
task ti to task tj , or di,j , divided by the data transfer rate of
the network. Without loss of generality, the data transfer rate
of interprocessor network is assumed to be unity [9]. Hence,
the communication cost of an edge (ti , tj ) is equal to di,j given
that tasks ti and tj are scheduled on different processors. Since
the data transfer rate of the intra-processor bus is much higher



M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 68 (2008) 399–409 401

Fig. 1. An example of a DAG and a computation cost matrix.

than the data transfer rate of the interprocessor network, the
communication cost between two tasks scheduled on the same
processor is taken as zero. A task can start execution on a pro-
cessor only when all data from its parents become available to
that processor; at that time the task is marked as ready. Tasks
must be scheduled and assigned to processors in a way that
minimizes the total run time, or the schedule length, of the par-
allel application [2,9,13,17]. An example of a DAG of a paral-
lel application and a computation cost matrix of a HeDCS with
two processors is shown in Fig. 1.

3. Task priorities in HeDCSs

The performance of list-based scheduling algorithms de-
pends highly on the method used to assign priorities to tasks.
A task must be assigned a high priority if the selection of this
task for scheduling during the current step ultimately leads to
a shorter schedule length.

For homogeneous processors, the critical path (CP) attribute
of a DAG provides an effective way for assigning priorities to
tasks. For a given DAG, the CP is defined as the path from an
entry task to an exit task for which the sum of the computation
costs of tasks and the communication costs of edges is maxi-
mal. The sum of computation costs of the tasks located on the
CP determines the lower bound of the final schedule length.
Hence, an efficient list-based scheduling algorithm requires
proper scheduling of the tasks located on the CP. On the other
hand, when two tasks are scheduled on the same processor, the
communication cost between them is zero. Consequently, a CP
changes dynamically during the scheduling process. To over-
come the dynamic behavior of CPs, Kwok et al. [13] used an
efficient attribute, called the DCP attribute, to effectively se-
lect tasks for scheduling in homogeneous computing systems.
The DCP is simply a CP that is computed at each intermediate
scheduling step, such that the communication cost among two
tasks scheduled on the same processor is considered zero.

In HeDCSs, the various computation costs of the same task
on different processors present us with a problem: the DCP
computed using the computation costs of tasks on a particular
processor may differ from the DCP computed using the same
computation costs of tasks on another processor. To overcome
this problem, previous scheduling algorithms for HeDCSs set
the computation costs of tasks to their median values, as in the

Fig. 2. The DAG in Fig. 1 constructed ((a) and (b)) before scheduling any
task and using the computation costs of tasks on processors (a) p0 and (b)
p1, and ((c) and (d)) after scheduling tasks t0 and t2 on p0 and task t1 on
p1 and setting the computation costs of the unscheduled tasks to their values
on processors (c) p0 and (d) p1.

DLS algorithm, or their mean values, as in the HEFT algorithm,
in order to get a single computation cost for each task. However,
these techniques estimate approximate computation costs of
tasks and hence limit the ability of scheduling algorithms to
precisely compute the priorities of tasks.

One important attribute that can be used to compute priori-
ties of tasks in HeDCSs precisely is the LDCP. The LDCP is
explained in Definition 1.

Definition 1. Given a DAG with n tasks and e edges, and a
HeDCS with m heterogeneous processors, the LDCP during a
particular scheduling step is a path of tasks and edges from an
entry task to an exit task that has the largest sum of commu-
nication costs of edges and computation costs of tasks over all
processors. Communication costs between tasks scheduled on
the same processor are assumed zero, and the execution con-
straints are preserved.

For example, consider the application DAG and the compu-
tation costs matrix in Fig. 1. At the beginning of scheduling, the
DCP computed using the computation costs of tasks on proces-
sor p0 is composed of tasks t1, t3, t4, and has a length of 21, as
shown in Fig. 2a. However, the DCP computed using the com-
putation costs of tasks on processor p1 is composed of tasks t0,
t2, t3, t4, and has a length of 28, as shown in Fig. 2b. Hence, at
the start of scheduling the LDCP is composed of tasks t0, t2,
t3, t4, and has a length of 28.

If tasks t0 and t2 are scheduled on processor p0 and task t1
is scheduled on processor p1, then the longest path, computed
by setting the computation costs of unscheduled tasks to their
values on processor p0, will be composed of tasks t1, t3 and
t4, and will have a length of 25, as shown in Fig. 2c. However,
the longest path computed by using the computation costs of
the unscheduled tasks on processor p1 will also be composed
of tasks t1, t3 and t4, but will have a length of 27, as shown
in Fig. 2d. Hence, the LDCP will be composed from tasks t1,
t3, t4 and will have a length of 27. It is worth noting that in
these calculations the communication cost between tasks t0 and
t2 is set to 0. It should also be noted that during a particular
scheduling step, the LDCP is not unique, and as such it is
possible to have two or more paths of tasks and edges from



402 M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 68 (2008) 399–409

entry tasks to exit tasks that satisfy Definition 1. However, all
LDCPs must have the same length.

4. The LDCP algorithm

In the LDCP algorithm, each scheduling step consists of three
phases: task selection, processor selection and status update.

4.1. Task selection phase

The LDCPs identify a set of tasks that play an important role
in determining the provisional schedule length. To compute the
LDCPs a directed acyclic graph that corresponds to a processor
(DAGP), which is explained in Definition 2, is constructed for
each processor in the system. These DAGPs are constructed at
the beginning of the scheduling process.

Definition 2. Given a DAG with n tasks and e edges and a
HeDCS with m heterogeneous processors {p0, p1, . . . , pm−1},
the directed acyclic graph that corresponds to processor pj,
called DAGPj, is the task graph constructed using the structure
of the DAG, with sizes of tasks set to their computation costs
on processor pj .

The DAGP0 and DAGP1 shown in Fig. 2a and b, respectively,
correspond to the application DAG and the HeDCS shown in
Fig. 1. Through the course of this paper, the task ti is used to
refer to the ith task in the application DAG. The node ni in
DAGPj corresponds to task ti in the application DAG with its
size set to the computation cost of ti on processor pj . Hence,
node ni on DAGPj identifies task ti on the application DAG.

For each DAGP, all nodes are assigned upward rank (URank)
values to reflect their priority within the DAGP. The upward
rank is defined in Definition 3.

Definition 3. The upward rank of a node ni in a task graph
DAGPj , denoted as URankj(ni), is recursively defined as

URankj (ni) = wj(ni) + max
nk∈succj (ni )

{cj (ni, nk)

+URankj (nk)}, (1)

where succj (ni) is the set of immediate successors of ni on
DAGPj ; wj(ni) is the size of ni in DAGPj ; cj (ni, nk) is the
communication cost between ni and nk in DAGPj .

Definition 4. Given a node ni in a task graph DAGPj , the
immediate successor of ni that satisfies the maximization term
in Eq. (1) is called the upward rank associated successor
(URAS) of node ni .

The URank values of the nodes in a given DAGP are com-
puted recursively by traversing that DAGP upward starting from
exit nodes to entry nodes. The URank value of an exit node is
equal to its size. Since we recursively compute the URank val-
ues of the nodes in a given DAGP upward starting for the exit

nodes, the node with the highest URank value will always be
an entry node.

Theorem 1. The nodes that have the highest URank value over
all DAGPs identify the entry tasks of all LDCPs.

Proof. If node ni , which is located on DAGPj , has the highest
URank value over all DAGPs, then the length of any LDCP is
equal to the URank value of node ni . Hence, node ni identifies
the entry task of at least one of the LDCPs. Moreover, each
LDCP must have an entry task with URank value equal to the
highest URank value over all DAGPs. �

Theorem 2. If the tasks on a LDCP are being identified recur-
sively downward starting from the entry node, and node ni in
DAGPj is used to identify the last identified task on that LDCP,
then the URAS of node ni on DAGPj identifies the next task on
that LDCP.

Proof. If node ni on DAGPj identifies task ti on a LDCP and
its URAS is node nk , then the URank value of node nk is equal
to the length of the portion of that LDCP that extends between
the exit task of that LDCP and the task located immediately
after task ti on that LDCP. Hence, nk identifies the next task
after ti on that LDCP. �

The LDCP algorithm chooses one of the LDCPs, which is
called the selected LDCP, as follows. The entry task of the se-
lected LDCP is determined by locating a node ni that has the
highest URank value over all nodes on all DAGPs. If there are
more than one node with the highest URank value, then ties are
broken by selecting the node with the highest number of output
edges first; if more than one node exists, the tie is broken on
a random basis. This tie-breaking strategy guarantees a higher
priority for tasks with greater numbers of children, without in-
troducing a significant increase in the time complexity of the
LDCP algorithm. The remaining tasks on the selected LDCP
can be identified by recursively traversing the DAGP that con-
tains node ni . Traversal starts from node ni and moves down-
ward. During traversal, the nodes that identify the tasks on the
selected LDCP are located using Theorem 2, and ties are bro-
ken in the same way used to select the entry task of the selected
LDCP.

Definition 5. During a particular scheduling step, let the set of
nodes N be used to identify the tasks on the selected LDCP.
The unscheduled node in N with the highest URank value is
defined as the key node. The DAGP in which the nodes in N
are located is called the key DAGP.

Definition 6. During a particular scheduling step, if the key
node has unscheduled parents, then the unscheduled predeces-
sors of the key node with the highest URank value are defined
as the parent key nodes.

At each scheduling step, if the key node does not have any
unscheduled parent, then the key node is used to identify the



M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 68 (2008) 399–409 403

Fig. 3. The LDCP algorithm.

task that will be selected for scheduling. Otherwise, the parent
key node with the highest number of output edges is used to
identify the selected task. If more than one parent key node has
the highest number of output edges, then the tie is broken on a
random basis.

4.2. Processor selection phase

In this phase, the selected task is assigned to a processor
that minimizes its finish execution time using the insertion-
based scheduling policy [17]. When a processor pj is assigned
a task ti , the insertion-based scheduling policy considers all
possible idle time slots on pj to find a time slot of equal or
greater length than the execution time of ti . This must be done
without violating the precedence constraints among tasks. An
idle time slot on processor pj is defined as the idle time space
between the finish execution time and start execution time of
two consecutively scheduled tasks on pj . The search starts from
a time equal to the ready time of ti on pj , and proceeds until
it finds the first idle time slot with the sufficient length for the
computation cost of ti on pj . If no such idle time slot is found,
the insertion-based scheduling policy inserts the selected task
after the last scheduled task on pj .

4.3. Status update phase

When a task is scheduled on a processor, the status of the sys-
tem must be updated to reflect the new changes. The schedul-
ing of task ti on processor pj means that the computation cost
of ti is no longer unknown. Hence, the sizes of the nodes that
identify ti are set to the computation cost of ti on pj on all
DAGPs. Moreover, a value of zero is assigned to all edges that
extend between the nodes that identify ti and the nodes that
identify its parents that are scheduled on processor pj . This
must be done for all DAGPs to indicate the zero communi-
cation cost between tasks scheduled on the same processor.
The insertion of task ti into processor pj will result in new
execution constraints. These execution constraints are shown

on all DAGPs by adding a zero-cost edge from the node that
identifies ti to the node that identifies the task scheduled af-
ter ti on pj (if any), and another zero-cost edge from the node
that identifies the task scheduled before ti on pj (if any) to
the node that identifies ti . Moreover, the execution constraints
between the nodes that identify the tasks scheduled right be-
fore and right after task ti on processor pj are removed from
all DAGPs.

To enable the LDCPs to include new ready tasks as the
scheduling process advances, each time a new task is allocated
to processor pj the LDCP algorithm adds temporary zero-cost
edges into DAGPj from the node that identifies the last task
scheduled on pj (task tk) to all the ready nodes that do not
communicate with task tk . This must be done after removing
the pervious temporary zero-cost edges from DAGPj . To re-
flect these changes, the URank values of the nodes that identify
the currently scheduled task and the previously scheduled tasks
are updated on all DAGPs.

4.4. The proposed LDCP algorithm

The proposed LDCP algorithm is formalized in Fig. 3. The
LDCP algorithm has a time complexity of O(m × n3) where
m is the number of processors, and n is the number of tasks.
In comparison, the time complexity of the DLS and HEFT
algorithms is O(m×n3) and O(m×e), respectively, where e is
the number of edges. For dense DAGs in which the number of
edges is proportional to n2, the time complexity of the HEFT
algorithm is O(m × n2).

As an illustration, consider the application DAG and the com-
putation cost matrix shown in Fig. 4a and b. The schedule gen-
erated by the LDCP algorithm along with a stepwise trace of
the LDCP algorithm are shown in Fig. 4c and d, respectively.
The schedule generated by the LDCP algorithm has a length of
64, which is shorter than the schedules generated by the DLS
(65.5) algorithm and the HEFT (65.5) algorithm. The stepwise
trace of the DLS and HEFT algorithms are shown in Fig. 4e
and f, respectively.



404 M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 68 (2008) 399–409

Fig. 4. (a) and (b) A sample DAG and computation cost matrix, (c) the schedule generated by the LDCP algorithm, ((d), (e) and (f)) stepwise trace of the (d)
LDCP, (e) DLS and (f) HEFT algorithms.

5. Results and analysis

In this section, we compare the performance of the LDCP
algorithm to two scheduling algorithms for HeDCSs with lim-
ited numbers of processors: the HEFT and DLS algorithms.
An explicit comparison with some other well-known schedul-
ing algorithms for HeDCSs, such as CPOP, MH and LMT, is
not carried out as the HEFT and DLS algorithms have already
been tested against them, and have given better or at worst very
similar results [17].

To test the performance of the scheduling algorithms, a sim-
ulation environment for computer clusters is built and run on
an IBM Pentium IV computer. The LDCP algorithm as well as
the HEFT and DLS algorithms are implemented. Two sets of
parallel application graphs, which correspond to both random
application DAGs and DAGs of parallel numerical applications,
are created. The scheduling algorithms are run on the applica-
tion graphs to generate output schedules. Finally, a group of
performance metrics is applied to the schedules generated by
the three scheduling algorithms.

The performance metrics chosen for the comparison are the
normalized schedule length (NSL) and speedup [3,17]. The

NSL of a given schedule is defined as the schedule length
divided by the lowest possible value of the schedule length. It
is calculated using:

NSL = Schedule Length
∑

ti∈CPlower
ci,a

, (2)

where the CPlower is the CP of the unscheduled application
DAG, based on the computation cost of tasks on the fastest
processor pa . The denominator of Eq. (2) is equal to the sum
of computation costs of tasks located on CPlower, when they
are executed on pa .

The speedup of a schedule is defined as the ratio of
the schedule length obtained by assigning all task to the
fastest processor, to the parallel execution time of the task
schedule.

5.1. Performance results on random graphs

A set of randomly generated graphs is created by varying
a set of parameters that determines the characteristics of the



M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 68 (2008) 399–409 405

Fig. 5. Performance results on random graphs.

generated DAGs. These parameters are described below:

• DAG size, n: The number of tasks in the application DAG.
• Communication to computation cost ratio, CCR: The average

communication cost divided by the average computation cost
of the application DAG.

• Parallelism factor, �: The number of levels of the application
DAG is calculated by randomly generating a number, using

a uniform distribution with a mean value of
√

n
� , and then

rounding it up to the nearest integer. The width of each
level is calculated by randomly generating a number using
a uniform distribution with a mean value of � × √

n, and
then rounding it up to the nearest integer [17]. A low � value
leads to a DAG with a low parallelism degree [3].

• Computation cost heterogeneity factor, h: A high h value
indicates high variance of the computation costs of a task,
with respect to the processors in the system, and vice versa.
If the heterogeneity factor is set to 0, the computation cost
of a task is the same for all processors. The average compu-
tation cost of a task ti (wi) is randomly generated using a
uniform distribution with a mean value of W. The value of
W does not affect the performance results of the scheduling
algorithms. If there are m processors in the HeDCS, the
computation cost of a task ti for each processor is set by
randomly selecting m computation cost values of ti from
the range

[
wi × (

1 − h
2

)
, wi × (

1 + h
2

)]
. The m selected

computation cost values of ti are sorted in an increasing
order. The computation cost value of ti on processor p0
is set to the first (i.e. lowest) computation cost. The com-
putation cost of ti on processor p1 is set to the second

value. This allocation continues until all processors are
processed [17].

The random DAGs set consists of 2000 application DAGs
with four different numbers of processors varying from 2 to 8
with an increment of 2. For each number of processors, we use
five different DAG sizes varying from 20 to 100 nodes with an
increment of 20; five different CCR values: 0.1, 0.5, 1.0, 2.0
and 5.0; four � values: 0.5, 1.0, 2.0 and 5.0; and five h values:
0.1, 0.2, 0.4, 0.6 and 0.8. The large set of random graphs, which
consists of 2000 DAGs with diverse characteristics, prevents
bias towards one specific scheduling algorithm. The parameter
values, which are used in this subsection and the next subsec-
tion, are essentially the same as those used by Topcuoglu et al.
in [17].

The NSLs produced by the LDCP, HEFT and DLS algo-
rithms for the various CCR values are shown in Fig. 5a. The
average NSL value of the LDCP algorithm is shorter than the
DLS and HEFT algorithms by: (1.0%, 0.9%), (2.4%, 1.6%),
(4.4%, 2.0%), (5.7%, 2.2%) and (7.5%, 3.1%), for CCR of:
0.1, 0.5, 1.0, 2.0 and 5.0, respectively. The first value of each
parenthesized pair is the improvement achieved by the LDCP
algorithm over the DLS algorithm, while the second value is
the improvement of the LDCP over the HEFT algorithm. This
convention for representing results will be adhered throughout
this paper, unless an exception is explicitly noted. The speedup
values achieved by the three algorithms with respect to certain
CCR values are shown in Fig. 5b. The average speedup value
of the LDCP algorithm is higher than those returned by the
DLS and HEFT algorithms by: (1.9%, 1.4%), (4.7%, 2.6%),



406 M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 68 (2008) 399–409

Table 1
A global comparison of the scheduling algorithms

LDCP HEFT DLS

LDCP Better 1612 (80.6%) 1678 (83.9%)
Equal – 178 (8.9%) 89 (4.5%)
Worse 210 (10.5%) 233 (11.6%)

HEFT Better 210 (10.5%) 1466 (73.3%)
Equal 178 (8.9%) – 156 (7.8%)
Worse 1612 (80.6%) 378 (18.9%)

DLS Better 233 (11.6%) 378 (18.9%)
Equal 89 (4.5%) 156 (7.8%) –
Worse 1678 (83.9%) 1466 (73.3%)

(7.0%, 2.5%), (8.2%, 4.1%) and (12.3%, 5.0%), when the CCR
is equal to: 0.1, 0.5, 1.0, 2.0 and 5.0, respectively.

In these experiments, the LDCP algorithm outperforms the
DLS and HEFT algorithms for all tested CCR values in terms
of both NSL and speedup. As the value of CCR increases, in-
terprocessor communication overhead dominates computation
and hence, the performance of all three scheduling algorithms
tends to degrade. However, as shown in Fig. 5a and b, the
LDCP algorithm is more effectively able to deal with the
increase in communication cost compared to both the DLS
and HEFT algorithms. The ability of the LDCP algorithm
to efficiently handle the increase in communication overhead
can be explained as follows. As the CCR value increases,
the LDCP attribute is progressively dominated by tasks with
high interprocessor communication overheads. Hence, heavily
communicating tasks will be identified and selected for
scheduling before other tasks. Moreover, at each scheduling
step, the insertion-based scheduling policy assigns the selected
task to a processor that minimizes its execution finishing time.
Hence, heavily communicating tasks will be selected and as-
signed to the same processor if such an assignment leads to a
shorter provisional schedule. Finally, the status update phase
ensures that the LDCP attribute is effectively updated during
the scheduling process. Therefore, heavily communicating
tasks will be regularly identified and scheduled to reduce the
final schedule length.

The average NSL and speedup values gained by the three al-
gorithms with respect to DAG size are shown in Fig. 5c and d,
respectively. The average NSL value of the LDCP algorithm is
shorter than those of the DLS and HEFT algorithms by: (5.1%,
3.1%), (5.1%, 2.3%), (5.8%, 2.7%), (4.1%, 1.7%) and (4.3%,
1.3%), for DAG sizes of: 20, 40, 60, 80 and 100, respectively.
The average speedup gained by the LDCP algorithm is greater
than those of the DLS and HEFT algorithms by: (6.6%, 3.1%),
(6.0%, 2.6%), (6.6%, 3.4%), (4.9%, 2.4%) and (5.0%, 2.4%),
when the number of nodes is equal to: 20, 40, 60, 80 and
100, respectively. Hence, the LDCP algorithm achieves bet-
ter results than both the DLS and HEFT algorithms in terms
of NSL as well as speedup, for any number of nodes in our
range.

The number of times each scheduling algorithm produced
better, equal or worse schedules, compared to each of the other
two algorithms for the 2000 randomly generate DAGs, is shown
in Table 1. Each cell in Table 1 compares the schedule length
generated by the algorithm in the leftmost column to the algo-
rithm in the top row. The percentage in the parentheses is cal-
culated by dividing the number on the left by the total number
of DAGs. As shown in Table 1, the LDCP algorithm has supe-
rior performance compared to the DLS and HEFT algorithms
based on occurrences of better results.

5.2. Performance results on regular graphs

In this section, the performance of the scheduling algorithms
is studied with respect to the application DAGs of three real
world parallel algorithms: the Gaussian elimination algorithm
[17,18], the fast Fourier transform algorithm [7] and a molec-
ular dynamics code given in [12,17]. Since the structure of the
regular graphs is known, there is no need for the parallelism
factor parameter. The CCR and h parameters have the same set
of values here as in Section 5.1.

The Gaussian elimination algorithm is characterized by the
size of the input matrix. If N is the size of the input matrix, the
number of nodes in the task graph is equal to N2+N−2

2 [17].
For the experiments of the Gaussian elimination algorithm, the
size of the input matrix (N) is used in place of the DAG size
(n). For the NSL comparison, the matrix size used in the ex-
periments is varied from 5 to 20, with an increment of 1, and
the number of processors is set to 5. The average NSLs pro-
duced by each scheduling algorithm in relation to CCR are
shown in Fig. 6a. The average NSL value of the LDCP algo-
rithm is shorter than those of the DLS and HEFT algorithms
by: (0.5%, 0.4%), (0.9%, 0.7%), (1.4%, 1.2%), (2.4%, 1.7%)
and (3.7%, 2.8%). In this subsection, all the results are pre-
sented with respect to the value of CCR. Hence, the parenthe-
sized pairs are arranged to present the results achieved with
CCR values of 0.1, 0.5, 1.0, 2.0 and 5.0, respectively. The av-
erage speedup values of the scheduling algorithms with respect
to CCR when the number of processors is varied from 2 and
8, with an increment of 2, and the size of the input matrix is



M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 68 (2008) 399–409 407

Fig. 6. Performance results on regular graphs.

set to 20 are shown in Fig. 6b. The LDCP algorithm has a
higher speedup value than the DLS and HEFT algorithms by:
(0.8%, 0.5%), (1.0%, 0.8%), (2.4%, 1.3%), (2.9%, 1.8%) and
(3.7%, 2.8%).

The task graph of the fast Fourier transform (FFT) algorithm
is characterized by the size of the input vector. For an input
vector of size M, the total number of nodes in the task graph
is equal to (2 × M − 1) + (M × log2 M). As in the Gaussian
elimination algorithm experiments, the size of the input vector
(M) is used in place of the DAG size. To study the NSL values
of the three scheduling algorithms, the size of the input vector
is varied between 2 and 32, incrementing by a power of 2, and
the number of processors is set to 5. The average NLS values
of the scheduling algorithms with respect to CCR are shown in
Fig. 6c. The average NSL obtained by the LDCP algorithm is
shorter than the DLS and HEFT algorithms by: (0.8%, 0.9%),
(1.6%, 1.3%), (2.5%, 2.3%), (3.0%, 3.4%) and (4.9%, 5.8%).
The speedup values obtained by the three scheduling algorithms

with respect to CCR, when the size of the input vector is set
to 32 and the number of processors is varied from 2 to 8, with
an increment of 2, are shown in Fig. 6d. The LDCP algorithm
gained a greater speedup value than the DLS and HEFT algo-
rithms by: (0.6%, 0.7%), (1.2%, 1.1%), (2.1%, 2.2%), (4.0%,
4.0%) and (5.7%, 8.2%).

Finally, the performance of the three scheduling algorithms
is compared to each other with respect to the application DAG
of the molecular dynamics code given in [12,17]. Since the
number of tasks (41 tasks) and the graph structure are known,
only the CCR and h values are used in this experiment. The
average NSL values of the scheduling algorithms with respect
to CCR when the number of processors is set to 5 are shown
in Fig. 6e. On average, the LDCP algorithm outperforms the
DLS and HEFT algorithms in terms of NSL by: (1.2%, 1.4%),
(1.5%, 2.3%), (1.8%, 2.9%), (2.8%, 3.2%) and (10.4%, 5.7%).
The average speedup values of the scheduling algorithms with
respect to CCR are presented in Fig. 6f. Since the maximum



408 M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 68 (2008) 399–409

number of tasks in any level of the molecular dynamics code
DAG is less than 7, the number of processors used is varied
from 2 to 7 with an increment of 1 [17]. The average speedup
value gained by the LDCP algorithm is higher than the DLS
and HEFT algorithms by: (0.7%, 0.8%), (1.2%, 3.0%), (5.4%,
7.2%), (6.9%, 9.3%) and (10.0%, 12.5%).

For real world applications, the LDCP algorithm outperforms
the DLS and HEFT algorithms in terms of schedule length
and speedup. The general trend of increasing improvement in
performance obtained by the LDCP algorithm over the DLS and
HEFT algorithms as CCR increases, is observed here as well.
This provides clear indication that there is a trend of improved
performance with increasing CCR.

6. Conclusion and future work

We present a new list-based scheduling algorithm, called the
longest dynamic critical path (LDCP) algorithm, for the prob-
lem of scheduling in heterogeneous distributed computing sys-
tems (HeDCSs). The LDCP algorithm uses a new attribute,
called LDCP, to accurately identify the priorities of tasks in
HeDCSs. The LDCP attribute is an intuitive extension to the
widely used concept of critical path (CP), meant to accom-
modate the heterogeneous nature of HeDCSs. The LDCP at-
tribute is designed to reflect the fact that a single DAG may
have more than one CP, if scheduled on more than one non-
identical processor. In computing LDCP, the communication
overhead between tasks scheduled on the same processor is
neglected.

The performance of the LDCP algorithm is compared to two
of the best existing scheduling algorithms for HeDCSs: the
HEFT [17] and DLS [16] algorithms. The comparative study is
based on both randomly generated application DAGs and DAGs
that correspond to three real-world numerical applications. The
LDCP algorithm significantly outperforms both the HEFT and
DLS algorithms in terms of normalized schedule length (NSL)
and speedup. The improvement in performance achieved by
the LDCP algorithm over the DLS and HEFT algorithms tends
to increase as CCR increases. For a CCR value of 5, the LDCP
algorithm achieved NSLs that are 3.7–10.4% shorter that the
DLS algorithm, and 2.8–5.8% shorter than the HEFT algorithm.
Moreover, the speedup achieved by the LDCP algorithm, when
CCR is equal to 5, is 3.7–12.3% higher than the DLS algo-
rithm, and 2.8–12.5% higher than the HEFT algorithm. Based
on its superior performance at high CCR values, the LDCP
algorithm appears to be a practical solution for task schedul-
ing on HeDCSs for applications with high communication
costs.

We plan to extend the LDCP algorithm to partially connected
networks of heterogeneous processors. The extended LDCP al-
gorithm will be tested on HeDCSs with larger numbers of pro-
cessors and arbitrary interprocessor communication networks.
The results reported in this paper suggest the use of the LDCP
attribute with other scheduling optimization techniques, such
as task duplication, to develop better scheduling algorithms for
HeDCSs.

References

[1] I. Ahmad, Y.K. Kwok, On exploiting task duplication in parallel program
scheduling, IEEE Trans. Parallel Distributed Systems 9 (9) (1998)
872–892.

[2] R. Bajaj, D.P. Agrawal, Improving scheduling of tasks in a heterogeneous
environment, IEEE Trans. Parallel Distributed Systems 15 (2) (2004)
107–118.

[3] S. Bansal, P. Kumar, K. Singh, An improved duplication strategy
for scheduling precedence constrained graphs in multiprocessor
systems, IEEE Trans. Parallel Distributed Systems 14 (6) (2003)
533–544.

[4] S. Bansal, P. Kumar, K. Singh, Dealing with heterogeneity through
limited duplication for scheduling precedence constrained task graphs,
J. Parallel Distributed Comput. 65 (4) (2005) 479–491.

[5] S. Baskiyar, C. Dickinson, Scheduling directed a-cyclic task graphs on
a bounded set of heterogeneous processors using task duplication, J.
Parallel Distributed Comput. 65 (8) (2005) 911–921.

[6] W.F. Boyer, G.S. Hura, Non-evolutionary algorithm for scheduling
dependent tasks in distributed heterogeneous computing environments,
J. Parallel Distributed Comput. 65 (9) (2005) 1035–1046.

[7] Y.C. Chung, S. Ranka, Application and performance analysis of a
compile-time optimization approach for list scheduling algorithms
on distributed-memory multiprocessors, in: Proceedings of the 1992
ACM/IEEE Conference on Supercomputing, Minneapolis, MN, USA,
1992, pp. 512–521.

[8] B. Hamidzadeh, L.Y. Kit, D.J. Lilja, Dynamic task scheduling using
online optimization, IEEE Trans. Parallel Distributed Systems 11 (11)
(2000) 1151–1163.

[9] E. Ilavarasan, P. Thambidurai, R. Mahilmannan, Performance effective
task scheduling algorithm for heterogeneous computing system, in:
Proceedings of the Fourth International Symposium on Parallel and
Distributed Computing, France, 2005, pp. 28–38.

[10] M. Iverson, F. Ozguner, G. Follen, Parallelizing existing applications in
a distributed heterogeneous environment, in: Proceedings of the Fourth
Heterogeneous Computing Workshop, 1995, pp. 93–100.

[11] J. Kim, J. Rho, J.-O. Lee, M.-C. Ko, CPOC: effective static task
scheduling for grid computing, in: Proceedings of the 2005 International
Conference on High Performance Computing and Communications, Italy,
2005, pp. 477–486.

[12] S.J. Kim, J.C. Browne, A general approach to mapping of parallel
computation upon multiprocessor architectures, in: Proceedings of the
International Conference on Parallel Processing, Pennsylvania State
University, University Park, PA, USA, 1988, pp. 1–8.

[13] Y.K. Kwok, I. Ahmad, Dynamic critical-path scheduling: an effective
technique for allocating task graphs to multiprocessors, IEEE Trans.
Parallel Distributed Systems 7 (5) (1996) 506–521.

[14] Y.K. Kwok, I. Ahmad, Static scheduling algorithms for allocating directed
task graphs to multiprocessors, ACM Comput. Surveys 31 (4) (1999)
406–471.

[15] H. El-Rewini, T.G. Lewis, Scheduling parallel program tasks onto
arbitrary target machines, J. Parallel Distributed Comput. 9 (2) (1990)
138–153.

[16] G.C. Sih, E.A. Lee, A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures, IEEE
Trans. Parallel Distributed Systems 4 (2) (1993) 175–187.

[17] H. Topcuoglu, S. Hariri, M.Y. Wu, Performance-effective and low-
complexity task scheduling for heterogeneous computing, IEEE Trans.
Parallel Distributed Systems 13 (3) (2002) 260–274.

[18] M. Wu, D. Dajski, Hypertool: a programming aid for message
passing systems, IEEE Trans. Parallel Distributed Systems 1 (3) (1990)
330–343.

[19] T. Yang, A. Gerasoulis, DSC: scheduling parallel tasks on an unbounded
number of processors, IEEE Trans. Parallel Distributed Systems 5 (9)
(1994) 951–967.

[20] A. Zomaya, C. Ward, B. Macey, Genetic scheduling for parallel processor
systems: comparative studies and performance issues, IEEE Trans.
Parallel Distributed Systems 10 (8) (1999) 795–812.



M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 68 (2008) 399–409 409

Mohammad I. Daoud is a PhD candidate in
the Department of Electrical and Computer
Engineering at University of Western Ontario,
London, Canada. He received his Bachelor of
Engineering degree from An-Najah National
University, Nablus, Palestine in 2001 and Mas-
ter of Applied Science degree from Concordia
University, Montreal, Canada in 2005. His
research interests include parallel processing,
numerical analysis of 3-D ultrasonic imaging,
and evolutionary computation.

Nawwaf Kharma is an Associate Professor with
the ECE Department of Concordia University,
Montreal, Canada. He specializes in the exten-
sion and application of Evolutionary Computa-
tion methodologies to real-world problems, such
as Pattern Recognition and Process Scheduling.
He is a member of ACM-SIGEVO.


