
Information Sciences 531 (2020) 31–46

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Efficient scientific workflow scheduling for

deadline-constrained parallel tasks in cloud computing

environments

Longxin Zhang

a , Liqian Zhou

a , ∗, Ahmad Salah

b

a College of Computer Science, Hunan University of Technology, Zhuzhou, 412007 China
b Faculty of Computers and Informatics, Zagazig University, 1 El-zera Square, Zagazig, Sharkia, 44519, Egypt

a r t i c l e i n f o

Article history:

Received 16 November 2019

Revised 22 March 2020

Accepted 15 April 2020

Available online 11 May 2020

Keywords:

Cloud computing

Deadline

Directed acyclic graph (DAG)

Makespan

Resource management

a b s t r a c t

Data centers for cloud computing must accommodate numerous parallel task executions si-

multaneously. Therefore, data centers have many virtual machines (VMs). Minimizing the

scheduling length of parallel task sets becomes a critical requirement in cloud comput-

ing systems. In this study, we propose an efficient priority and relative distance (EPRD)

algorithm to minimize the task scheduling length for precedence constrained workflow

applications without violating the end-to-end deadline constraint. This algorithm consists

of two processes. First, a task priority queue is established. Then, a VM is mapped for a

task in accordance with its relative distance. The proposed method can effectively improve

VM utilization and scheduling performance. Extensive rigorous experiments based on ran-

domly generated and real-world workflow applications demonstrate that the resource re-

duction rate and scheduling length of the EPRD algorithm significantly surpass those of

existing algorithms.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, the rapid development and wide application of cloud computing have changed people’s daily work and

life. For instance, software as a service is widely used in the data centers of Google, Twitter, Facebook, Alibaba, and other

major IT companies. The pay-as-you-go business model and service-oriented paradigm in cloud computing allow users to

customize resources and services freely in accordance with their needs. Amazon’s cloud computing revenue reached USD

12.2 billion in 2016. Cloud services are one of the fastest-growing areas in computing; companies are adopting cloud services

at a fast rate, and the global market is expected to exceed USD 270 billion by 2020 [1] . Scalable infrastructure and processing

engine technologies that support cloud services, such as the Google File System [2] , the MapReduce [3] programming model,

the distributed File System Hadoop [4] developed by Apache Foundation, and the in-memory computing framework Spark

[5] developed by the AMP Lab of University of California, Berkeley, have largely affected how application services run.

The basic feature of cloud computing is that computing and storage tasks scattered across many personal computers are

handled using centralized data centers. The resource allocation problem in cloud computing is proven to be NP-complete [6] .

In general, the optimal algorithm can be used to obtain the optimal solution, and approximation or heuristic algorithms are
∗ Corresponding author.

E-mail addresses: longxinzhang@hnt.edu.cn (L. Zhang), zhouliqian@hut.edu.cn (L. Zhou), ahmad@zu.edu.eg (A. Salah).

https://doi.org/10.1016/j.ins.2020.04.039

0020-0255/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2020.04.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2020.04.039&domain=pdf
mailto:longxinzhang@hnt.edu.cn
mailto:zhouliqian@hut.edu.cn
mailto:ahmad@zu.edu.eg
https://doi.org/10.1016/j.ins.2020.04.039

32 L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46

designed to obtain a feasible solution. Applications with deadline constraints, such as media streaming applications, smart

city traffic forecasts, and online banking systems, maximize cloud computing to obtain results. Some applications, such as

the national weather center’s hurricane forecasts, can result in disastrous consequences if deadlines are missed.

Resource management in cloud computing has elicited varied research attention. Many existing studies have achieved

good results. High-performance computing has been playing an increasingly important role in the information field. In gen-

eral, several virtual resources are managed by cloud computing. Arunarani et al. [7] comprehensively surveyed task schedul-

ing strategies and performance metrics in cloud computing systems. Many parallel tasks should be executed on many-core

processors in data centers on a daily basis. Thus, some important task scheduling problems, such as system performance

optimization and energy saving, should be considered. Chen et al. [8] proposed optimized SpGEMM kernels to improve large-

scale applications in supercomputing centers. By utilizing the high computational power of GPUs to accelerate in-memory

cluster computing, Chen et al. [9] designed an easy programming model in heterogeneous CPU-GPU computing systems. Li

[10] addressed the parallel task scheduling problem with energy and time constraints and gave the lower bounds of optimal

solutions. Maqsood et al. [11] studied task scheduling and mapping strategy to minimize energy consumption by consid-

ering the communication overhead in computer systems. A bi-layered parallel training architecture was designed by Chen

et al. [12] to accelerate the training process of large-scale convolutional neural networks. The knapsack-based bin-packing

algorithm was proposed to obtain joint optimization in two dimensions, namely, energy consumption and network load.

Wang et al. [13] developed parallelism-aware scheduling strategies based on existing task scheduling algorithms to realize

the task scheduling problem in polynomial time. The combination problem is transformed into a binary programming prob-

lem. On the basis of reinforcement learning, Islam et al. [14] designed a framework under several task scheduling strategies

in multiple core systems. Chen et al. [15] developed a periodicity-based parallel time series prediction to handle the massive

historical datasets in distributed systems. In their framework, voltage and frequency can be scaled intelligently to match the

features of tasks and processors. A profile-based efficient power-aware framework was presented by Qureshi [16] to achieve

a good tradeoff among the cost of virtual machines (VMs), CPU utilization, load balance, and power usage in data centers.

Several characteristics of application workflow requirements that involve CPU, memory size, network bandwidth, and power

budget constraints are considered while assigning application workloads to the cloud center.

In certain cloud systems, such as Hadoop, the mapping task jobs perform with low efficiency due to the input data

that are in a remote memory system instead of local storage. Selvitopi et al. [17] developed a scheduling model to balance

between load balance and data locality in the map and reduce phases. Huang et al. [18] proposed a novel algorithm to solve

the data skew problem in the MapReduce computing framework. Chen et al. [19] extended Flink to heterogeneous CPU-GPU

clusters to achieve high-performance dataflow processing. A two-stage task scheduling algorithm based on the historical

task scheduling log information was presented by Zhang and Zhou [20] to meet deadline and service quality constraints.

Chen et al. [21] proposed a security-aware scheduling algorithm to reduce the makespan and monetary costs of workflow

application while satisfying the security requirements in cloud computing by taking advantage of the security-sensitive

intermediate data in the workflow. Although energy saving and system reliability enhancement are crucial metrics in most

cases in a distributed computing system, they are also conflicting objects. A bi-objective genetic algorithm was developed

in [22] to solve the parallel workflow task scheduling problem, the pursuit of which involves low energy consumption and

high system reliability. Tong et al. [23] designed two heuristic algorithms, namely, biogeography-based optimization (BBO)

and new hybrid migrating BBO, to address the parallel tasks with precedence constraints in cloud computing.

In previous studies, some excellent strategies have been proposed for parallel task sets under deadline constraints in

cloud computing environments. However, the time complexity of these algorithms is high. In general, VM resources are

essential in cloud computing. Improving VM resource utilization and simultaneously ensuring that task sets do not miss

deadlines have considerable practical implications.

The contributions of this study are listed as follows:

• The resource management in cloud computing centers is formalized into a combinatorial optimization problem.

• An efficient parallel task scheduling algorithm is presented in cloud computing environments under end-to-end deadline

constraints.

• Various workflow applications, including randomly generated and real-world workflow applications, and scientific evalu-

ation methods are used to evaluate the performance of the proposed algorithm.

The remainder of the paper is organized as follows. Section 2 elaborates the related works of resource management

in heterogeneous computing. Section 3 introduces some models used in this study and describes the problem to be re-

solved. Section 4 presents a novel heuristic algorithm to schedule a parallel task set with end-to-end deadline constraints

to appropriate VM instances in cloud computing environments. Section 5 discusses the experiments conducted to assess the

presented algorithm with state-of-art algorithms. Section 6 concludes the paper and mentions possible future works.

2. Related work

Xu et al. [24] presented a molecular genetic algorithm to minimize the makespan in heterogeneous computing systems.

Ali et al. [25] proposed a contention-aware strategy to optimize computation and communication energy by applying an

integrated method that includes dynamic voltage scaling and task mapping techniques for a real-time directed cyclic graph

L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46 33

V

(DAG) task set with precedence and deadline constraints. Zhang et al. [26] developed a novel contention-aware reliability

scheme while satisfying deadline and energy constraints for parallel tasks in distributed systems.

In general, task scheduling is an NP-hard problem. Topcuoglu et al. [27] presented an efficient heuristic algorithm

heterogeneous-earliest finish-time (HEFT) and mapped a parallel task set to a matched processor in heterogeneous com-

puting systems. Mezmaz et al. [28] investigated parallel applications with precedence constraints and proposed a novel

bi-objective genetic algorithm that considers makespan and energy consumption on cloud computing environments. The

competing user loads, performance variations, failures, and other factors have an important impact on deadline-sensitive

parallel applications. A workflow orchestrator for distributed systems architecture was designed in [29] on the basis of a

least common denominator resource model. Durillo et al. [30] developed a bi-objective optimization by considering perfor-

mance and energy saving. This approach is based on empirical models that depict real-world operations in heterogeneous

computing environments. To attain the high-quality security needed in security-sensitive applications, such as bank sys-

tems, Tang et al. [31] developed a security-driven scheduling architecture to guarantee high quality of security and high

performance while processing such parallel applications.

Considering the important influence of bandwidth constraint, security network latency, and other key economic aspects

on the cloud model, a set of cost-efficiency algorithms has been proposed for deadline-constrained parallel task applications

on public and private cloud centers [32] . Xiao et al. [33] developed a CASpMV framework for a supercomputer center to

promote the parallel efficiency of SpMV in heterogeneous computing systems. The parallel K-Tree was proposed in [34] to

obtain a multi-core solution of extreme clustering in high-performance applications. On the basis of a dynamic voltage and

frequency scaling technique, the whale optimization algorithm (WOA), which is a joint optimal task scheduling scheme, was

presented in [35] to achieve the tradeoff of task set complete time and energy consumption in mobile cloud computing.

During WOA processing, three important factors, namely, the sequence of task execution, the position of task execution,

and the operation voltage of mobile devices, are considered. Wu et al. [36] presented the minimal slack time and minimal

distance (MSMD) algorithm to achieve a minimal task complete time for task applications with deadline constraints in cloud

computing.

3. Models

In this section, application, system, and task models and some basic concepts are described.

3.1. Application model

A parallel application with end-to-end constraints can be modeled as a DAG. In the DAG, G = < T , E >, where T is the

parallel task set and E is the communication edge among task nodes in the parallel tasks. An edge, e i,j ∈ E , represents the

priority constraint between task nodes τ i and τ j . The parent node τ i should be executed before its child node τ j can be

released. Weight w i on task node τ i denotes the execution time of that on VM. When VMs are equipped with a uniform

configuration, the execution time of the task τ i on VM vm j will be the same. In each DAG, all the direct predecessors of task

node τ i are denoted as parent (τ i), that is, parent(τi) = {∀ τp | e p,i ∈ E} . All the direct successors of task node τ i are denoted as

child (τ i), that is, child(τi) = {∀ τc | e i,c ∈ E} . Two special task nodes exist in a DAG. The node without a parent node is called

an entry node, that is, τ entry . The node without a child node is called an exit node, that is, τ exit . In our study, each DAG has

only one entry node and one exit node. If more than one entry or exit node exists, then a node with zero computation cost

can be added as a virtual entry or exit node. As shown in Fig. 1 , this DAG has 11 task nodes, where τ 0 is τ entry and τ 10 is

τ exit .

The speed of a network is much faster than that of a hard disk in the cloud computing center. Thus, the communication

cost between two adjacent nodes is negligible in this model. The edge that connects two adjacent nodes only represents the

priority constraint. When each parallel task set as a DAG application arrives at the cloud computing center, release time T R
is required to prepare the entire task to be executed. Meanwhile, the application should guarantee the end-to-end deadline

constraint T D .

3.2. System model

The cloud computing center in this study can be modeled as a set of VM instances. A VM instance set is denoted as

 M = { v m 0 , v m 1 , v m 2 , . . . , v m n } . All the instances have different types. They are heterogeneous with different configurations.

In other words, CPU cores, DRAM capacity, and hard memory are equipped with diverse configurations. Similar to most cloud

computing centers, the file system used in this study is built with a shared storage design. The cost of data communication

among VM instances is negligible. The bandwidth of a VM can be considered ideal. No communication contention occurs

among VM instances. The notations about the application and system models used in this study are shown in Table 1 . The

computation cost of the tasks in Fig. 1 on different VMs is shown in Table 2 .

34 L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46

Table 1

Notations used in this study.

Notation Definition

DAG Directed Acyclic Graph

G A parallel tasks set

VM A virtual machine instances set

T C The computation costs of tasks in critical path of the DAG

T D The end-to-end deadline of DAG application

τ i The task node i

vm k The virtual machine instance k

w i, j The computation cost of task node τ i on vm j

t dr (τ i , vm j) The data ready time of task node τ i on VM instance vm j

makespan The task completion time of the exit node in the DAG

DRank (τ i) The downward rank value of τi

URank (τ i) The upward rank value of τi

child (τ i) The set of immediate successors of task node τ i

parent (τ i) The set of immediate predecessors of task node τ i

EST (τ i) The earliest start time of task node τ i

EAT (vm i) The earliest available time of vm i

LFT (τ i) The latest finish time of task node τ i

FT (τ i) The finish time of task node τ i

maxslack The maximum slack time of τ i in the DAG applicaiton

Res (τ i , vm j) The relative distance of task node τ i on vm j

SLR Scheduling length ratio

RRR Resource reduction ratio

MRR Makespan reduction ratio

Table 2

Computation cost of tasks on different VMs of

the DAG application in Fig. 1 .

Tasks vm 0 vm 1 vm 2

τ 0 8 5 9

τ 1 12 8 13

τ 2 11 10 14

τ 3 16 15 17

τ 4 12 9 11

τ 5 10 12 15

τ 6 14 11 13

τ 7 11 16 12

τ 8 13 14 10

τ 9 5 10 8

τ 10 15 16 18

3.3. Preliminaries

3.3.1. Task earliest start time EST (τ i) and task latest finish time LFT (τ i)

The earliest time of task τ i ∈ T on VM vm j denotes the latest finish time of all of the predecessors of task τ i plus its

execution time on VM. The earliest start time of the task τ i can be calculated recursively as follows:

EST (τi) =

{
T R i f τi = τentry ,

max
τk ∈ parent(τi)

{ EST (τk) + w k } otherwise. (1)

Similarly, the latest finish time of a given task τ i ∈ T can be defined as the latest start time of τ i ’s successors. The

expression can be expressed as follows:

LF T (τi) =

{
T R + T D i f τi = τexit

min

τk ∈ child(τi)
{ LF T (τk) − w k } otherwise. (2)

3.3.2. Earliest available time EAT (vm n) of a VM instance

For the VM instance vm n , the available time is 0 when no task is assigned to vm n . In Eq. (3) , if some tasks are scheduled

on vm n , that is, i > 0, then the earliest available time of vm n depends on the data ready time of t dr (τ i , vm n), the earliest

finish time EF T (τi −1 ,n) of τi −1 on vm n (where EF T (τi −1 ,n) = EST (τi −1 ,n) + w i −1 ,n), and the computing cost w i, n of task τ i on

VM instance vm n . The earliest available time of a VM instance is defined as follows:

EAT (v m n) =

{
0 i = 0 ,

(3)

max { EF T (τi −1 ,n) , t dr (τi , v m n) } + w i,n i > 0 .

L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46 35

3.3.3. Task ready time (t dr)

The data ready time of task τ i on VM instance vm j denotes that all the data that are dependent on the task are received.

Ready time t dr can be defined as follows:

t dr (τi , v m k) = max
τ j ∈ parent(τi)

{
F T

(
τ j , v m k

)}
, (4)

where FT (τ i , vm j) denotes the finish time of task τ i on vm j .

3.3.4. Task rank

For a given DAG, the feasible priority queue should guarantee the topology of the DAG. The URank (τ i) can be expressed

as follows:

URank (τi) = max
τ j ∈ child(τi)

{
URank (τ j)

}
+ w̄ i , (5)

where w̄ i is the average computation cost of τ i on different VMs. In particular, the URank of the exit node is equal to its

computing cost on VM, namely, URank (τexit) = w̄ τexit
.

The downward rank DRank of a given task τ i ∈ T can be computed recursively from the exit node of a DAG, as follows:

DRank (τi) = max
τ j ∈ parent(τi)

{
w̄ j + DRank (τi)

}
. (6)

In particular, the DRank of the entry node equals zero, namely, DRank (τentry) = 0 .

3.3.5. Task maximum slack time (maxslack)

The task maximum slack time maxslack is used to measure the length of the task’s free time before causing a violation

of the deadline constraint. When the maxslack of τ i is equal to zero, that is, maxslack = 0 , τ i must be started at its earliest

start time. Otherwise, a deadline violation will occur. In other words, a large maxslack indicates a considerable time it can

afford to delay the start time of τ i .

The definition of maxslack is expressed as follows:

maxslack (τi) = LF T (τi) − (EST (τi) + w̄ (τi)) . (7)

3.3.6. Task priority

The task priority in the DAG is established to maintain the precedence constraint of parallel tasks. On the basis of the

DRank introduced above, tasks with low DRank values have higher priorities than tasks with high DRank values. When two

tasks have the same DRank value, the task with the lower maxslack has a higher priority than the other task. If the DRank

and maxslack values of the two tasks are the same, then the priority is assigned in accordance with the numbers of the

tasks. On this basis, the task with the smaller number has a higher priority than the other task with the large number in

this case.

3.3.7. Relative distance

The relative distance between the available time of the VM instance VM j and the data ready time of task τ i on the

VM instance VM j is used to indicate the close degrees of ready time of the candidate task. Candidate task τ i in a priority

queue is assigned to an appropriate VM instance following the rule of minimal relative distance among task τ i on each VM

instance, instead of EFT (τ i) or EST (τ i). The definition of relative distance is expressed as follows:

Res (τi , v m j) =

{
EAT (v m j) i f EAT (v m j) < t dr (τi , v m j) ,
t dr (τi , v m j) otherwise.

(8)

3.3.8. Virtual machine bounds

As proven in [36] , the number of VM instances M should be used for a given parallel task with a deadline constraint T D
by complying with the following expression: ⌈

T seq

T D

⌉

≤ M ≤ | V | − Le v el(τexit) , (9)

where T seq is the sequential execution time, |V| is the number of task nodes, and level (τ exit) is the topological level of the

exit node τ .
exit

36 L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46

Table 3

Task priority of DAG application for Fig. 1 .

Tasks EST LFT maxslack CP DRank Priority

τ 0 0 11.67 4.33
√

0.00 1

τ 1 8 23.67 5.33 7.33 3

τ 2 8 25.33 6.33 7.33 4

τ 3 8 27.67 4.33
√

7.33 2

τ 4 22 36.00 6.33 19.00 6

τ 5 16 36.00 5.33 18.33 5

τ 6 28 40.67 4.67 23.33 8

τ 7 24 40.67 4.33
√

23.33 7

τ 8 33 48.33 5.33 30.67 9

τ 9 39 48.33 4.33
√

36.33 10

τ 10 44 65.00 4.33
√

44.00 11

Fig. 1. Example of DAG with an end-to-end deadline constraint T D = 80 .

3.3.9. Problem description

On the basis of the above-mentioned descriptions, the problem to be solved in this study is to assign each task in the

parallel task set with an end-to-end deadline constraint to an appropriate VM instance. In this manner, the total task set

complete time is minimization. The formulation is given as follows:

Minimize : FT(τexit)
Sub ject to : F T (τexit) ≤ T D ,

(10)

and ∀ τi ∈ T ,

n ∑

j=1

M(τi , v m j) = 1 . (11)

where FT (τ exit) is the complete time of task τ exit . Eq. (11) guarantees that each task can only be executed once on one VM.

3.3.10. Motivation example

On the basis of the aforementioned definitions, EST, LFT, maxslack, DRank , priority, and whether task τ i is on the critical

path of the DAG are shown in Table 3 .

For the given DAG application, the critical path is composed of τ 0 , τ 3 , τ 7 , τ 9 , and τ 10 . On the basis of the previous

priority queue establishment criteria, the task queue sort is arranged in descending order in accordance with the task’s

DRank value. Tasks with the same DRank value are sorted in ascending order in accordance with maxslack . Therefore, the

priority queue of DAG in Fig. 1 is { τ 0 , τ 3 , τ 1 , τ 2 , τ 5 , τ 4 , τ 7 , τ 6 , τ 8 , τ 9 , τ 10 }.

In the priority establishment stage, the MSMD algorithm based on the combination of the topological level and maxslack

value is used. The topological level can be used to satisfy the precedence constraint of parallel tasks in DAG but cannot be

utilized to build a priority queue. Furthermore, an improved relative space distance Res (τ i , vm j) is used when mapping the

candidate task τ i to the most suitable VM instance. At time 0, the three VMs are available, that is, EST (v m i) = 0 , (i = 1 , 2 , 3) .

All task nodes in a critical path of DAG are assigned to VM instance vm 0 . Using the MSMD algorithm, the schedule of the

DAG in Fig. 1 is shown in Fig. 2 (a). The makespan is 72. The priority of our algorithm is different from that of MSMD.

Specifically, τ 4 is assigned to vm 2 , instead of vm 0 . The final schedule result is shown in Fig. 2 (b). The makespan is 59, which

is 13 units less than that of MSMD.

L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46 37

Fig. 2. Schedule result of two algorithms in accordance to task graph in Fig. 1 .

4. Efficient priority and relative distance scheduling algorithm

In this section, the efficient priority and relative distance (EPRD) scheduling algorithm is presented for the problem given

in Section 3.3.9 .

Algorithm 1 provides an overview of the heuristic algorithm in this study. In Step 1 of Algorithm 1 , the URank value

Algorithm 1: Schedule overview.

Input : A DAG G = < T , V M > , T R , T D .

Output : A schedule S of T on V Ms while satisfying end-to-end deadline constraint.

1 compute URank of τi ∈ T by traversing the graph from the exit node;

2 compute DRank of τi ∈ T by traversing the graph from the entry node;

3 compute EST , LF T , maxslack for each node;

4 sort tasks in a non-decreasing order by DRank value for each task and build a priority queue Queu e URank ;

5 n ←

⌈

T seq

T D

⌉

;

6 while FT (τi) ≤ T R + T D do

7 v m [n] ← {∅} ;
8 F T (τexit) ← EP RD (T , n, Queu e URank , V M) ;

9 n ← n + 1 ;

10 end

for each task node is calculated. In Step 2, the DRank value for each task node is computed. Steps 1–2 are followed to find

the critical path of the DAG. The EST, LFT , and maxclack of each node are obtained in Step 3. The efficient priority queue of

parallel tasks is established in Step 4 on the basis of the non-increasing order of DRank and ascending orders of maxslack .

In Step 5, the number of VM instances is obtained with Eq. (9) . Steps 6–10 are the loop body, the purpose of which is to

map each task to a suitable VM instance. In Step 8, the EPRD algorithm is invoked.

The EPRD algorithm is presented in Algorithm 2 . This algorithm aims to choose a feasible VM instance for each candidate

task in the priority queue Queue URank . The head task τ i in the priority queue is selected in Step 2. If task τ i belongs to the

critical path of the DAG, then task τ i is assigned to the VM instance vm 0 following an insert technique strategy. This process

occurs in Step 4. All tasks in the critical path are scheduled to be executed on vm 0 . The relative distance Res (τ i , vm 0) on

the vm 0 of the other task that does not exist in the critical path is calculated. Res (τ i , vm 0) is stored temporarily to variable

resValue in Step 6. The candidate VM instance is marked as vm 0 temporarily in Step 7. In the inner loop of Steps 8–12,

the other VM instances are compared with vm on the value of relative distance. The maximum relative distance and the
0

38 L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46

Algorithm 2: EPRD.

Input : A DAG G = < T , V M > , T R , T D , Queu e URank .

Output : F T (τexit)

1 while the priority queue Queu e URank is not empty do

2 τi ← the head node in Queu e URank ;

3 if τi ∈ CP then

4 assign τi to v m 0 ;

5 else

6 resV alue ← Re s (τi , v m 0) ;

7 cand id ateV M ← v m 0 ;

8 for j ← 1 to m − 1 do

9 if Re s(τi , v m j) < resV alue then

10 Re s(τi , v m j) ← resV alue ; cand id ate VM ← j ;

11 end

12 end

13 if cand id ate VM = 0 then

14 assign τi to v m 0 base on insert technique

15 end

16 assign τi to v m [cand id ate VM] based on insert technique

17 end

18 end

corresponding VM instance number are preserved. Following the previous operations, the candidate task τ i is assigned to

the corresponding VM instance in Steps 13–16.

We let N be the number of tasks in the workflow and M the number of VMs. In Algorithm 1, URank and DRank of the

task set are calculated in Steps 1 and 2, respectively. They both have a time complexity of O (| M | × | N |). The time required in

Step 4 is O (| N | × log 2 | N |). In Algorithm 2 , Steps 8–12 are the most time-consuming, they need O (| M | × | N |) time. Therefore,

the time required for Steps 6–10 of Algorithm 1 is O (| N | 2 × | M |). Thus, the time complexity of Algorithm 1 is O (| N | 2 × | M |).

5. Experiments

A comprehensive evaluation and analysis of the proposed algorithm is conducted across a wide set of metrics, as pre-

sented in this section. Three state-of-the-art algorithms, namely, HEFT, MOHEFT, and MSMD, are introduced to compare with

the proposed algorithm.

Topcuoglu et al. [27] proposed an efficient scheduling algorithm called HEFT. HEFT can achieve the objectives of high

performance and low complexity in heterogeneous computing systems. The HEFT algorithm with a deadline constraint (de-

notes as HEFT_D) consists of two stages. In the first stage, the scheduling priority of tasks in the workflow is determined

according to their URank . Then, a priority task scheduling queue is established with these priority tasks. In the second stage,

the candidate task in the priority queue is mapped to the VM instance that has the earliest finish time.

MOHEFT [30] refers to the multi-objective HEFT. MOHEFT aims to predict the execution time and energy consumption of

workflow and finding tradeoff solutions between makespan and energy consumption in a cloud center using historical data.

MSMD, which is a heuristic task scheduling algorithm in cloud computing centers, was presented by Wu et al. [36] .

MSMD has two goals. One goal is to find the minimum amount of resources required while satisfying the end-to-end dead-

line of a given DAG application. The other goal is to minimize the scheduling length of DAG under specified VM instances.

5.1. Experimental setup

Randomly generated DAGs are used to evaluate the performance of our developed algorithm. Four real-word benchmarks

are also used to test our presented algorithm with other start-of-art algorithms.

5.1.1. Randomly generated DAG

Without loss of generality, randomly generated DAG applications are exploited in the experiments. The random DAG

applications are generated on the basis of the following parameters:

• DAG size: The number of task nodes in a DAG application. The size of the DAG ranges from 50 nodes to 300 nodes.

• Computing cost: The execution time of each task node in a DAG application. The computing cost of a task node follows

a uniform distribution with a mean value of 15.

• Average in/out degree: The input/output edge of each task node. The average in/out degree varies from 2 to 10.

• Number of VM instances: The VM instances required in the task scheduling. The bound of VM instances complies with
Eq. (9) .

L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46 39

5.1.2. Real-world benchmark

Four types of popular applications, namely, CyberShake, Epigenoic (GENOME), Interferometer Gravitational Wave Obser-

vatory (LIGO), and Montage, which are provided by Pegasus Workflow Generator [37] , are used in the following experiments.

The characteristics of these benchmarks are different from one another. The CyberShake is a parallel workflow appli-

cation. Montage and GENOME applications combine the characteristics of sequential and parallel tasks. Other parallel ap-

plications include LIOG. However, some critical task nodes of LIOG even have a large number of child nodes. The detailed

characteristics of the real-world benchmarks are elaborated in [38] . The number of task nodes in each application used in

our experiments ranges from 50 nodes to 500 nodes. In accordance with the feasibility of task scheduling, the end-to-end

deadline should be greater than its T C because the four benchmarks do not supply their end-to-end deadlines T D . Thus,

T D > T C . Four different types of end-to-end deadlines, namely, T D = 1 . 5 × T C , T D = 2 . 0 × T C , T D = 2 . 5 × T C , and T D = 3 . 0 × T C ,

are chosen for the four applications to understand the effect of deadlines on algorithm performance.

The experiments are conducted on a Windows 10 workstation with an Intel Core i7-7700 quad-core CPU, 64 GB DRAM,

and a 2 TB hard disk.

5.2. Performance metrics

5.2.1. Scheduling length ratio

The makespan, which is also called scheduling length, depends on the finish time of the exit task τ exit in a DAG. The

makespan is an essential metric when evaluating the performance of a cloud computing system. When running an algorithm

for task scheduling, the number of VM instances considerably affects the makespan for a given DAG application because the

makespan of a DAG application is usually high. The scheduling length ratio (SLR) metric is used to normalize the makespan.

The SLR can be expressed as follows:

SLR =

makespan ∑

τi ∈ CP min v m j ∈ V M

{
w i, j

} , (12)

where CP denotes the task nodes located in the critical path of the DAG.

5.2.2. Resource reduction ratio

The resource utilization is another important metric. The resource reduction ratio (RRR) is defined to indicate the extent

of resource reduction from the upper bound of VM instances. The expression of RRR is defined as follows:

RRR =

U pper Bound − Actual Resources Used

U pper Bound
. (13)

5.2.3. Makespan reduction ratio

The primary goal of EPRD is to minimize the scheduling length of DAG applications with appropriate VM instances

under an end-to-end deadline constraint. An effective method to assess the makespan is time saving by comparing with the

end-to-end deadline. The makespan reduction ratio (MRR) of a DAG application with a release time as T R , and end-to-end

deadline as T D , is defined as follows:

MRR =

T R + T D − SF T (τexit)

T D
. (14)

5.3. Effect of random applications

The primary goal of these experiments is to evaluate the performance of EPRD and the three popular algorithms. Each

data point in the experiment originates from the average value of SLR on the basis of algorithms running for 10 times.

Figs. 3–6 show the average SLR of the four algorithms with T D = 1 . 5 × T C , T D = 2 . 0 × T C , T D = 2 . 5 × T C , and T D = 3 . 0 × T C . The

four groups of algorithms use the same number of VM instances in the test of each random DAG application.

For all the comparisons of the four algorithms shown in Figs. 3–6 , the average SLR increases as the number of tasks

grows. Among the compared algorithms, the average SLR of MOHEFT is larger than that of the three other algorithms.

As illustrated in Fig. 3 , the SLR value of algorithm MOHEFT is larger than that of the three other algorithms in the

experimental comparison of several random graphs with a different number of nodes. The reason for this result is that the

MOHEFT algorithm has two goals, namely, minimizing task set completion time and reducing energy consumption. When

the same number of VMs is used, MOHEFT takes a slightly longer time than normal to complete the execution of the DAG

applications.

When the number of nodes is 300, the average SLR of the EPRD algorithm decreases by 13.24%, 16.31%, and 6.35%,

compared with that of HEFT_D, MOHEFT, and MSMD, respectively. With the increase in the deadline of applications, the SLR

values of the four algorithms all rise. The increase in SLR for the four algorithms is insignificant because the other conditions

are not changed. When the number of nodes in the DAG applications is below 300, the SLR values of the four algorithms

are below 1.5. When the number of nodes reaches 300, the SLR values of these algorithms, except for EPRD, are greater than

1.5 under the condition of T = 3 . 0 × T . EPRD performs well in terms of makespan reduction.
D C

40 L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46

Fig. 3. Average SLR comparison for application with T D = 1 . 5 × T C .

Fig. 4. Average SLR comparison for application with T D = 2 . 0 × T C .

5.4. Experiment on real-world workflows

In addition to the random DAG, the performance of the algorithms is evaluated with real-world workflows, that is, Mon-

tage, Cybershake, Epigenomics, and Genome, as presented in this section. Large-scale workflows with low parallelism are

common in the cases used in this section. Thus, some critical nodes in the DAG have large in/out degree values. The num-

ber of VMs used in the experiment is unlimited to the theoretical upper limit of Eq. (9) to ensure that all four algorithms

can complete the execution of workflows before the specified deadline. In other words, each of the four algorithms may

use a different number of VMs when testing the same workflow and meeting the same deadline constraint. Under such

circumstances, the MRR cannot reflect the performance of the algorithm. Therefore, in the same test scenario, the RRR is

added as the second metric. In addition, the data in the experiment are averaged by multiple running.

Figs. 7 , 9 , 11 , and 13 show the comparison of average resource reduction rates of the four algorithms when the workflow’s

deadlines are 1.5, 2.0, 2.5, and 3.0 times its critical path length, respectively. Figs. 8 , 10 , 12 , and 14 illustrate the comparison

of the average MRRs of the four algorithms when the workflow’s deadlines are 1.5, 2.0, 2.5, and 3.0 times its critical path

length, respectively.

Figs. 7 and 8 show the comparison of the average RRR and MRR of the four algorithms when the end-to-end deadline of

each DAG application is 1.5 times its critical path length. As illustrated in Fig. 7 , a high average RRR value indicates a low

L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46 41

Fig. 5. Average SLR comparison for applications with T D = 2 . 5 × T C .

Fig. 6. Average SLR comparison for applications with T D = 3 . 0 × T C .

number of VMs used in the test of the same workflow. In the CyberShake workflow, the average MRR of the four algorithms

is relatively smaller than those of the three other workflows due to the high output or input degree of some nodes. In

Fig. 7 , MOHEFT exceeds HEFT_D, MSMD, and EPRD in terms of average MRR by 4.1%, 3.71%, and 0.6%, respectively. However,

MOHEFT uses 20.41%, 31.6%, and 32.9% more VMs than HEFT_D, MSMD, and EPRD to achieve this performance, respectively.

Testing with large-scale workflow usually requires the use of thousands of VMs. One percentage point more resources corre-

sponds to 12 more VMs. With the same or fewer numbers of VMs than typical, the EPRD algorithm consistently outperforms

HEFT_D and MSMD in the experimental comparisons with the four real-world workflows.

For all of the four real-world applications with different end-to-end deadline constraints (that is, T D = 1 . 5 × T C , 2.0 × T C ,

2.5 × T C , and 3.0 × T C), the EPRD algorithm performs more steadily than HEFT_D and MSMD in terms of MRR without using

additional VMs. MOHEFT can reduce the makespan rate more than the three other algorithms. However, MOHEFT does so

at the expense of consuming a larger number of VMs relative to the three other algorithms. Fig. 13 shows that MOHEFT

consumes 4.46%, 5.53%, and 5.41% more VMs than HEFT_D, MSMD, and EPRD, respectively, for the LIGO application.

For the same workflow application, the EPRD algorithm generally has a higher MRR than the three other algorithms

when EPRD consumes relatively fewer resources without violating the end-to-end deadline constraints.

42 L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46

Fig. 7. Average RRR comparison for application with T D = 1 . 5 × T C .

Fig. 8. Average MRR comparison for application with T D = 1 . 5 × T C .

Fig. 9. Average RRR comparison for application with T D = 2 . 0 × T C .

L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46 43

Fig. 10. Average MRR comparison for application with T D = 2 . 0 × T C .

Fig. 11. Average RRR comparison for application with T D = 2 . 5 × T C .

Fig. 12. Average MRR comparison for application with T D = 2 . 5 × T C .

44 L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46

Fig. 13. Average RRR comparison for application with T D = 3 . 0 × T C .

Fig. 14. Average MRR comparison for application with T D = 3 . 0 × T C .

6. Conclusion

This study aims to incorporate VM utilization and minimization of the complete time for parallel task sets while satisfy-

ing its end-to-end deadline constraints. The execution sequence of each task in the workflow application is determined by

its DRank and maxslack values. Thereafter, each task is efficiently assigned to the VM in accordance with its relative distance.

The experimental results reveal that the proposed algorithm, namely, ERPD, is comparable to the three other popular

algorithms. The benchmarks used in the experiment include random workflow applications and real-world workflow ap-

plications, namely, Montage, Cybershake, Epigenomics, and Genome. The experiment results show that ERPD significantly

surpasses the three other algorithms in terms of RRR and MRR.

Energy consumption and security are two crucial metrics in cloud computing. One planned future work is to study energy

saving and security enhancement for precedence-constrained workflow applications in cloud computing while guaranteeing

service quality.

Declaration of Competing Interest

The authors declare that they do not have any financial or nonfinancial conflict of interests

L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46 45

CRediT authorship contribution statement

Longxin Zhang: Investigation, Conceptualization, Methodology, Software, Writing - original draft, Data curation. Liqian

Zhou: Software, Validation, Supervision, Writing - review & editing. Ahmad Salah: Data curation, Software, Validation, Writ-

ing - review & editing.

Acknowledgment

This work was partially funded by the National Key R&D Program of China (Grant No. 2018YFB1003401), the National

Natural Science Foundation of China (Grant Nos. 61702178 , 61672224 , 61871432), the Natural Science Foundation of Hunan

Province (Grant No. 2019JJ50123 , 2018JJ4063 , 2018JJ4068 , 2019JJ60054 , 2019JJ60 0 08), the Key Program of Education Bureau

of Hunan Province (No. 17A052), the Research Foundation of Education Bureau of Hunan Province (No. 18C0528), and in part

by China Scholarship Council (No. 201808430297).

References

[1] [Online], Available. (http://marketresearchmedia.com/?p=839 , Jan. 2014).

[2] S. Ghemawat , H. Gobioff, S.-T. Leung , The google file system, ACM SIGOPS Oper. Syst. Rev. 37 (5) (2003) 29–43 .

[3] J. Dean , S. Ghemawat , MapReduce: simplified data processing on large clusters, Commun. ACM 51 (1) (2008) 107–113 .
[4] K. Shvachko , H. Kuang , S. Radia , R. Chansler , et al. , The hadoop distributed file system., in: MSST, vol. 10, 2010, pp. 1–10 .

[5] M. Zaharia , M. Chowdhury , M.J. Franklin , S. Shenker , I. Stoica , Spark: cluster computing with working sets., HotCloud 10 (10-10) (2010) 95 .
[6] M.R. Garey , D.S. Johnson , Computers and intractability, 1979 .

[7] A. Arunarani , D. Manjula , V. Sugumaran , Task scheduling techniques in cloud computing: aliterature survey, Future Gener. Comput. Syst. 91 (2019)
407–415 .

[8] Y. Chen , K. Li , W. Yang , G. Xiao , X. Xie , T. Li , Performance-aware model for sparse matrix-matrix multiplication on the sunway TaihuLight supercom-

puter, IEEE Trans. Parallel Distrib. Syst. 30 (4) (2019) 923–938 .
[9] C. Chen , K. Li , A. Ouyang , K. Li , FlinkCL: an OpenCL-based in-memory computing architecture on heterogeneous CPU-GPU clusters for big data, IEEE

Trans. Comput. 67 (12) (2018) 1765–1779 .
[10] K. Li , Scheduling parallel tasks with energy and time constraints on multiple manycore processors in a cloud computing environment, Future Gener.

Comput. Syst. 82 (2018) 591–605 .
[11] T. Maqsood , N. Tziritas , T. Loukopoulos , S.A. Madani , S.U. Khan , C.-Z. Xu , A.Y. Zomaya , Energy and communication aware task mapping for MPSoCs, J.

Parallel Distrib. Comput. 121 (2018) 71–89 .

[12] J. Chen , K. Li , K. Bilal , K. Li , S.Y. Philip , et al. , A bi-layered parallel training architecture for large-scale convolutional neural networks, IEEE Trans.
Parallel Distrib. Syst. 30 (5) (2018) 965–976 .

[13] B. Wang , Y. Song , J. Cao , X. Cui , L. Zhang , Improving task scheduling with parallelism awareness in heterogeneous computational environments, Future
Gener. Comput. Syst. 94 (2019) 419–429 .

[14] F.M.M. ul Islam , M. Lin , L.T. Yang , K.-K.R. Choo , Task aware hybrid DVFS for multi-core real-time systems using machine learning, Inf. Sci. 433 (2018)
315–332 .

[15] J. Chen , K. Li , H. Rong , K. Bilal , K. Li , S.Y. Philip , A periodicity-based parallel time series prediction algorithm in cloud computing environments, Inf.
Sci. 496 (2019) 506–537 .

[16] B. Qureshi , Profile-based power-aware workflow scheduling framework for energy-efficient data centers, Future Gener. Comput. Syst. 94 (2019)

453–467 .
[17] O. Selvitopi , G.V. Demirci , A. Turk , C. Aykanat , Locality-aware and load-balanced static task scheduling for mapreduce, Future Gener. Comput. Syst. 90

(2019) 49–61 .
[18] X. Huang , L. Zhang , R. Li , L. Wan , K. Li , Novel heuristic speculative execution strategies in heterogeneous distributed environments, Comput. Electr.

Eng. 50 (2016) 166–179 .
[19] C. Chen , K. Li , A. Ouyang , Z. Zeng , K. Li , GFlink: an in-memory computing architecture on heterogeneous CPU-GPU clusters for big data, IEEE Trans.

Parallel Distrib. Syst. 29 (6) (2018) 1275–1288 .

[20] P. Zhang , M. Zhou , Dynamic cloud task scheduling based on a two-stage strategy, IEEE Trans. Autom. Sci. Eng. 15 (2) (2017) 772–783 .
[21] H. Chen , X. Zhu , D. Qiu , L. Liu , Z. Du , Scheduling for workflows with security-sensitive intermediate data by selective tasks duplication in clouds, IEEE

Trans. Parallel Distrib. Syst. 28 (9) (2017) 2674–2688 .
[22] L. Zhang , K. Li , C. Li , K. Li , Bi-objective workflow scheduling of the energy consumption and reliability in heterogeneous computing systems, Inf. Sci.

379 (2017) 241–256 .
[23] Z. Tong , H. Chen , X. Deng , K. Li , K. Li , A novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimiza-

tion, Soft Comput. (2018) 1–20 .

[24] Y. Xu , K. Li , L. He , L. Zhang , K. Li , A hybrid chemical reaction optimization scheme for task scheduling on heterogeneous computing systems, IEEE
Trans. Parallel Distrib. Syst. 26 (12) (2015) 3208–3222 .

[25] H. Ali , U.U. Tariq , Y. Zheng , X. Zhai , L. Liu , Contention & energy-aware real-time task mapping on NoC based heterogeneous MPSoCs, IEEE Access 6
(2018) 75110–75123 .

[26] L. Zhang , K. Li , W. Zheng , K. Li , Contention-aware reliability efficient scheduling on heterogeneous computing systems, IEEE Trans. Sustain. Comput.
(3) (2018) 182–194 .

[27] H.R. Topcuoglu , S. Hariri , M. Wu , Performance-effective and low-com plexity task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib.

Syst. 13 (3) (2002) 260–274 .
[28] M. Mezmaz , N. Melab , Y. Kessaci , Y.C. Lee , E.-G. Talbi , A.Y. Zomaya , D. Tuyttens , A parallel bi-objective hybrid metaheuristic for energy-aware scheduling

for cloud computing systems, J. Parallel Distrib. Comput. 71 (11) (2011) 1497–1508 .
[29] L. Ramakrishnan , J.S. Chase , D. Gannon , D. Nurmi , R. Wolski , Deadline-sensitive workflow orchestration without explicit resource control, J. Parallel

Distrib. Comput. 71 (3) (2011) 343–353 .
[30] J.J. Durillo , V. Nae , R. Prodan , Multi-objective energy-efficient workflow scheduling using list-based heuristics, Future Gener. Comput. Syst. 36 (2014)

221–236 .

[31] T. Xiaoyong , K. Li , Z. Zeng , B. Veeravalli , A novel security-driven scheduling algorithm for precedence-constrained tasks in heterogeneous distributed
systems, IEEE Trans. Comput. 60 (7) (2011) 1017–1029 .

[32] R. Van den Bossche , K. Vanmechelen , J. Broeckhove , Online cost-efficient scheduling of deadline-constrained workloads on hybrid clouds, Future Gener.
Comput. Syst. 29 (4) (2013) 973–985 .

[33] G. Xiao , K. Li , Y. Chen , W. He , A. Zomaya , T. Li , CASpMV: a customized and accelerative SpMV framework for the Sunway TaihuLight, IEEE Trans. Parallel
Distrib. Syst. (2019) .

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004735
https://doi.org/10.13039/501100004543
http://marketresearchmedia.com/?p=839
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0026
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0026
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0026
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0026
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0032

46 L. Zhang, L. Zhou and A. Salah / Information Sciences 531 (2020) 31–46

[34] A. Woodley , L.-X. Tang , S. Geva , R. Nayak , T. Chappell , Parallel k-tree: a multicore, multinode solution to extreme clustering, Future Gener. Comput.
Syst. 99 (2019) 333–345 .

[35] H. Peng , W.-S. Wen , M.-L. Tseng , L.-L. Li , Joint optimization method for task scheduling time and energy consumption in mobile cloud computing
environment, Appl. Soft Comput. 80 (2019) 534–545 .

[36] H. Wu , X. Hua , Z. Li , S. Ren , Resource and instance hour minimization for deadline constrained DAG applications using computer clouds, IEEE Trans.
Parallel Distrib. Syst. 27 (3) (2015) 885–899 .

[37] [Online] Available. (https://confluence.pegasus.isi.edu/display/pegasus/workflowgenerator , 2014).

[38] S. Bharathi , A. Chervenak , E. Deelman , G. Mehta , M.-H. Su , K. Vahi , Characterization of scientific workflows, in: 2008 Third Workshop on Workflows
in Support of Large-Scale Science, IEEE, 2008, pp. 1–10 .

http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0035
https://confluence.pegasus.isi.edu/display/pegasus/workflowgenerator
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30347-9/sbref0036

	Efficient scientific workflow scheduling for deadline-constrained parallel tasks in cloud computing environments
	1 Introduction
	2 Related work
	3 Models
	3.1 Application model
	3.2 System model
	3.3 Preliminaries
	3.3.1 Task earliest start time EST(τi) and task latest finish time LFT(τi)
	3.3.2 Earliest available time EAT(vmn) of a VM instance
	3.3.3 Task ready time (tdr)
	3.3.4 Task rank
	3.3.5 Task maximum slack time (maxslack)
	3.3.6 Task priority
	3.3.7 Relative distance
	3.3.8 Virtual machine bounds
	3.3.9 Problem description
	3.3.10 Motivation example

	4 Efficient priority and relative distance scheduling algorithm
	5 Experiments
	5.1 Experimental setup
	5.1.1 Randomly generated DAG
	5.1.2 Real-world benchmark

	5.2 Performance metrics
	5.2.1 Scheduling length ratio
	5.2.2 Resource reduction ratio
	5.2.3 Makespan reduction ratio

	5.3 Effect of random applications
	5.4 Experiment on real-world workflows

	6 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	References

