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Resource and Instance Hour Minimization for
Deadline Constrained DAG Applications Using

Computer Clouds
Hao Wu, Student Member, IEEE , Xiayu Hua, Student Member, IEEE , Zheng Li, Student Member, IEEE

and Shangping Ren, Senior Member, IEEE ,

Abstract—In this paper, we address the resource and virtual machine instance hour minimization problem for
directed-acyclic-graph-based deadline constrained applications deployed on computer clouds. The allocated resources and instance
hours on computer clouds must: (1) guarantee the satisfaction of a deadline constrained application’s end-to-end deadline; (2) ensure
that the number of virtual machine (VM) instances allocated to the application is minimized; (3) under the allocated number of VM
instances, determine application execution schedule that minimizes the application’s makespan; and (4) under the decided application
execution schedule, determine a VM operation schedule, i.e., when a VM should be turned on or off, that minimizes total VM instance
hours needed to execute the application. We first give lower and upper bounds for the number of VM instances needed to guarantee
the satisfaction of a deadline constrained application’s end-to-end deadline. Based on the bounds, we develop a heuristic algorithm
called minimal slack time and minimal distance (MSMD) algorithm that finds the minimum number of VM instances needed to
guarantee the application’s deadline and schedules tasks on the allocated VM instances so that the application’s makespan is
minimized. Once the application execution schedule and the number of VM instances needed are determined, the proposed VM
instance hour minimization (IHM) algorithm is applied to further reduce the instance hours needed by VMs to complete the application’s
execution. Our experimental results show that the MSMD algorithm can guarantee applications’ end-to-end deadlines with less
resources than the HEFT [32], MOHEFT [16], DBUS [9], QoS-base [40] and Auto-Scaling [25] heuristic scheduling algorithms in the
literature. Furthermore, under allocated resources, the MSMD algorithm can, on average, reduce an application’s makespan by 3.4%
of its deadline. In addition, with the IHM algorithm we can effectively reduce the application’s execution instance hours compared with
when IHM is not applied.

Index Terms—Cloud, Scheduling, Cost minimization, Makespan minimization, Resource Minimization, Real-time,MSMD, Instance
Hour Minimization
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1 INTRODUCTION

THE advancement of computer and network technology
has brought the world into a new computer cloud

era. The “pay-as-you-go” business model and the service
oriented models allow users to have “unlimited” resources
if needed and free from infrastructure maintenance and
software upgrades. Cloud services are currently among the
top-ranked high growth areas in computing and are seeing
an acceleration in enterprise adoption with the worldwide
market predicted to reach more than $270b in 2020 [3]. Many
different types of applications are deployed on computer
clouds. For instance, both Argonne National Laboratory and
Fermi National Accelerator Laboratory provide their cloud
platforms for scientific applications [22], [12]. Deadline con-
strained applications such as online media streaming appli-
cations [28], interactive deadline constrained e-learning [4],
and online banking systems [31] are also seeking opportu-
nities to utilize computer clouds.

The authors are with Illinois Institute of Technology, 10 W 31st street, 013,
Chicago, IL, USA
{hwu28, xhua, zli80, ren}@iit.edu
The research is supported by in part by NSF under grant number CAREER
0746643, CNS 1018731 and CNS 1035894. We would like to thank Daniela
Martinez for proof reading the paper and reviewers for their constructive and
valuable comments that have improved the paper.

In our joint project with the Chicago Waste Water Treat-
ment Plant on its air blower control system, we have de-
signed a real-time control system that is used to dynamically
control the air blower speed based on deadline constrained
data and prediction models (including weather prediction,
chemical process predictions, etc.) to reduce the electricity
cost [1]. The application contains a set of dependent tasks,
i.e., data sensing, data processing, data storage, monitoring,
prediction, decision making, and actions to turn up or
down the speed of the air blower. If the application miss
its deadline, i.e., the blower’s speed is not turned up by
certain time, it can cause catastrophic consequences, such as
causing not properly treated waste water disposed to the
waterways.

With the support of cloud and cloud bursting technolo-
gies [36], companies do not need to provision their resources
for the worst case scenarios anymore. With a private cloud,
local resources need not be dedicated to the application at all
time as the application’s resource need can be low when the
weather conditions are steady. When applications do need
more computation resources, such as when weather changes
more frequently and abruptly and more computation power
is needed for modeling and prediction calculations, public
cloud resources can be obtained. However, one of the major
technical issues we are facing when deploying such deadline
constrained applications on the cloud is how to minimize
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cost for deploying applications on cloud while guaranteeing
the deadline requirement requested by the applications.

In the context of cloud computing, an application’s exe-
cution cost refers to the monetary cost of renting resources
on public cloud. In the literature, good amount of effort has
been made in addressing the issue of how to minimize the
cost for applications using cloud platforms. For instance,
some researchers have focused on minimizing the cost by
reducing the applications’ makespan [32], [9], [27], some
considered cost as one of the QoS requirements and thus
have transformed the problem into multi-objective opti-
mization problems that balance the trade offs between the
cost and other QoS requirements [29], [20], [6], [15], [11], and
others have studied cost minimization problem on hybrid
clouds [35], [34], [33], [8], [10], [13].

The operational cost on private cloud is usually neg-
ligible compared to the cost on public cloud. Therefore,
for hybrid cloud, minimizing an application’s makespan
does not necessarily minimize the cost. For instance, if we
only utilize resources in a private cloud, an application’s
makespan is ten hours. If we use two additional VMs on
a public cloud for the same application, we can reduce the
application’s makespan to five hours. Clearly, by utilizing
public cloud, we have reduced application’s makespan, but
also increased the application’s execution cost.

For a deadline constrained application, meeting the ap-
plication’s deadline requirement is critical, but there is no
incentive to finish the application earlier. On the other
hand, in private cloud, reducing applications’ makespan can
increase system’s throughput. Hence, if we can guarantee
an application’s deadline requirement with the least num-
ber of resources and then further minimize application’s
makespan under the given least number of resources, both
clients and service providers benefit the most. Furthermore,
as in a cloud environment, virtual machine instances are
charged only when they are running. Such feature enables
users to further reduce cost by running virtual machines
intelligently.

The work presented in this paper addresses virtual
machine instances and VM instance hour minimization
issue for deadline constrained applications deployed on
computer clouds. We take two steps to target the problem.
First, we reduce the number of VM instances, called hor-
izontal reduction, and then we reduce the instance hours
consumed by the virtual machines, called vertical reduction.
In particular, for a given distributed deadline constrained
application with an end-to-end deadline constraint and a
computer cloud with an unspecified number of VM instances,
we first decide the number of VM instances needed and then
create a schedule on each VM instance to guarantee: 1) the
application’s end-to-end deadline is satisfied, 2) the num-
ber of VM instances needed for executing the application
tasks is minimized, 3) under the minimized number of VM
instances, the application’s makespan is minimized; and (4)
decide a running strategy for each VM instance allocated for
the application such that the total cost (i.e., the total charge
for the VM instance hours) is minimized.

The rest of the paper is organized as follows: Section 2
discusses related work. In Section 3, we first introduce the
models and terms, then formally define the cost minimiza-
tion problem the paper is to address. Section 4 presents an

analysis to quickly calculate the resource bounds needed to
guarantee a DAG-based deadline constrained application’s
end-to-end deadline. Section 5 gives a heuristic algorithm
to decide the number of VM instances needed for a given
deadline constrained application and the task schedule on
each VM instance. Section 6 gives the algorithm to minimize
the instance hours. Experimental evaluations are presented
in Section 7. We conclude and point out future work in
Section 8.

2 RELATED WORK

The essence behind resource minimization and application
makespan minimization problems can be drilled down to a
task scheduling problem which is proven to be NP-complete
when there are more than two computers [17]. Thus, many
heuristic approaches have been proposed. List scheduling
is one of the basic approaches used for makespan mini-
mization and it has a (2− 1

m ) approximation to the optimal
makespan [18], where m is the number of processors. The
idea of list scheduling is to list tasks in an order and then
schedule tasks based the ordered list. Hence, ordering the
task list becomes critical when designing list based algo-
rithms.

Researchers have made significant efforts on ordering
tasks and have developed many list scheduling based
heuristic algorithms to solve application makespan mini-
mization problems [14], [32], [9]. A well-known list schedul-
ing based algorithm is the Coffman-Graham (CG) algo-
rithm [14]. The CG algorithm takes a set of partially ordered
tasks and assigns task priorities based on their order. The
CG schedules the task with the highest priority in the list
to the computer that has the earliest available time at the
time of scheduling. When there are only two homogeneous
computers, the CG scheduling algorithm is proven to be
the optimal [14]. In order to schedule independent tasks
on heterogeneous computers, min-min algorithm was pro-
posed [24].

However, neither the CG algorithm nor min-min algo-
rithm can be directly applied to DAG-based applications
unless the dependencies among tasks in a DAG-based appli-
cation are resolved. One commonly used approach to decou-
pling task dependencies is to list the DAG-based application
in a topological order. Another commonly used approach is
to assign and list tasks by their priorities. The prioritization
scheme is based on when each task finishes, i.e. counting
from the bottom of the DAG-based application task graph
(blevel), or when each task starts, i.e. counting from the
top (tlevel). Many existing makespan minimization algo-
rithms adapt this approach as their prioritization basis. The
heterogeneous-earliest-finish-time (HEFT) algorithm [32] is
one of them and it uses the summation of a task’s blevel and
tlevel values as its priority and hence provides an O(|V |2m)
list-based heuristic algorithm for minimizing the makespan.

A duplication based bottom up scheduling (DBUS) algo-
rithm [9] is another heuristic algorithm that takes the blevel
and tlevel approach as the basis of its prioritization method.
Unlike the HEFT algorithm, the DBUS approach takes the
tlevel and an additional static top level stlevel as the tasks’
priorities. The DBUS also duplicates tasks on each machine
at the scheduling phase and thus is a O(|V |2m2) heuristic.
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Under cloud computing environment, in addition to
minimize application’s makespan, reducing application’s
execution cost on computer clouds becomes another impor-
tant resource management objective. There are two major
research efforts on application execution cost on computer
clouds, one is how to schedule applications on a com-
puter cloud to meet their deadlines under a given budget
constraint [37], [26], [38]. The other is how to schedule
applications on a computer cloud such that the applications
meet their deadlines and the cost is minimized [39], [25],
[23].

For applications deployed on public computer clouds,
Durillo et al. extended the HEFT algorithm [32] and de-
veloped a parto-based list scheduling heuristic called MO-
HEFT. The objectives of the MOHEFT algorithm are to
optimize application’s makespan and its execution cost a
public computer cloud [16]. Yu et al. proposed a QoS-based
workflow scheduling algorithm to minimize the workflow’s
execution cost on a public cloud while meeting the work-
flow’s deadline, and Khanli [23] proposed a Markov Deci-
sion Process based approach to minimizing the execution
cost while meeting tasks’ deadline.

There are also significant amount of work done in the
area of minimizing application’s execution cost deployed
a hybrid computer cloud [35], [34], [33], [8], [10], [13].
For instance, Ruben et al. proposed an online cost-efficient
scheduling algorithm to schedule deadline constrained ap-
plications with parallel tasks on hybrid cloud so that the
application’s deadline is met and financial cost on public
cloud is minimized [35]. Luiz et al. proposed a hybrid cloud
optimized cost scheduling algorithm to minimize the cost of
DAG-based application on hybrid cloud [8].

However, many existing cost minimization approaches
do not consider that cloud service charges are based on
instance hours or minutes. As pointed out in [25], the
integral instance hour increases the difficulty for solving
the cost minimization problem. The auto scaling schedul-
ing algorithm [25] is one of the algorithms that aims to
minimize the cost by considering integral instance hours.
In their algorithm, they assign tasks’ local deadlines using
the same technique as developed in [40]. After assigning
local deadlines, they decide the number and the types of
virtual machines needed to execute the application. Finally,
they schedule the tasks using the global EDF algorithm.

The research briefly summarized above has been mainly
focused on how to schedule tasks under fixed amount of
resources to maximize the system’s throughput and mini-
mize an application’s makespan, rather than to minimize
the number of computers needed to guarantee a deadline
constrained application’s deadline. In fact, it is possible that
an application can be scheduled on n computers with the
same makespan as on m (m > n) computers by different
heuristic algorithms.

Research on resource bound problem for DAG-based
deadline constrained applications can be traced in the early
1960’s [19] and good amount of research results are obtained
since then [30], [5]. However, neither T.C. Hu’s original
lower bound [19] nor Ramamoorthy’s improvement [30]
can be directly applied to the DAG-based application with
different task execution times if tasks are not allowed to mi-
grate among computers. Al-Mouhamed further extend and

improve the resource lower bound with the consideration
of heterogeneous task execution time and communication
cost [5]. However, Al-Mouhamed’s method to calculate the
lower bound is too expensive to be applicable in practice for
large scale applications and for on-line cloud applications.

In this paper, we use similar steps as the auto-scaling al-
gorithm in minimizing the cost of instance hour: we first de-
termine the minimum number of virtual machines needed
for a deadline constrained DAG-based application, then
reduce the instance hours on each virtual machine instance
by deciding when to turn on and off VM instances. We will
use the HEFT [32], MOHEFT [16], DBUS [9], QoS [40] and
auto-scaling [25] algorithms from the literature as base lines
to evaluate our proposed approach.

3 PROBLEM FORMALIZATION

In this section, we first introduce the models and terms our
work is based upon and then formulate the cost minimiza-
tion problem the paper is to address.

3.1 Application Model
A deadline constrained application A is modeled as a
weighted directed-acyclic-graph (DAG) G(V,E), where
each task τi ∈ A is represented by a node vi ∈ V , the
weight w(τi) on the node vi represents task τi’s worst case
execution time (WCET) on a unit speed VM instance, and
an edge (vi, vj) ∈ E represents dependency between τi to
τj . A task can only start after all its predecessors complete.

It is worth highlighting that the edge does represent
data transfers between tasks. However, in our system, the
network speed is much faster than disk IO speed. Hence,
the communication time between adjacent nodes is assumed
to be negligible. Each application is given a release time TR
and a relative end-to-end deadline TD. The relative end-
to-end deadline is the time interval from when an applica-
tion is released to when the application must be finished.
Hence, the application’s absolute end-to-end deadline is
TR + TD . When a deadline constrained application arrives,
application’s precise information are known to the system,
i.e., the application’s task graph, each task’s WCET and
application’s end-to-end deadline are all given.

Tasks without any predecessors or any successors are
defined as entry tasks and exit tasks, respectively. Without
loss of generality, we assume each application has one entry
task denoted as τentry and one exit task denoted as τexit 1.
Fig. 1 gives an example of a DAG-based application task
graph, where τentry = τ0 and τexit = τ10.

3.2 System Model
A computer cloud in this paper is modeled as a set of
virtual machine instances, i.e. C = {c1, . . . , cM}. We assume
that there is only one virtual machine type, i.e. all virtual
machine instances are homogeneous with unit speed. In
addition, as many cloud infrastructures are built on a shared
file system such as SAN-based storage systems [36] and

1. If an application has multiple entry tasks or multiple exit tasks, we
add a virtual entry task and a virtual exit task with zero execution time
and connect from the virtual entry task to all actual entry tasks and
from all actual exit tasks to the virtual exit task, respectively.
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Fig. 1: An Example of DAG-Based Application Task Graph
with End-to-End Deadline TD = 60

VMs for the same application can use the same shared data
files, hence data communication and movement cost become
negligible. Therefore, under this computer cloud model,
task execution time does not change when it is deployed
to different virtual machine instances in the cloud.

Task executions are non-preemptive and each virtual
machine instance can only execute one task at any given
time. Unprocessed tasks are buffered in a task queue by the
virtual machine instance the tasks are assigned to. Virtual
machine instances are charged by unit time such as by
hours. If an VM instance is running less than a unit time,
such as less than an hour, it is charged as one hour. We
assume that there is no overhead for powering on or off a
virtual machine.

Let Pi = {(on1
i , off 1

i ), . . . , (onni , off n
i )} be the set of

time intervals of a virtual machine instance ci in running
state, where onji and off j

i represent the jth power on
and off time points, respectively, and ∀j, k if j < k, then
onji < off j

i < onki < off k
i . We call Pi the virtual machine

instance’s operation pattern.
Given a virtual machine instance’s operation pattern Pi,

the instance hours needed is

H(Pi) =
|Pi|∑
j=1

⌈
off j

i − onji
U

⌉
(1)

where U is a constant representing cloud service pricing
time unit. For instance, if VM instance is charged by hour,
while off j

i − onji is in minutes, then either price unit is
converted to minutes, or the VM running time is converted
to hours. As we only consider one type of virtual machine
instance, all virtual machine instances have the same hourly
price. Hence, if we can minimize the instance hours for each
instance, the total cost is minimized.

For a given application A = {τ1, . . . , τn} and a set of
VMs where application tasks are deployed on, a boolean
function S(τi, cj) defines whether a task τi ∈ A is deployed
on VM instance cj . In other words, if a VM instance cj is
used by application A, then ∃τi ∈ A such that S(τi, cj) = 1.
We use R(A) to denote the resource set utilized by applica-
tion A:

R(A) = {cj |∃τi ∈ A, cj ∈ C ∧ S(τi, cj) = 1} (2)

3.3 Definitions
Given a DAG-based application A = {τ1, . . . , τn} with re-
lease time TR and relative deadline TD , and its correspond-

ing task graph G(V,E), we define the following terms.

Predecessors (pred(τi)) and Successors (succ(τi))

For task τi ∈ V , its predecessor and successor task sets are
defined below:

pred(τi) = {τj |τj ∈ A ∧ (τj , τi) ∈ E} (3)
succ(τi) = {τj |τj ∈ A ∧ (τi, τj) ∈ E} (4)

Application Sequential Execution Time (Tseq )

The sequential execution time of application A is defined as
the summation of all composing tasks’ execution time.

Task Earliest Start Time (EST (τi)) and Latest Finish
Time (LFT (τi))

For a given task τi ∈ V , its earliest start time and latest
finish time are recursively defined as follows:

EST (τi) =

{
TR if τi = τentry

max
τk∈pred(τi)

{EST (τk) + wk} otherwise

(5)

LFT (τi) =

{
TR + TD if τi = τexit

min
τk∈succ(τi)

{LFT (τk)− wk} otherwise

(6)
A task’s earliest start time and latest finish time are de-
termined solely based on the application’s task graph, its
release time and relative deadline. They are independent of
how tasks are assigned to VM instances.

Task Scheduled Start Time (SST (τi)) and Schedule Fin-
ish Time (SFT (τi))

A task’s scheduled start time (SST (τi) ) and scheduled fin-
ish time (SFT (τi)) are defined as when the task is scheduled
for execution and completed its execution on a VM instance,
respectively. They can be different from its earliest start time
and latest finish time since the slack time between tasks may
vary under different schedules. A task is not necessarily
started at its earliest start time, neither is finished at its
latest finish time. In fact, we have SST (τi) ≥ EST (τi) and
SFT (τi) = SST (τi) + wi.

Task Ready Time (ready(τi))

A task’s ready time ready(τi) is the latest scheduled finish
time of all its predecessors, i.e.

ready(τi) = max
τk∈pred(τi)

{SFT (τk)} (7)

Task Maximal Slack Time (mslack(τi))

For a given task τi ∈ V , its maximal slack time is defined as

mslack(τi) = LFT (τi)− (EST (τi) + w(τi)) (8)

Intuitively, the maximal slack time indicates how long a task
can afford to wait before causing a deadline violation. For
task τi, mslack(τi) = 0 means τi must start at its earliest
start time or it will cause the application to miss its end-to-
end deadline.
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Task Topological Level (Lev(τi) )
Given a DAG-based application A, its task τi’s topological
level Lev(τi) is defined as:

Lev(τi) =

{
0 if τi = τentry

max
τk∈pred(τi)

{Lev(τk)}+ 1 otherwise (9)

Critical Path Pc and Critical Path Execution Time (TC )
For a given application task graph, a path execution time is
defined as the summation of its composing tasks’ execution
times along the path. A critical path, denoted as Pc, is a path
that starts at the entry task τentry , ends at the exit task τexit,
and has the longest path execution time. There may exist
more than one critical paths in an application’s task graph.
However, by definition, every critical path has the same path
execution time. We denote the critical path execution time
as TC . Since different schedules can result different critical
path execution times for the same task graph. Hence, in
this paper, the TC refers to an application’s critical path
execution time determined by its task graph.

Schedulable Application
For a given application A with relative deadline TD, the
application is schedulable if and only if its critical path
execution time satisfies TC ≤ TD .

VM Instance Earliest Available Time (av(c))
For a given VM instance c, if its totally ordered task queue
is Qc = {τ c1 , . . . , τ ch}, then VM instance c’s earliest available
time for a new task τi (τi /∈ Qc) is the time that the last task
in the queue finishes its execution. The last task’s finish time
depends on when it starts its execution. Its start time is the
latest time of all its predecessors’ finish time or the finish
time of its previous tasks in the queue, whichever one is the
latest. Hence, the earliest available time for task not in the
queue can be recursively calculated as follows:

av(c) = 0 h = 0
max {SFT (τ ch−1), ready(τ ch)}

+w(τ ch) h > 0
(10)

The SFTτ ch is the scheduled finish time of the last task in
the queue.

Table 1 gives the EST, LFT, mslack, Lev, and whether a
task is on a critical path for the example task graph given
in Fig. 1. The concept of task priority will be discussed in
Section 5.

3.4 Problem Formulation
Based on the models and definitions presented in the earlier
subsections, we formally define the problem we are to
address, i.e. minimize VMs and VM instance hours for dead-
line constrained applications deployed on computer clouds.
To achieve the goal, we take three steps. The first step is to
minimize the number of VM instances needed to guarantee
the satisfaction of a DAG-based deadline constrained ap-
plication’s end-to-end deadline. Once the minimal number
of VM instances needed is decided, the second step is to
minimize the application’s makespan under the minimized

TABLE 1: Example Application’s Task Property

Tasks EST LFT mslack CP Levels Priority
τ0 0 17 17

√
0 1

τ1 0 37 32 1 4
τ2 0 28 18 1 3
τ3 0 37 17

√
1 2

τ4 10 41 18 2 6
τ5 20 52 17

√
2 5

τ8 20 60 18 2 7
τ6 23 47 18 3 9
τ7 35 60 17

√
3 8

τ9 29 60 18 4 10
τ10 43 60 17

√
5 11

number of VM instances decided by the first step. The third
step is to schedule the power on and off time for each VM
to further reduce the total VM instance hours.

Objective 1: Minimize the Number of VM Instances
Needed
Given an application A = {τentry , · · · , τi, · · · , τexit} with
release time TR and relative deadline TD , its corresponding
task graph G(V,E), and sufficient set of VM instances,
determine a subset of VM instances {c1, c2, . . . , cM}, such
that

Objective 1: minM

Subject to: SFT (τexit) ≤ TR + TD (11)

and ∀τi ∈ A,
M∑
j=1

S(τi, cj) = 1 (12)

where S(τi, cj) = 1 if and only if task τi is assigned to
VM instance cj . The first constraint given by (11) guarantees
end-to-end deadline satisfaction and the second constraint
given by (12) ensures that each task can only be deployed to
one VM instance.

Objective 2: Minimize Makespan under Allocated VM
Instances
Once the minimum number of VM instances (M ) needed
to guarantee the application’s end-to-end deadline is deter-
mined, our next objective is to minimize the application’s
makespan on the M VM instances:

Objective 2: min SFT (τexit)

Subject to: ∀τi ∈ A,
M∑
j=1

S(τi, cj) = 1 (13)

Objective 3: Minimize Total VM Instance Hours
Once the minimum number of virtual machine instances
(M ) and the application execution schedule to minimize the
application’s makespan on M virtual machine instances are
determined, our final task is to minimize the total virtual
machine instance hours:

Objective 3: min
M∑
i=1

Hi

We take three steps to achieve goals. First, we target ob-
jective 1 by theoretically prove the lower and upper bound
of the number of VMs needed to guarantee a deadline con-
strained application’s deadline. Then we develop a heuristic
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scheduling algorithm to minimize application’s makespan
under given number of VMs. Finally, once the schedule
of a deadline constrained application is determined, we
develop a heuristic algorithm to further reduce VM instance
hours needed to execute the application. The following three
sections give the details about each of the steps.

4 RESOURCE BOUNDS

In this section, we study the attributes of DAG-based dead-
line constrained applications and determine the bounds for
the minimum number of VM instances needed to guarantee
the application’s end-to-end deadlines.

Lemma 1. Given a DAG-based deadline constrained application
A, let the application’s release time and relative end-to-end dead-
line be TR and TD , respectively, its sequential execution time be
Tseq , critical path execution time be TC , and the minimal number
of VM instances needed to guarantee the application’s end-to-end
deadline be M . If the application is schedulable, i.e., TC ≤ TD ,
then we have:

M ≥
⌈
Tseq
TD

⌉
(14)

Proof. We prove Lemma 1 by contradiction. If Tseq ≤ TD , we
have dTseq

TD
e = 1. As the application’s sequential execution

time is less than its deadline, i.e. Tseq ≤ TD , trivially, with
M = 1 VM instance, we can guarantee the application’s
deadline. If Tseq > TD , assume the minimum number of VM
instances needed to guarantee SFT (τexit) ≤ TR+TD is M ′.
Let M ′ < dTseq

TD
e. Given M ′ VM instances, the best scenario

is that the work load is evenly distributed to the M ′ VM
instances and all tasks are executed without waiting. Under
such scenario, the application’s makespan is TR+

Tseq

M ′ , which
is the earliest possible time the application can complete.
Hence, we have SFT (τexit) ≥ TR +

Tseq

M ′ .
Since M ′ is a positive integer, we have M ′ < Tseq

TD
, which

implies TD <
Tseq

M ′ . From the conclusion SFT (τexit) ≥
TR +

Tseq

M ′ , we have SFT (τexit) > TR + TD , contradicting
the assumption that SFT (τexit) ≤ TR + TD .

Lemma 2. Given a DAG-based deadline constrained application
A, let the application’s release time and relative end-to-end dead-
line be TR and TD , respectively, its corresponding task graph
G(V,E), critical path execution time be TC , the level of exit
task be Lev(τexit), and the number of VM instances needed
to guarantee the application’s end-to-end deadline be M . If the
application is schedulable, i.e. TC ≤ TD, then we have:

M ≤ |V | − Lev(τexit) (15)

where |V | is the number of tasks in the application.

Proof. It is obvious that if each task is scheduled to an
idle VM instance and each VM instance only executes one
task, application A can finish with a makespan of TC . Since
TC ≤ TD, application A can finish before its end-to-end
deadline under |V | VM instances. Based on the definition of
task’s topological level given in Section 3, there must exist a
path Pi that consists of at least Lev(τexit) + 1 tasks and no
two tasks are from the same level. Since path Pi must be se-
quentially executed, dispatching all tasks on Pi to the same

VM instance will not affect the application’s makespan.
Hence, we can at least reduce Lev(τexit) VM instances from
total |V |VM instances. As a result,M = |V |−Lev(τexit) VM
instances are sufficient to guarantee an application’s end-to-
end deadline.

Combining Lemma 1 and 2, we have the following
theorem that gives the bound on the minimum number of
VMs a DAG-application needed to guarantee its deadline.

Theorem 1. Given a DAG-based deadline constrained appli-
cation A, let the application’s release time and relative end-
to-end deadline be TR and TD , respectively, its corresponding
task graph G(V,E), sequential execution time be Tseq , critical
path execution time be TC , level of exit task be Lev(τexit),
and the minimal number of VM instances needed to guarantee
the application’s end-to-end deadline be M . If the application is
schedulable, i.e. TC ≤ TD , we have:⌈

Tseq
TD

⌉
≤M ≤ |V | − Lev(τexit) (16)

In the next section, we present a heuristic scheduling
algorithm based on the theorem.

5 MINIMAL SLACK TIME AND MINIMAL DISTANCE
(MSMD) BASED SCHEDULING

In this section, we introduce a heuristic approach for the
resource minimization problem formulated in Section 3.4.
The basic idea of our heuristic approach is to search for a
schedule that satisfies a given application’s deadline using
the minimal number of resources given by (14). Once a
schedule is found, the number of VM instances used is the
least. The search for a possible schedule has two phases:
task prioritization phase which is based on application
tasks’ topological levels and slack time, and task scheduling
phase which is based on the minimal distance between the
resources’ available time and the tasks’ ready time.

Given an application task graph G, Algorithm 1 outlines
our heuristic approach, where Line 1 prioritizes tasks in the
given application; Line 3 to Line 8 search for the minimal
resources needed to satisfy the deadline using the minimal
slack time and minimal distance (MSMD) heuristic scheduling
algorithm. We discuss task prioritization and the MSMD
scheduling algorithm in the next two subsections.

Algorithm 1: Schedule Searching
Input : Application: G(V,E), TR, TD

Output: A schedule satisfies SFT (τexit) ≤ TR + TD

1 L← prioritize(G)// Ordered list;
2 m← dTseq

TD
e;

3 do
4 S[m]← {∅} // VM job queue;
5 SFT (τexit)← MSMD(G,m,L, S);
6 m← m+ 1;
7 while SFT (τexit) ≤ TR + TD ;
8 return S[m]
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5.1 Minimal Slack Time based Prioritization
The goal of task prioritization is to assign a priority to every
task in the application. To ensure task dependency relations
are not violated, we assign task priorities based on task
topological levels and their minimal slack time. In particular,
tasks at a lower topological level have higher priorities than
tasks at a higher level; for tasks at the same topological
level, tasks with less slack time are given higher priorities.
If two tasks at the same level have the same slack time, we
arbitrarily assign one a higher priority. In general, a task
with lower priority value means it has higher priority. The
task topological levels and their priorities given in Fig. 1 are
shown in Table 1. Tasks are then sorted by their priorities in
decreasing order and stored in an ordered list L.

Intuitively, a leveled graph ensures that all predecessor
tasks of a task τi are scheduled before τi. The minimal slack
time based priority assignment ensures that the tasks that
are more urgent are executed earlier. Once tasks are sorted,
starting from minimal number of resources given by (14),
we iteratively increase the number of VM instances until a
schedule that meets the application’s end-to-end deadline is
found.

5.2 Minimal Slack time and Minimal Distance Schedul-
ing Algorithm
For a given number of VM instances, the goal of the mini-
mal slack time and minimal distance (MSMD) scheduling
algorithm is to schedule a given application to a set of
allocated VM instances so that the application’s makespan
is minimized.

As tasks on a critical path cannot be executed concur-
rently, hence assigning all critical tasks to the same VM
instance does not increase the application’s makespan. The
question is how to assign tasks that are not on the critical
path. One simple approach is to schedule these tasks to
the VM instance that has the earliest available time at
the time of scheduling. Again, take the application task
graph given in Fig. 1 as an example, if we have three VM
instances, based on the priority given in Table 1, at time 0, as
av(c1) = av(c2) = av(c3) = 0, τ3 is scheduled to c1, τ2 to c2,
and τ1 to c3, respectively. At time 10, av(c3) is the least and
hence τ4 is scheduled on c3. Fig. 2(a) shows the schedule
produced by such an approach. We denote this approach as
minimal slack and minimal available time based (MSMA)
scheduling algorithm.

However, a task τi’s start time on a VM instance cj not
only depends on the value of av(cj), but it also depends on
its own ready time. Hence, if both VM instances cj and ck
satisfy av(cx) ≤ ready(τi), task τi can be assigned to either
one of them. For instance, in our application graph given
in Fig. 1, τ4 can be deployed either on c2 or c3. However,
the decision may affect the following tasks, such as τ8 in
Fig. 2(a). If τ4 is scheduled on c2 rather than being scheduled
on the VM instance with the earliest available time (c3),
τ8 can start at time 20 which can reduce the application’s
makespan by 3 time units. The two different schedules are
depicted in Fig. 2.

We introduce the concept of distance into our scheduling
algorithm. The distance is used to indicate how close a task’s
ready time is to the VM instance’s earliest available time. We

(a) MSMA Approach (b) MSMD Approach

Fig. 2: A Schedule for Task Graph (Fig.1)

formally define the distance (Dis(τi, cj)) between a task τi’s
ready time (ready(τi)) and a VM instance cj ’s available time
(av(cj)) as follows:

Dis(τi, cj) =

{
av(cj) if ready(τi) < av(cj)
ready(τi)− av(cj) otherwise

(17)
Rather than scheduling tasks to the VM instance with the

earliest available time, we assign tasks to the VM instance
with minimal distance from its ready time. Doing so will
provide more chances for tasks with lower priorities to start
at their earliest start time. Furthermore, it allows some non-
critical tasks share the same VM instance with critical tasks
and hence further reduces application’s makespan when
other VM instances’ earliest available time become larger
than the critical task VM instance at the time of scheduling.
As shown in Fig. 2(b), with the minimal slack time and
minimal distance (MSMD) approach, τ4 is scheduled on c2.
Hence τ8 can start at its earliest start time of 20, which in
turn reduces the application’s makespan to 43 compared to
45 produced by the MSMA approach.

For a given application with task graph G(V,E), m
number of VM instances,ordered list L, and empty schedule
S the MSMD scheduling algorithm is given in Algorithm 2.
In the algorithm, Line 3 to Line 4 assign tasks on the critical
path to the same VM instance, i.e. c0, Line 7 to Line 20
find the VM instance that has the minimal distance from
its available time to the current task’s ready time. Line 7 to
Line 9 and Line 17 to Line 20 enable non-critical tasks to be
scheduled on critical task VM instance without interfering
critical tasks. The complexity of the MSMD algorithm is
O(|V |2m).

6 MINIMIZING INSTANCE HOURS

Once the minimum number of virtual machine instances
and schedule on each virtual machine instance are deter-
mined, our final goal is to find the operation pattern for each
VM instance such that the total instance hours is minimized.
However, finding such a set is not trivial. Fig. 3 illustrates
an example of instance hours needed by different strategies
when deciding the operation pattern for a virtual machine
instance.

For instance, assume task τ1, τ4, τ7, τ10 and τ13 are sched-
uled on the same virtual machine instance. Task τ1 is exe-
cuted from time 0 to 60, τ4 from 135 to 175, τ7 from 185 to
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Algorithm 2: MSMD(G,m,L, S)
1 T [m]← {0} // av(c) ;
2 Pc ← G’s critical path;
3 for i← 0 to |L| − 1 do
4 if L[i] ∈ Pc or m = 1 then
5 Assign L[i] to S[0]
6 end
7 else
8 T [0]← max {av(0), T [0]};
9 minDisComp← 0;

10 distance← Dis(L[i], 0);
11 for j ← 1 to m− 1 do
12 T [j] = av(S[j]);
13 if Dis(L[i], j) < distance then
14 distance← Dis(L[i], j);
15 minDisComp← j ;
16 end
17 end
18 Assign L[i] to minDisComp;
19 if minDisComp = 0 then
20 T [0]← T [0] + w(L[i])
21 end
22 end
23 end
24 return AFT (τexit)

200, τ10 from 205 to 215, and τ13 from 235 to 270 as shown
in Fig. 3. If the virtual machine instance is powered on at
time 0 when the first task τ1 starts and off at time 270 when
the last task τ13 finishes, i.e. P = {(0, 270)}, then d 27060 e = 5
instance hours are needed.

As there is a large idle time (60 minutes) between task
τ1 and τ4, we can save one instance hour if we shut down
the virtual machine instance after τ1 finishes and start the
instance again when τ4 starts to execute.

(a) 5 Instance Hours (b) 4 Instance Hours

Fig. 3: Instance Hours Comparison
However, shutting down the virtual machine dur-

ing the idle time may not necessarily reduce the in-
stance hours. For another VM operation pattern P =
{(0, 60), (135, 200), (205, 270)} shown in Fig. 3(a), although
we reduce one instance hour between the execution of task
τ1 and τ4, the total instance hour is still five. However,
the operation pattern P = {(0, 60), (135, 270)} as shown
in Fig. 3(b) only requires 4 instance hours. In the remaining
of the section, we first study the impact of different virtual
machine instance running strategies on the number of in-

stance hours, then we propose an algorithm on minimizing
the number of instance hours for a given application.

Lemma 3. For two consecutive tasks τ1 and τ2, assume their
execution times on a given virtual instance are e1 and e2, respec-
tively, the idle time between τ1 and τ2 is b, where 0 ≤ b < U and
U is the pricing time unit. If any of the following three conditions
holds:

1) e1 mod U + e2 mod U + b > 2U
2) (e1 mod U = 0 ∨ e2 mod U = 0)
∧(e1 mod U + e2 mod U + b > U)

3) e1 mod U = 0 ∧ e2 mod U = 0

then shutting down the virtual machine after the completion of τ1
reduces the instance hours.

Proof. Let e1 = k1U + δ1 and e2 = k2U + δ2, where
k1, k2 are non-negative integers and 0 ≤ δ1, δ2 < U . If the
virtual machine keeps running during the idle time, the total
instance hours for executing two tasks will be:

Hrun = dk1U+δ1+k2U+δ2+b
U e (18)

= k1 + k2 + d δ1+δ2+bU e

If the virtual machine stops running during the idle time,
the total instance hours for executing two tasks will be:

Hstop = dk1U+δ1
U e+ dk2U+δ2

U e (19)

= k1 + k2 + d δ1U e+ d
δ2
U e

If Hstop < Hrun, then virtual machine shutting down
reduces the instance hours. There are four cases need to be
considered.

Case 1: δ1 > 0, δ2 > 0.

Hstop < Hrun

⇒ 2 < d δ1+δ2+bU e ⇒ 2U < δ1 + δ2 + b

Case 2: δ1 = 0, δ2 > 0.

Hstop < Hrun

⇒ 1 < d δ2+bU e ⇒ U < δ2 + b

Case 3: δ1 > 0, δ2 = 0.

Hstop < Hrun

⇒ 1 < d δ1+bU e ⇒ U < δ1 + b

Case 4: δ1 = 0, δ2 = 0. Hstop always smaller than Hrun

Combine four cases, we get the lemma 3.

Lemma 3 indicates whether turning off a VM reduces
instance hours when idle time is less than the pricing time
unit.

Lemma 4. For two consecutive tasks τ1 and τ2, assume their
execution times on a given virtual instance are e1 and e2, respec-
tively, the idle time between τ1 and τ2 is b, where U ≤ b < 2U
and U is the pricing time unit. If any of the following two
conditions holds:

1) (e1 mod U + e2 mod U + b mod U > U)
2) (e1 ≡ 0 mod U ∨ e2 ≡ 0 mod U)

then shutting down the virtual machine after the completion of τ1
reduces VM instance hours.
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Proof. Let e1 = k1U + δ1, e2 = k2U + δ2 and b = U + δ3,
where k1, k2 are non-negative integers and 0 ≤ δ1 < U, 0 ≤
δ2 < U, 0 ≤ δ3 ≤ U . If the virtual machine keeps running
during the idle time, the total instance hours for executing
two tasks will be:

Hrun = dk1U+δ1+k2U+δ2+U+δ3
U e

= k1 + k2 + 1 + d δ1+δ2+δ3U e

If the virtual machine stops running during the idle time,
the total instance hours for executing two tasks is given in
equation (19). If the number of instance hours is reduced,
then Hstop < Hrun still must hold. We consider four cases.
Case 1: δ1 > 0, δ2 > 0

Hstop < Hrun

⇒ 2 < 1 + d δ1+δ2+δ3U e ⇒ U < δ1 + δ2 + δ3

Case 2: δ1 = 0, δ2 > 0

Hstop < Hrun ⇒ 1 < 1 + dδ2 + δ3
U

e

Since δ2 > 0, it is always true that Hstop < Hrun.
Case 3: δ1 > 0, δ2 = 0

Hstop < Hrun ⇒ 1 < 1 + dδ1 + δ3
U

e

Since δ1 > 0, it is always true that Hstop < Hrun.
Case 4: δ1 = 0, δ2 = 0.
Always true that Hstop < Hrun.

Combine four cases, we obtain lemma 4.

Lemma 4 indicates whether turning off the VM reduces
VM instance hours when the idle time is larger than the
pricing time unit but less than two times of the pricing time
unit.

Lemma 5. For two consecutive tasks τ1 and τ2, assume their
execution times on a given virtual instance are e1 and e2,
respectively, the idle time between τ1 and τ2 is b, where b ≥ 2U
and U is the pricing time unit. Shutting down the virtual machine
after the completion of τ1 reduces the instance hours.

Proof. Let e1 = k1U + δ1, e2 = k2U + δ2 and b = k3U + δ3,
where k1, k2, k3 are non-negative integers and 0 ≤ δ1 <
U, 0 ≤ δ2 < U, 0 ≤ δ3 < U, k3 ≥ 3. If the virtual machine
keeps running during the idle time, the total instance hours
for executing two tasks will be:

Hrun = dk1U+δ1+k2U+δ2+k3U+δ3
U e

= k1 + k2 + k3 + d δ1+δ2+δ3U e
≥ k1 + k2 + 3 + d δ1+δ2+δ3U e

If the virtual machine stops running during the idle time,
the total instance hours for executing two tasks will be:

Hstop = dk1U+δ1
U e+ dk2U+δ2

U e
= k1 + k2 + d δ1U e+ d

δ2
U e ≤ k1 + k2 + 2

(20)

It is obvious that Hstop < Hrun always holds.

Lemma 5 indicates turning off the VM reduces VM
instance hour when the idle time is two times larger than
the charging interval.

Based on Lemma 3, Lemma 4 and Lemma 5, we present
an instance hour minimization algorithm, i.e. the IHM as
shown in Algorithm 3. As the minimum theoretic instance
hours that a virtual machine consumes is when all tasks
are executing continues, i.e. there is no idle time between
any two consecutive tasks. If a virtual machine instance’s
operation pattern is turn on at the time the first task starts
and off at the time the last task finishes, and under such
pattern, the VM instance hours equals to the minimum
theoretic instance hours, then we cannot further reduce the
instance hours (Line 2 to 5). Otherwise, Lemma 3, Lemma 4
and Lemma 5 are applied to reduce the VM instance hours
(Line 8 to 19).

Note that the Lemmas only determine the optimal solu-
tion between two consecutive tasks. If the VM instance is not
turned off between two consecutive tasks, then we combine
the two consecutive tasks as one task (Line 15 to 18). Then
apply the Lemmas to the new task and its consecutive task.
The time complexity to reduce the instance hours for all the
scheduled VM instances is O(n), where n is the number of
tasks deployed on the VM instance.

Algorithm 3: Instance Hour Minimization Algorithm

Input : Set of schedule S = {S1, . . . , Sn}
Output: Pi for each schedule Si

1 for i← 1 to |S| do

2 if d

|Si|∑
k=1

w(Si[k])

C
e = dSFT (Si[|Sci

|])−AST (Si[1])

C
e then

3 on ← AST(Si[1]),off ← SFT(Si[|Si|]) ;
4 push (on, off )→ Pi;
5 continue;
6 end
7 else
8 τ1 ← Si[1];
9 for j ← 2 to |Si| do

10 τ2 ← Si[j], b = AST(τ1)−AFT(τ2);
11 Decide if need to shut down the VM

during the idle time based on
Lemma 3,Lemma 4 and Lemma 5;

12 if need to shut down then
13 push the operation pattern for

τ1 → Pi, τ1 ← Si[j], j ← j + 1;
14 end
15 else
16 Combine τ1 and τ2 as a new τ1;
17 j ← j + 1;
18 end
19 end
20 end
21 end

It is worth pointing out that the developed IHM algo-
rithm can be applied to any given schedule, not necessarily
the schedule produced by the MSMD scheduling algorithm.

7 EMPIRICAL EVALUATIONS

The purpose of the experiments is to evaluate the per-
formance of the developed MSMD algorithm and the
IHM algorithm. We evaluate the resource minimization
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algorithm (MSMD) and the instance hour minimiza-
tion algorithm (IHM) by comparing it with six other
algorithms published in the literature. They are the
heterogeneous-earliest-finish-time (HEFT) algorithm [32],
the multi-objective-heterogeneous-earliest-finish-time (MO-
HEFT) algorithm [16], the duplication-based bottom up
scheduling (DBUS) algorithm [9], the QoS-based workflow
scheduling (QoS) algorithm [40] and the auto-scaling (Auto)
scheduling algorithm [25].

7.1 Experiment Settings
The DAG-based applications we used for the evaluation are
obtained from the DAG-based applications benchmark pro-
vided by Pegasus WorkflowGenerator [2]. We use four sets
of applications from the benchmark, i.e., CyberShake, Laser
Interferometer Gravitational Wave Observatory (LIGO),
Epigenomics (GENOME), and Montage. The CyberShake
applications are highly paralleled applications. The LIGO
applications are also highly paralleled, however, they have
some critical nodes that have large number of child tasks
and parent tasks. Both Epigenomics and Montage applica-
tions are combined with parallel execution tasks and se-
quential tasks. The detailed characteristics of the benchmark
applications can be found in [7], [21]. Each set of appli-
cations we use for evaluation contains applications with
number of tasks ranging ranging from 50 to 1000. Since the
benchmark does not specify the deadlines for applications,
we assign deadlines for benchmark applications. In order
to ensure an application is schedulable, we first calculate
its critical path execution time TC and assign a deadline
TD ≥ TC . In order to observe the impact of deadline
tightness on scheduling algorithms’ performance, we assign
five distinct deadlines for each application, i.e., TD = TC ,
TD = 1.5TC , TD = 2TC , TD = 2.5TC , and TD = 3TC .

7.2 Evaluation Criteria
One of the main objectives of the MSMD is to find the
minimum number of VM instances needed to complete a
given application’s execution before its deadline. Hence, the
first criterion to evaluate the performance of an algorithm is
how many VM instances it uses to ensure an application
finishes before its end-to-end deadline. We introduce the
concept of resource reduction rate to indicate how many
resources are reduced from the resource upper bound given
by (15). It is defined as below:

Res. Red. Rate =
Upper Bound - Actual Res. Used

Upper Bound
(21)

The second goal of the MSMD is to minimize the
makespan of an application under the given minimal re-
sources. One way to evaluate the effectiveness of minimiz-
ing makespan is to see how much time is reduced from an
application’s deadline. We define makespan reduction rate for
the evaluation. For a given application A with its release
time TR and relative deadline TD, the makespan reduction
rate is defined as:

MS Red. Rate =
TR + TD − SFT (τexit)

TD
(22)

where SFT (τexit) is the actual finish time of application A.

The ultimate goal of our work is to minimize the instance
hours that an application needed to complete its execution.
Since in homogeneous environment, when all the tasks in an
application are sequentially executed, the instance hours it
consumed is minimized. Hence, to evaluate the performance
of instance hour minimization algorithms is to see how
many instance hours increased from its minimum instance
hours needed. We define instance hour increase rate for the
evaluation. For a given application A, the instance hour
increase rate is defined as:

IH Inc. Rate =
IH(A)− dTseq/Ue
dTseq/Ue

(23)

where U is the pricing time unit defined in Section 3.2.

7.3 Comparison with the Optimal Solution
Since the proposed MSMD scheduling algorithm is a heuris-
tic algorithm, the most straightforward way to evaluate
its performance is to compare with the optimal solution
when possible. We randomly generate 100 different appli-
cations and obtain the optimal solutions by exhaustively
searching for all possible resource allocations that meet the
application’s deadline. Since the scheduling problem is NP-
complete, to exhaustively search for the optimal solutions,
we can only deal with random applications that are of small
task size (8 tasks to 10 tasks). For each application, we first
randomly generate tasks. Second, we randomly generate
the number of levels an application has, ranging from 3
to its task size. We then randomly assign tasks to levels
and connect them as a DAG. At last, we assign a random
deadline from one time of its critical path length to three
times of its critical path length.

We calculate the standard deviation of the number of VM
instances needed by different algorithms from the optimal
solutions found by exhaustive search. As shown in Fig. 4(a),
the MSMD algorithm has the least standard deviation from
the optimal solution. This implies that the MSMD algorithm
can guarantee applications’ end-to-end deadlines with the
number of VM instances that is close to the optimal.

We also calculate the makespan standard deviation,
since heuristic algorithms may need more VM instances
to guarantee applications’ end-to-end deadlines than the
optimal solution. When extra VM instances are used for
scheduling, it is possible that the applications’ makespan are
smaller than the makespan produced by the optimal solu-
tion. Hence, the calculation of makespan standard deviation
only considers the cases when the heuristic algorithms use
the same number of VM instances as the exhaustive search
algorithm. As shown in Fig. 4(b), the MSMD algorithm has
the smallest standard deviation from the optimal solution
on both minimum number of VM instances needed and
applications’ makespan. It indicates that the performance
of the MSMD algorithm is close to optimal.

7.4 Comparison among Different Heuristic Algorithms
In the previous subsection, as we need to find the optimal
solutions through exhaustive search, both sample size and
the application size are limited. In this section, we extend
the test scale. In particular, we use four sets of benchmark
DAG-based applications obtained from [2], and apply the
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six different algorithms, i.e. the HEFT, MOHEFT, DBUG,
QoS, Auto and our MSMD algorithms, to these test cases.

Fig. 5 and Fig. 6 depict the average resource reduction
rate and average makespan reduction rate of different appli-
cation sets with deadline equals to application’s critical path
execution time under the six scheduling algorithms, respec-
tively. The difference bar represents the standard deviation
of the all applications’ resource reduction rate. As shown
in Fig. 6, there is no surprise that the makespan reduction
rates for all six scheduling algorithms are zero. However, as
Fig. 5 indicates, different algorithms use different number
of VMs to achieve guarantee the applications’ deadlines.
It is not difficult to see from the figures that the MSMD
uses the least number of VMs to guarantee the applications’
deadlines in GENOME, LIGO and Montage applications.
For the CyberShake applications, the QoS uses the least
number of VMs to guarantee the applications’ deadlines.
The MSMD ranked second with only 1.4% difference with
the QoS algorithm. If we take the error into consideration,
the MSMD (0.0559) performs more steady than the QoS
algorithm (0.0783).

Fig. 7, Fig. 9, Fig. 11, and Fig. 13 illustrate the appli-
cations’ resource reduction rate under different scheduling
algorithms when the application’s deadline equals to 1.5, 2,
2.5 and 3 times of its critical path execution time, respec-
tively. Fig. 8, Fig. 10, Fig. 12, and Fig. 14 show the applica-
tions’ makespan reduction rate under different scheduling
algorithms when the application’s deadline equals to 1.5,
2, 2.5, and 3 times of its critical path execution time, re-
spectively. These figures indicate that the patterns of the
resource reduction rate and makespan reduction rate for
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the six scheduling algorithms are the same when different
deadlines are assigned to the same application. The resource
reduction rate increases when the applications’ deadlines
are less tight.

From Fig. 8, Fig. 10, Fig. 12, and Fig. 14, we can also see
that the MOHEFT can reduce much more makespan from
applications’ deadlines compared with all other scheduling
algorithms. However, Fig. 7, Fig. 9, Fig. 11, and Fig. 13, also
indicate that the MOHEFT uses much more VMs to schedule
the applications. For large applications such as GENOME,
LIGO and Montage, the upper bound for resources to
guarantee an application’s deadline is usually over 1000
VMs. One percent resource reduction rate difference means
increase 10 more VMs. Hence, it is expected that when
MOHEFT uses much more VMs to schedule applications,
it can reduce the application’s makespan. Since the primary
goal of the paper is to minimize the number of resources that
guarantee the applications’ deadlines, hence the MOHEFT is
not competitive comparing to other scheduling algorithms
even though it has better performance on reducing the
applications’ makespan. For the other five algorithms, the
MSMD has the largest resource reduction rate on most of the
scenarios. The QoS algorithm has the similar performance
on resource reduction rate as the MSMD.

Fig. 15 shows the average resource reduction rate and the
average makespan reduction rate comparison on all tested
DAG-based applications. It clearly indicates that the MSMD
has the largest resource reduction rate. On average, it can
further reduce 3.2% more resources than the QoS algorithm.
The MOHEFT algorithm has the largest makespan reduction
rate. However, it uses 7% more resources than the other
algorithms. Overall, the MSMD has a 89% average resource
reduction rate and a 3.4% average makespan reduction rate.

As discussed above, it is unfair to compare the algo-
rithms’ performance on reducing application’s makespan if
they are using different number of resources. In order to give
an unbiased comparison of the six algorithms’ performance
on makespan reduction, we have compared each scheduling
algorithms’ makespan reduction rate to the MSMD algo-
rithm under the constrain that they use the same number of
VMs. The results are depicted in Fig. 16. It is clearly shown
that when using the same number of VMs, on average, the
MSMD can reduce more makespan compared with the other
heuristic algorithms.

7.5 Instance Hour Minimization Evaluation
In order to fully evaluate the performance of the developed
MSMD algorithm, we have to consider two aspects. The
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first is how well the VM instances minimization method
reduces total VM instance hours. We evaluate this aspect
by comparing instance hour reductions resulted by the
MSMD with five other scheduling algorithms existed in the
literature. The second aspect that needs to be evaluated is
how many instance hours reduced by the IHM algorithm
compared to the instance hours consumed by VMs when
the VMs are not turned off until the last task is finished.

Fig. 17, Fig. 18, Fig. 19, Fig. 20, and Fig. 21 depict
the average instance hour increase rate comparison when
application’s deadline equals to 1, 1.5, 2, 2.5, and 3 times of
the application’s critical path execution time, respectively.
For GENOME applications, all the compared algorithms
perform well in reducing VM instance hours. However,
among all compared algorithms, the MSMD algorithm has
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the least instance hour increase rate. The MSMD also has
small instance hour increase rate on other sets of applica-
tions.

The experiment results also reveal that the MOHEFT
algorithm has the least instance hour increase rate on LIGO
applications when the applications’ deadline equal to its
critical path execution time and 2.5 times of its critical path
execution time. However, it has very large instance hour
increase rate on CyberShake applications. As a result, as
shown n Fig. 22, it ranks only number four on instance hour
minimization out of six algorithms.

Fig. 22 illustrate the average instance hour increase rate
on all applications. The MSMD has the least instance hour
increase rate (8%). The Auto-scaling algorithm ranks second
with 11.1% instance hour increase rate. The QoS algorithm
ranks the third with 15.43% instance hour increase rate.

The IHM developed in this paper aims to further reduce
the instance hours by deciding the shutting down pattern
during the VM idle time. It can be applied to any given
scheduling algorithms. To evaluate whether the IHM can
indeed help to reduce the instance hours, we apply the IHM
to all six scheduling algorithms after they generated their
schedule. As illustrated in Fig. 22 and Fig. 23, the IHM in-
deed further reduces the instance hours of a given schedule.
This is because the tasks in the benchmark applications are
all with large execution times. Hence the idle time between
the two tasks also become very large, by shutting down
the VMs during its idle time can sometimes significantly
reduce the instance hours the application consumed on
VMs. However, for applications with small execution time
tasks, the effectiveness of the IHM algorithm in further
reducing VM instance hours may be limited.

8 CONCLUSION

In this paper, we have addressed the issue of how to deploy
deadline constrained applications to computer clouds so
that (1) deadline constrained application’s end-to-end dead-
line is guaranteed, (2) the number of VM instances allocated
to the application is minimized, (3) under the allocated min-
imum number of VM instances, the application’s makespan
is minimized, and (4) under the given schedule, the total VM
instance hour is minimized. We have shown that there is a
lower and an upper bounds on the number of VM instances
needed to guarantee a given real-application’s deadline.
Based on the bounds, we have developed a minimal slack
time and minimal distance (MSMD) heuristic task deployment

and scheduling algorithm that finds the minimum number
of resources needed to guarantee an application’s deadline
and also minimizes the makespan of the application under
the allocated VM instances. The time complexity for the
MSMD is only O(|V |2m). We further study VM instance
hour minimization problem. Based on the theoretical analy-
sis, we have developed the IHM heuristic cost minimization
algorithm. The simulation results show that the heuristic
MSMD algorithm can guarantee applications’ end-to-end
deadline with less resources compared with other heuristic
scheduling algorithms and can on average reduce appli-
cations’ makespans by 3.4% of their deadlines under the
allocated resources. When the IHM algorithm is applied to
a given application task execution schedul, the VM instance
hours needed by the application can further be reduced.

However, in our current work, we have made three
assumptions: (1) VM instances in the cloud are homoge-
neous, (2) there are no communications among application
tasks, and (3) there is no overhead when power on and off
virtual machines. Our immediate future work is to study
deadline constrained application resource needs when these
three assumptions are removed. In addition, the current task
model is based on task’s execution times (WCET) which is
difficult to accurately predict in cloud envirnment. Another
line of future work is to study the virtualization overhead in
cloud environment and its impact on task’s execution time
so that the developed algorithm can be improved.
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