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Abstract-Multiplayer games with imperfect information, such
as Bridge, are especially challenging for game theory
researchers. Although several algorithmic techniques have
been successfully applied to the card play phase of the game,
bidding requires a much different approach. We have shown
that a special form of a neural network, called a self-organizing
map (SOM), can be used to effectively bid no trump hands. The
characteristic boundary that forms between resulting
neighboring nodes in a SOM is an ideal mechanism for
modeling the imprecise and ambiguous nature of the game.
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I. INTRODUCTION

Game theory is a particularly rich area for study. Many
researchers deal with two-player games, such as chess or
checkers, where each opponent is presented with full
information. A greater challenge, however, is multiplayer
games with both incomplete information and an element of
chance, such as Poker or Blackjack. The game of Bridge
falls in between these two extremes. It is a multiplayer
game, with opposing teams and incomplete information, but
the only element of chance involved is the initial randomness
in the deal.

Several algorithmic approaches have proven somewhat
successful with multiplayer imperfect information games. [1]
Given the limited information provided, the missing
information is inferred. Generally, a Monte-Carlo sampling
technique generates a set of representative hands the
opponents may have. A standard minimax algorithm selects
the most likely holding and makes a corresponding move.
The model is update as additional information becomes
available. Eventually converging on an acceptable solution.
In Bridge, however, we are looking for the ideal solution
rather than just an acceptable solution.

The dealer distributes 13 cards from a standard 52-card
deck to each of four players who have been named according
the compass directions (North-South against East-West).
The game consists of two activities, the bid and the play of
the cards. Commercial products such as Bridge Baron,
GIB [2] and Jack, the World Computer Bridge champion,
have proven to be especially effective in the play of the
cards. Bidding, however, has shown to be a more complex
problem.
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Bidding is a conversation between two cooperating team
members against an opposing partnership. Each partnership
uses an established bidding system to exchange information
and interpret their partner's bidding sequence. Each player
only has knowledge of their own hand and any previous bids.
Bidding begins with the dealer and ends with a legitimate bid
followed by three sequential passes. The highest bid
becomes the contract. A Bridge contract consists of a suit
(or no trump) and a level. The level means the number of
tricks over a standard "book" of 6 tricks. Teams are
awarded bonus points if they bid and make "game" (3NT,
4y, 44, 5$, or 5+) or "slam" (12-13 total tricks).

Once the final contract is reached, the opposing team lays
down an initial card and the play phase of the game begins.
Each player must present one card for each of the 13 tricks.
Players must all follow suit, if they have that suit, or play an
alternate suit if they don't. In a no trump contract, the
highest card of the suit led takes the trick. In a trump
contract, in contrast, the highest card of the trump suit takes
precedence over all others. The contract indicates a guess as
to the number of tricks the team can take.

The scoring depends on the number of tricks taken and the
final contract. Points are scored for that team if they make or
exceed their contract or given to the other team if they fail in
their attempt. Additional points are granted based on
"vulnerability" of the team who wins the contract. Point
values vary depending scoring system used and the number
of competing tables. The IMP method awards points based
on the arithmetic difference between scores according to a
standard conversion table. The MP method, in contrast,
gives 2 points for each score worst that the pair's score, 1
point for each equal score, and 0 points for each better score.
The winner is determined by the total points at the end of a
finite number of rounds.

Because the biggest differentiator between Bridge-playing
ability is the quality of the bidding, we will focus on creating
an effective method for computer bidding using an artificial
neural network. Cognitive studies have shown that human
performance in Bridge can be attributed to the acquisition of
high-level patterns and chunks of knowledge gained through
experience. Frank, Bundy and Basin [3] showed that
standard minimax may be applicable to the card play portion
of the game, but fails to extend to the bidding phase of the
game. Other models and algorithms needed to be developed
for this complex problem.
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Bridge bidding can be reduced to a multifaceted
conversation between partners. As such, it would seem
natural reduce it to its semantic and pragmatic elements [4].
Each bid can be classified as one of four common acts:

1. Asserting. "By making this bid, I assert that my hand
has these properties"

2. Denying. "By making this bid, I deny that my hand
has these properties"

3. Asking and Answering Questions. "If your hand is of
type 1, make bid 1; if it is of type 2, make bid 2, etc.
(e.g. asking how many aces your partner has)

4. Interrupting. "The primary purpose of this bid is to
stop the opponents communicating

Another approach that has shown some promise is a neural
network [5]. Neural networks take the raw input data and
construct appropriate outputs by successively recalculating
the weights on the connections between their nodes. Some
of the input nodes in a network for contract bridge would
include preprocessed values such as high card points and suit
length. Although these other approaches have used neural
networks in conjunction with other artificial intelligence
techniques, a special form of neural network is showing
some promise.

II. SELF-ORGANIZING MAPS

The Self-Organizing Map, also called a Kohonen Map, is
one of the most prominent artificial neural network models
adhering to the unsupervised learning model [6]. The model
consists of many neural processing units. Each of the units is
assigned a multi-dimensional weight vector, mi. The weight
vectors have the same dimensionality as the input patterns.
Training self-organizing maps involves input pattern
presentation and weight vector adaptation. Each training
iteration starts with the random selection of one input
pattern. The self-organizing map examines this pattern and
decides each unit's activation.

Usually, the Euclidean distance between weight vector and
input pattern is used to calculate a unit's activation. The unit
with the lowest activation becomes the winner of the training
iteration. Finally, the weight vectors of the winner as well as
the weight vectors of selected units around the winner are
adapted. This adaptation results in a gradual reduction of the
component-wise difference between input pattern and weight
vector. The model generally consists of a two-dimensional
neuron arrangement (map), as shown in Figure 1, though
topologies of higher dimensions are also conceivable.

Each neuron has a representative set ofM features, called
a vector. During the training process, the feature weights are
modified according to the input signal and the neurons
proximity to the winning neuron. Each weight is increased or
decreased to more closely resemble the matching the input
vector, with neurons closer to the winning neuron making
greater changes in the weights than those further away.
Because of the algorithm, an organized network develops
where similar input patterns are arranged with a degree of
proximity between the locations of excited neurons. The
neurons are arranged by the input patterns by neighborhoods.
That is, the neurons not are adapted individually, but with
neighboring neurons.

Unlike many other types of networks, a Self-Organizing
Map does not need a target output to be specified. Instead,
the area of the lattice where the node weights match the input
vector are selectively optimized to more closely resemble the
data for the class of the input vector. From an initial
distribution of random weights, and over many iterations, the
SOM eventually settles into a map of stable zones. Each
zone is effectively a feature classifier, so you can think of the
graphical output as a feature map of the input space. Any
new, previously unseen input vectors presented to the
network will stimulate nodes in the zone with similar weight
vectors.

Several variations of the Kohonen algorithm exist [7].
The algorithm used for the SOMs in this research is as
follows:

1. Initialize each node's weights.
2. Choose a vector at random from the set of

training data and present it to the lattice.
3. Examine every node and determine which

one's weights are most like the input vector.
The winning node is commonly known as the
Best Matching Unit (BMU).

4. Calculate the radius of the neighborhood of the
BMU. This is a value that starts large,
typically set to the 'radius' of the lattice, but
diminishes each time-step. Any nodes found
within this radius are deemed to be inside the
BMU's neighborhood.

5. Adjust the weights of each neighboring node
to make them more like the input vector. The
closer a node is to the BMU, the more its
weights get altered.

6. Repeat step 2 for N iterations.

One method to determine the best matching unit is to
iterate through all the nodes and calculate the Euclidean
distance between each node's weight vector, Wi, and the
current input vector, Vi. The node with a weight vector
closest to the input vector is tagged as the BMU. The
Euclidean distance is given as:

Figure 1: Self-Organizing Map
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A unique feature of the Kohonen learning algorithm is the
area of the neighborhood shrinks over time. This is
accomplished by making the radius of the neighborhood
shrink over time. To do this, we use the exponential decay
function:
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where ¢o, stands for the width of the lattice at time to, A
denotes a time constant, and t is the current time-step
(iteration of the loop). Over time the neighborhood will
shrink to the size of just one node - the BMU. After fixing
the radius, we iterate through all the nodes in the lattice to
decide if they lie within the radius and adjust the weights
accordingly. Every node within the BMU's neighborhood
(including the BMU) has its weight vector adjusted
according to the following equation:

where t represents the time-step and L is a small variable
called the learning rate, which decreases with time. The
decay of the learning rate is calculated each iteration using
the following equation:
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The learning rate at the start of training is set to some
constant and then gradually decays over time so during the
last few iterations it is close to zero. The effect of the
learning should decrease proportionally according to the
distance of the node from the BMU. In fact, the edges of the
BMU's neighborhood should have barely any effect at all.
Ideally, the learning should fade over distance according to
the Gaussian decay shown in Figure 2.

Figure 2: Gaussian Decay Around BMU

To achieve this, all it takes is a slight adjustment to the
equation above.
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where E, represents the influence a node's distance from the
BMU has on its learning. E(t) is given by
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where dist is the distance a node is from the BMU and ¢, is
the width of the neighborhood function. Note that 0 also
decays over time. Geometrically speaking, the weight
vectors of the adapted units are moved a bit towards the
input pattern. The amount of weight vector movement is
guided by a learning rate decreasing in time. The number of
units that are affected by adaptation is determined by a so-
called neighborhood function. This number of units also
decreases in time. This movement has as a consequence. The
Euclidean distance between those vectors decreases and thus,
the weight vectors become more similar to the input pattern.

The respective unit is more likely to win at future
presentations of this input pattern. The consequence of
adapting not only the winner alone but also a number of units
in the neighborhood of the winner leads to a spatial
clustering of similar input patterns in neighboring parts of
the self-organizing map. Thus, similarities between input
patterns that are present in the multi-dimensional input space
are mirrored within the two- dimensional output space of the
self-organizing map.
The training process of the self-organizing map describes

a topology-preserving mapping from a high-dimensional
input space onto a two-dimensional output space where
patterns that are similar in terms of the input space are
mapped to geographically close locations in the output
space.

III. EXERIMENTAL SETUP

When setting up the initial training vector of the self-
organizing map, we decided that the only information
available to the bidder is the layout of his hand and the
current bidding history. Therefore, the input vector is a
series of discrete values to show the distribution of cards in
each suit and quality of the cards. Generally, Bridge players
value cards according to rank with ace = 4 points, king = 3
points, queen = 2 points and jack = 1 point. Although some
players also add or subtract points based on length or
shortness in a particular suit, we will ignore that factor
because it will be captured in the card distribution.
As with other attempts at using machine learning for

Bridge bidding [8], the first step is to produce training
examples. We generate a set of training instances that
represent card distribution by suit and the total number of
high card points (HCP) as described above. Each
distribution is then mapped to an appropriate bid according
to the guidelines published by the American Contract Bridge
League [9]. Generally a Bridge contract can be determined
in four phases: the opening bid, the responder's response to
the opening bid, the opener's response and, finally, the
responder's final placement of the contract. Although some
card distributions benefit from additional communication, we
will limit the bidding history to these four phases.
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The bidding history is necessary to interpret previous bids.
We have determined only 6 SOMs are required for an

accurate bidding scheme: opening bids, no trump responses,

primary responses, overcalls, re-bids by opener, and re-bids
by responder. The first SOM, the opening bid SOM (Figure
3), does not require any information on any previous bidding
history because these are based solely on the construction of
the hand under consideration. Opening bids fall into three
general categories: no-trump, major suit (hearts and spades)
and minor suits (clubs and diamonds). The remaining SOMs
are constructed to respond successively to the opening bid.

Figure 3: Opening Bids

To test the effectiveness of this bidding mechanism, we

will separate the auction from the play and stage a small
tournament between four teams at two tables. One table will
have two players sitting East-West bidding with our system,
designated as BridgeSOM, and North-South bidding with
Jack. The other table will have North-South bidding with
BridgeSOM and East-West bidding with Jack. The two
tables will play the same set of 24 boards. Once the bidding
is complete, Jack will play the cards for all four players.

A. No Trump Hands

Although BridgeSOM is able to bid on all randomly
distributed Bridge hands, we will simplify this initial
evaluation by using a special type of bridge hand that can be
played using very well defined rules. A No-trump hand has
15-17 High Card Points and is balanced. High Card Points
are simply the sum of the accumulated card ranks. Consider
the following hand:

*KT vAKQ3 +J63 $K864

It has a total of 16 HCP spread among the four suits (3 in
spades + 9 in hearts + 1 in diamonds + 3 in clubs). In
addition, this hand is balanced which means that it has all
four suits distributed in a 3-3-3-4 configuration or with only
one card changed from that (ie, 2-3-3-5 or 4-2-3-4).
A computational scheme such as a self-organizing map is

ideal for Bridge because of the fuzzy boundaries between
sets. Note the Gaussian decay around each BMU in the
SOM, Figure 4. This means that adjacent nodes will match

both patterns to some degree, but the node will be labeled
with the pattern that matches best. If you ask any Bridge
player about a particular hand, they may be able to describe
two or more possible responses. These are the hands that fall
on these boundaries.

Mathematicians love to play Bridge because there are
some very logical guidelines for bidding and play. For
example, guidance suggests that a partnership needs a total
of 25 points for a game in no trump (3NT), 26 points for a
game in either hearts or spades (4yor 44) and 29 points for
a game in diamonds and clubs (5+ and 5$).

1 2 3 - 5

J

Figure 4: Neighboring Neurons

If the first bidder sees a balanced hand with 15-17 points,
they should open the auction with 1 NT. Recall that a total
of 25 points is needed for a game in no trump. Therefore,
the responder (opener's partner) should respond according to
the following rules:

1. With 0-7 points: Pass

2. With 8-9 points: bid 2NT (opener will go to
game, 3NT, with 17 points for a total of 25
points or pass and stay at 2NT for the contract.

3. With 10-15 points: bid 4NT, which asks the
partner to pass with 15 points, bid 5NT with 16,
bid 6NT with 17.

These rules are not programmed as a set of conditionals.
Instead, we create a set of training vectors that reflect these
possible configurations and label them with the appropriate
responses. The input vector consists of 5 values: the number
of cards in each suit and the total number of high card points.

For this evaluation, we will use the initial opening bid
SOM and the no trump response SOM, Figure 5. If there are
any opening bids other than the expected 1 NT bid, they will
be handled with the appropriate SOMs until a contract is
reached. The SOMs are created using representative training
sets well before the tournament. Getting a bid is almost
instantaneous, as we are simply finding the node that is the
best match to the current player's card distribution, HCPs
and bidding history.

371

11

1 0

9-

8-

6-

5-

4-

3-

* Bid1C
Bid 1 D

* Bid_1H
* Bid1 S
* Bid1NT
* Bid 2N T
* Bid 2C

0 1 2 3 4 5 6 7 8 9 10 11



Proceedings of the 2007 IEEE Symposium on

Computational Intelligence and Games (CIG 2007)

Points were awarded for the differences between final board
scores according to table 2.

Table 2
IMP Table

Figure 5: No Trump Responses

B. No Trump Results

We tested the performance of BridgeSOM against Jack in
a match of 24 boards. Although the match was performed
and scored the same way as an official bridge match, all the
boards were configured for an initial INT bid, with the same

dealer each hand and no vulnerability designated for either
side. We turned off all special bidding features for Jack.
Neither Jack nor BridgeSOM made all bids as expected.

Table 1 indicates the initial bid, the resulting final
contract, and final result for both Jack and BridgeSOM when
opening the bidding with identical hands.

Table 1

Jack vs BridgeSOM

Board Jack BridgeSOM
I INT/2NT/2NT INT/2NT/2NT
2 INT/4NT/4NT INT/3NT/4NT
3 INT/2NT/2NT 1C/2NT/2NT
4 INT/3NT/3NT INT/4NT/3NT
5 INT/3NT/3NT INT/3NT/3NT
6 TC/2H/2H INT/2NT/2NT
7 INT/3NT/3NT INT/3NT/3NT
8 INT/2NT/3NT INT/2NT/3NT
9 INT/2NT/2NT 1H/2H/2NT
10 INT/3NT/3NT INT/4NT/3NT
11 INT/2NT/3NT INT/3NT/3NT
12 INT/3NT/3NT INT/3NT/3NT
13 lH/3H/3H INT/3NT/2NT
14 INT/3NT/2NT INT/3NT/2NT
15 INT/2NT/3NT INT/3NT/3NT
16 INT/3NT/2NT INT/2NT/2NT
17 INT/3NT/4NT INT/3NT/4NT
18 INT/3NT/3NT 1S/3S/3S
19 INT/3NT/3NT INT/3NT/3NT
20 INT/4NT/4NT INT/4NT/4NT
21 INT/3NT/3NT INT/3NT/3NT
22 INT/2NT/2NT INT/INT/2NT
23 INT/3NT/5NT INT/3NT/5NT
24 INT/2NT/2NT INT/2NT/2NT

Source: Duplicate Bridge, wikipedia.com

Jack won the tournament with 22 IMPs to BridgeSOM's
17 IMPs. There were only 6 boards that presented
significant differences between the two systems: Boards 10,
11, 13, 15, 16, and 18. Of these, board 10 was the most
important. If the bidding had been different on this one

board, BridgeSOM could have won the tournament. The
bidding began the same with both systems. Jack however,
ended up with a 3NT game contract while BridgeSOM
ended up a level higher at 4NT. Because of the unlucky
distribution of the cards, the results were, in fact, just 3NT.
When we later examined the actual node that caused the

4NT bid rather than the alternative 3NT bid, it was on the
boundary between the two. The distribution and card values
for this hand, therefore, could have supported either a 3NT
or 4NT bid. If the cards had been distributed differently in
the opponents' hands, we could both have both made 4NT.
This would have ended the tournament at 11 to 17, in our

favor.

IV. CONCLUSION

Self-organizing maps and other computational intelligence
methods are ideal for games with incomplete information.
They are tolerant of imprecision, uncertainty and partial
information. Neural networks allow a degree of imprecision
in the data used to train the nets without a great impact on

the learning. Our Self-Organizing Map was trained with a

minimal subset of the training data, yet is quite capable of
operating with immense data variability because perfect
discrimination between bidding options is not required.
We have shown that a combination of two self-organizing

maps can be used to find an optimal strategy for no trump
Bridge hands. Although this uses only assertion, one of the
four semantic and pragmatic elements of a bidding
conversation, we can use similar techniques to model denial,
asking questions, and interrupting.
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