
Solving longest common subsequence problems via a transformation to
the maximum clique problem

Christian Bluma,⇑, Marko Djukanovic b, Alberto Santini c, Hua Jiang d, Chu-Min Li e,f, Felip Manyà a,
Günter R. Raidl b
aArtificial Intelligence Research Institute (IIIA-CSIC), Campus UAB, Bellaterra, Spain
b Institute of Logic and Computation, TU Wien, Vienna, Austria
cUniversitat Pompeu Fabra, Barcelona, Spain
dYunnan University, Kunming, China
eUniversity of Picardie Jules Verne, Amiens, France
fHuazhong University of Science and Technology, Wuhan, China

a r t i c l e i n f o

Article history:
Received 28 January 2020
Revised 14 August 2020
Accepted 19 August 2020
Available online 10 September 2020

Keywords:
Longest common subsequence
Transformation to maximum clique
Exact and heuristic solvers

a b s t r a c t

Longest common subsequence problems find various applications in bioinformatics, data compression
and text editing, just to name a few. Even though numerous heuristic approaches were published in
the related literature for many of the considered problem variants during the last decades, solving these
problems to optimality remains an important challenge. This is particularly the case when the number
and the length of the input strings grows. In this work we define a new way to transform instances of
the classical longest common subsequence problem and of some of its variants into instances of the max-
imum clique problem. Moreover, we propose a technique to reduce the size of the resulting graphs.
Finally, a comprehensive experimental evaluation using recent exact and heuristic maximum clique sol-
vers is presented. Numerous, so-far unsolved problem instances from benchmark sets taken from the lit-
erature were solved to optimality in this way.

! 2020 Elsevier Ltd. All rights reserved.

1. Introduction

One of the common measures when comparing two (or more)
strings is the length of their longest common subsequence
(Iliopoulos and Sohel Rahman, 2009; Castelli et al., 2013). A subse-
quence is a string obtained by possibly deleting characters from
another string. For example, AGT is a subsequence of ADDAGTA
obtained by deleting the two occurrences of letter D and the last
two occurrences of letter A.

The classical longest common subsequence (LCS) problem asks to
find the longest subsequence common to a given set of strings. The
LCS problem is one of the central problems in bioinformatics, often
with strings representing segments of RNA or DNA (Gusfield, 1997;
Smith and Waterman, 1981; Jiang et al., 2002). Other applications
arise in computer science, in the fields of data compression, text
editing (Kruskal, 1983), the production of circuits in field pro-

grammable gate arrays (Brisk et al., 2004) and file comparison
(Storer, 1988; Aho et al., 1983).

The LCS problem is NP-hard for an arbitrary number of input
strings (Maier, 1978). If the number of strings is a constant, the
problem is polynomially solvable by dynamic programming
(Gusfield, 1997). Standard dynamic programming approaches for
this problem require a time of O nmð Þ where n is the length of the
longest input string and m is the number of strings. This complex-
ity requirement makes the LCS problem hard to solve in practice
with exact methods.

Real-life applications also require the solution of variants of the
LCS problem in which additional constraints are imposed on the
solutions. Examples concern the repetition-free longest common
subsequence (RFLCS) problem (Adi et al., 2010), the constrained
longest common subsequence (C-LCS) problem (Tsai, 2003), and
the generalized constrained longest common subsequence (GC-
LCS) problem (Chen and Chao, 2011). Others are mentioned in sur-
vey papers such as (Bonizzoni et al., 2010). Henceforth, we refer to
the variants of the classical LCS problem, in general, as LCS-type
problems.

Despite LCS-type problems being present in the literature for
almost forty years, their computational difficulty causes that

https://doi.org/10.1016/j.cor.2020.105089
0305-0548/! 2020 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: christian.blum@iiia.csic.es (C. Blum), djukanovic@ac.tuwien.

ac.at (M. Djukanovic), alberto.santini@upf.edu (A. Santini), huajiang@ynu.edu.cn
(H. Jiang), chu-min.li@u-picardie.fr (C.-M. Li), felip@iiia.csic.es (F. Manyà), raidl@
ac.tuwien.ac.at (G.R. Raidl).

Computers and Operations Research 125 (2021) 105089

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier .com/locate /caor

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2020.105089&domain=pdf
https://doi.org/10.1016/j.cor.2020.105089
mailto:christian.blum@iiia.csic.es
mailto:djukanovic@ac.tuwien.ac.at
mailto:djukanovic@ac.tuwien.ac.at
mailto:alberto.santini@upf.edu
mailto:huajiang@ynu.edu.cn
mailto:chu-min.li@u-picardie.fr
mailto:felip@iiia.csic.es
mailto:raidl@ac.tuwien.ac.at
mailto:raidl@ac.tuwien.ac.at
https://doi.org/10.1016/j.cor.2020.105089
http://www.sciencedirect.com/science/journal/03050548
http://www.elsevier.com/locate/caor
Aaron
團（clique）是一個圖中兩兩相鄰的一個頂點集，或是一個完全子圖（complete subgraph）

Aaron
很多的 numerous

Aaron
the number and the length of the input strings grows

Aaron
a technique to reduce the size of the resulting graphs.

Aaron
廣泛的 comprehensive

Aaron
lit- erature

Aaron
AGT

Aaron
The LCS problem is NP-hard for an arbitrary number of input strings

Aaron
f the number of strings is a constant, the problem is polynomially

Aaron
exact methods

Aaron
repetition-free longest common subsequence (RFLCS)

Aaron
constrained longest common subsequence (C-LCS)

Aaron
generalized constrained longest common subsequence (GC- LCS)

Aaron
difficulty

research is still active on this topic. In particular, in this work we
present a new approach to solve various LCS-type problems by
transforming them into instances of the maximum clique (MC)
problem (Bomze et al., 1999). The central idea of the transforma-
tion is to construct, for each instance, a conflict graph (Lee et al.,
2006). Hereby, an independent set in the conflict graph corre-
sponds to a common subsequence concerning the original LCS
instance. Moreover, a maximum independent set in the conflict
graphs corresponds to a longest common subsequence of the LCS
instance. Note that finding a maximum independent set (MIS) in
the conflict graph is equivalent to finding a largest clique on the
complement graph of the conflict graph. Therefore, an LCS problem
instance can be solved by finding a largest clique in the comple-
ment of the conflict graph.

The advantages of this approach are twofold. First, because of a
steady improvement of the solvers for the MC problem, we have
high-performing algorithms at our disposal that may make solving
an MC problem on the complement of the conflict graph faster than
solving the original LCS problem with known exact algorithms.
Second, we will show that our transformation—in addition to the
classical LCS problem—can be used to tackle other LCS-type prob-
lems from the literature, thus providing a unified approach for dif-
ferent LCS-type problems.

In the rest of this section we provide a short review of recent
approaches for the classical LCS problem, with a focus on exact
methods. In Section 2 we provide a description of the LCS-type
problems considered in this work, detailing the transformations
required to build the conflict graphs and providing further litera-
ture references for solution methods tailored to each specific vari-
ant. We provide computational evidence of the validity of our
approach in Section 4. To this end, we compare the following three
techniques with specialized algorithms for each of the considered
LCS-type problems: (1) the Integer Linear Programming (ILP) sol-
ver CPLEX applied to solve the MIS problem in the conflict graph;
(2) LMC (Jiang et al., 2016; Li et al., 2017), nowadays one of the best
available exact MC solvers; and (3) LSCC-BMS (Wang et al., 2016),
nowadays one of the best available heuristic MC solvers.

1.1. LCS-focused literature review

During the last decade, new and efficient heuristic approaches
were proposed in the literature for tackling LCS-type problems
(Blum and Festa, 2016), but it still remains an important challenge
to solve these problems to optimality. The dynamic programming
approach of Gusfield (1997), which was mentioned above,
becomes impractical when the number m of input strings grows.
At the same time, real-life applications of LCS-type problems also
involve long strings with large values of n, making a run time of
O nmð Þ impractical. Another approach is to model LCS-type prob-
lems—if possible—in terms of Integer Linear Programs (ILPs), which
can then be solved by general-purpose ILP solvers, such as CPLEX or
GUROBI. Computational experiments by Lee et al. (2009) in the con-
text of two ILP models for the classical LCS problem showed that
this approach turns impractical already for small values ofm. Other
specialized exact algorithms for the classical LCS problem are the
following ones. Chan et al. (2016) proposed FAST_LCS, which is a par-
allel search algorithm. Pruning operations are utilized to reduce
the computational effort. While the algorithm is effective for a
small number of input strings, it also struggles for larger m.
Wang et al. (2011) also proposed parallel algorithm labeled QUICK-

DP. This algorithm is based on the dominant point approach and
employs a fast divide-and-conquer technique to compute the so-
called dominant points. More recently, Li et al. (2016) introduced
the Top MLCS algorithm, which is based on a directed acyclic
layered-graph model (called irredundant common subsequence

graph) and parallel topological sorting strategies used to filter
out paths representing suboptimal solutions. Moreover, the
authors showed that the earlier dominant-point-based algorithms
do not scale well to larger LCS instances. Both a sequential and a
parallel version of Top MLCS was proposed. A space efficient algo-
rithm based on a graph model, called the LEVELED-DAG, was described
by Peng and Wang (2017). In the experimental comparison,
LEVELED-DAG and TOP_MLCS solved the same number of benchmark
instances to proven optimality, but LEVELED-DAG consumed less mem-
ory. Despite these recent advances, solving practically relevant
instances to proven optimality remains a substantial challenge in
terms of memory and computation time, even when utilizing many
parallel threads.

A recent branch of work on exact techniques for LCS-type prob-
lems concerns the development of extensions of the classical A⁄

algorithm (Hart et al., 1968). One advantage of A⁄ is that it can
be hybridized with heuristic algorithms (Wang et al., 2010;
Djukanovic et al., 2019). Djukanovic et al. (2019) presented a
related study about A⁄-based anytime algorithms for the classical
LCS problem.

Another branch of work concerns approximation algorithms.
Jiang and Li (1995) suggested a simple Long Run (LR) algorithm
that finds an LCS consisting of a single letter, with a jRj-
approximation ratio. Bonizzoni et al. (2001) developed the so-
called Expansion Algorithm (EA), which is also a jRj-
approximation. The EA generally outperforms the LR algorithm.
Tsai et al. (2002) introduced an improvement of the EA algorithm.
Finally, two additional R-approximation algorithms—Enhanced
Long Run (ELR) and Best-Next for Maximal Available Symbols
(BNMAS)—were proposed in Huang et al. (2004).

2. Considered problems and transformations

We start by defining a way to transform an instance of the clas-
sical LCS problem into a conflict graph in which a maximum inde-
pendent set corresponds to a longest common subsequence of the
original problem instance. Henceforth, an LCS problem instance is
described by a pair S;Rð Þ in which S ¼ s1; . . . ; smf g is a set of input
strings over a finite alphabet R. We denote the length of string
si 2 S as jsij and the element at position j in string si as
si j½ %; i ¼ 1; . . . ;m. Given such an instance, we construct an undi-
rected multi-layered graph G ¼ V ; Eð Þ whose vertex set V is parti-
tioned into sets V1; . . . ;Vmf g. Each Vi is called a layer and consists
of jsij vertices. Note that each layer represents exactly one input
string and each vertex of the layer represents a position in the
string. More specifically, Vi ¼ � i;1; . . . ; � i;jsi j

! "
, where vertex vi;j rep-

resents the j-th position of input string si.
We also partition the edge set E of the multi-layered graph G

into sets E1; . . . ; Em&1f g, where Ei is the set of edges between layers
Vi and Viþ1. Set Ei contains an edge connecting vertices vi;j and
viþ1;k if and only if si j½ % ¼ siþ1 k½ %, i.e., if the letter at position j of input
string si is equal to the letter at position k of input string siþ1. Fig-
ure 1 shows an example of this graph construction for three strings
over an alphabet of size four.

Any sequence p ¼ � 1;j1 ; � 2;j2 ; . . . ; � m;jm

$
of m vertices with the i-

th vertex of p being from the i-th layer of G is called a complete path
in G if and only if it fulfills the condition that the letters at the posi-
tions of the input strings corresponding to them vertices are all the
same, that is, s1 j1½ % ¼ s2 j2½ % ¼ . . . ¼ sn jm½ %. Note that if p fulfills this
condition, there is—by definition—an edge between each pair of
consecutive vertices of p. Given a complete path
p ¼ � 1;j1 ; � 2;j2 ; . . . ; � m;jm

$
, the common letter at positions j1; . . . ; jm

of the m input strings is also called the letter of p. We denote it
by ‘ pð Þ.

C. Blum et al. Computers and Operations Research 125 (2021) 105089

2

Aaron
maximum clique (MC) problem

Aaron
a conflict graph

Aaron
獨立集 任意兩點不相連 independent set

Aaron
a maximum independent set in the conflict graphs corresponds to a longest common subsequence of the LCS instance.

Aaron
an LCS problem instance can be solved by finding a largest clique in the comple- ment of the conflict graph.

Aaron
想
法

Aaron
兩個部分 twofold

Aaron
穩定的 steady

Aaron
供我們使用 at our disposal

Aaron
著手處理 tackle

Aaron
unified approach for dif- ferent LCS-type problems.

Aaron
focus on exact methods

Aaron
the transformations required to build the conflict graphs

Aaron
訂做 tailored

Aaron
正確性 validity

Aaron
LMC

Aaron
LSCC-BMS

Aaron
ILP

Aaron
O!nm"

Aaron
Integer Linear Programs (ILPs)

Aaron
CPLEX or GUROB

Aaron
FAST_LCS, which is a par- allel search algorithm

Aaron
Pruning

Aaron
parallel algorithm labeled QUICK- DP.

Aaron
dominant point

Aaron
ast divide-and-conquer

Aaron
directed acyclic layered-graph model

Aaron
irredundant

Aaron
LEVELED-DAG

Aaron
LEVELED-DAG consumed less mem- ory

Aaron
合適的 relevant

Aaron
A⁄ algorithm

Aaron
advantage of A⁄ is that it can be hybridized with heuristic algorithms

Aaron
研
究
趨
勢

Aaron
approximation algorithms

Aaron
今後 Henceforth

Aaron
a pair !S;R" in which S fs1;...;smg is a set of input strings over a finite alphabet R

Aaron
si j

Aaron
undi- rected multi-layered graph G !V ; E"

Aaron
Note that each layer represents exactly one input string and each vertex of the layer represents a position in the string.

Aaron
vi;j rep- resents the j-th position of input string si

Aaron
Set Ei contains an edge connecting vertices v i;j and v 2 i'1;k if and only if si j si'1 k

Aaron
complete path

Aaron
實現 fulfills

Aaron
the letters at the posi- tions of the input strings corresponding to the m vertices are all the same

Aaron
連貫的 consecutive

Aaron
the letter of p

Aaron
maximum clique

Two complete paths p and q, with p ¼ � 1;j1 ; � 2;j2 ; . . . ; � m;jm

$
and

q ¼ � 1;k1 ; � 2;k2 ; . . . ; � m;km

$
, are said to cross if and only if there is at

least one index l 2 1; . . . ;mf g such that jl 6 kl and at least one index
r 2 1; . . .mf g; r – l, such that jr P kr . To make the concept of cross-
ing paths clearer, refer to Figure 2 which shows two examples
based on the instance depicted in Figure 1. In the left figure, the
solid and dashed paths are crossing because they contain crossing
edges between layers 1 and 2. In the right figure, they cross
because they contain a common vertex in layer 2.

Given these notations, the classical LCS problem can be trans-
formed into the maximum independent set (MIS) problem as fol-
lows. First, note that solving the classical LCS problem amounts
to finding the largest set of non-crossing complete paths in the
respective multi-layered graph G. Based on G we can create the
conflict graph Gc ¼ Vc; Ecð Þ with a vertex for each complete path
of G and an edge between two paths iff they cross. Then, solving
the LCS problem is equivalent to solving the MIS problem in Gc

which, in turn, is equivalent to solving the MC problem in the com-
plement Gc of graph Gc.

In the rest of this section we consider three LCS-type problems
and show how analogous transformations allow us to reduce each
problem to a MC problem on the complement of a conflict graph.

2.1. Repetition-free longest common subsequence problem

The repetition-free longest common subsequence (RFLCS) prob-
lem (Adi et al., 2010) is an LCS variant in which valid solutions are
further constrained to contain each possible letter at most once. It
was introduced as a comparison measure for sequences of different
biological origin. In the related literature, this problem is generally
considered for the case m ¼ 2, that is, for two input strings. Note
that even for m ¼ 2 the problem is APX-hard (which implies it is
NP-hard), as shown by Adi et al. (2010). It is still an open question
whether the RFLCS admits a constant factor approximation. A fixed
parameter tractable (FTP) algorithm was presented in Blin et al.
(2012).

Blum and Blesa (2018a) proposed the current best specialized
algorithm for this problem: a construct, merge, solve and adapt
(CMSA) approach in which the authors initialize the reduced sub-
instance by beam search. In Blum and Blesa (2018a), the authors
show how their algorithm outperforms other metaheuristics and
the application of CPLEX to an ILP model of the problem.

To generate the conflict graph for the RFLCS problem, we first
build the multi-layered graph G concerning the two input strings,
just like in the case of the classical LCS problem. Note that, due
to the two input strings, G will have two layers. Two complete
paths p and q of G are in conflict if they fulfill at least one of the
following two conditions:

1. p and q cross each other.
2. p and q have the same letter: ‘ pð Þ ¼ ‘ qð Þ.

Note that the second condition ensures that no letter appears
more than once in a solution.

2.2. Longest arc-preserving common subsequence problem

The second considered LCS variant is known as the longest arc-
preserving common subsequence (LAPCS) problem (Evans, 1999a).
As in the case of the RFLCS problem, the LAPCS problem is studied
for two input strings/sequences in the literature. Note that, in the
case of the LAPCS problem, the input strings are arc-annotated.
An arc annotation of a string s is a pair of positions in s, say
i1; i2ð Þ with i1; i2 2 1; . . . ; jsjf g and i1 < i2. An arc-annotated
sequence is a pair s; Psð Þ where s is a string over some finite alpha-
bet R and Ps is the set of arc annotations of s. Given two arc-
annotated sequences s1; P1ð Þ and s2; P2ð Þ, the two-layered multi-
graph G is constructed for s1 and s2 in the same way as shown
before. Any set S of non-crossing complete paths in P is a feasible
LAPCS solution if the following additional condition is fulfilled.
For any pair p ¼ � 1;j1 ; � 2;j2

$
– q ¼ � 1;k1 ; � 2;k2

$
of non-crossing

complete paths from S with j1 < k1 it must hold that if j1; k1ð Þ is
an arc annotation of s1—that is, if j1; k1ð Þ 2 P1—then j2; k2ð Þ must
be an arc annotation of s2, and vice versa. The optimization goal
is to find a largest feasible solution S.

Arc-annotated sequences are useful for the structural compar-
ison of RNA sequences. Fig. 3 shows an example of an arc-
annotated RNA sequence in which the arc annotations are indi-
cated as solid lines linking the nucleobases ACGU. Evans (1999b,
a) introduced the LACPS problem and showed that it is NP-hard
already for two strings. Researchers have also focused on special
cases of the problem and developed polynomial time algorithms,
approximation algorithms and fixed parameter tractability results
for some of these cases (Evans, 1999c; Jiang et al., 2004; Gramm
et al., 2006; Gorbenko and Popov, 2012).

Blum and Blesa (2018b) proposed the best specialized algo-
rithms for the LAPCS. Depending on the problem instance charac-

Fig. 1. The undirected multi-layered graph G obtained from the LCS instance
S ¼ s1 ¼ ACTAG; s2 ¼ TAGC; s3 ¼ ATACGf g;R ¼ A;C;T;Gf gð Þ.

Fig. 2. Two examples of complete paths that cross, based on the LCS instance from Fig. 1. (a) Paths p ¼ � 1;1; � 2;2; � 3;4ð Þ and q ¼ � 1;3; � 2;1; � 3;1ð Þ cross because their
corresponding edges between layers 1 and 2 cross. (b) Paths p ¼ � 1;1; � 2;2; � 3;4ð Þ and q ¼ � 1;4; � 2;2; � 3;2ð Þ cross because they both include vertex v2;2 from the second layer.

C. Blum et al. Computers and Operations Research 125 (2021) 105089

3

Aaron
每一層代表一條輸入字串

Aaron
undirected multi-layered graph

Aaron
v(i, j): i(row), j(column)

Aaron
將相同字元相連

Aaron
complete paths

Aaron
cross

Aaron
cross

Aaron
q'

Aaron
p

Aaron
p

Aaron
q

Aaron
both include vertex v 2;2

Aaron
cross

Aaron

Aaron

Aaron
l 2 f1;...;mg such that jl 6 kl

Aaron
at least one index r 2 f1;...mg;r – l, such that jr P kr.

Aaron
實線 solid

Aaron
虛線 dashed

Aaron
the classical LCS problem can be trans- formed into the maximum independent set (MIS) problem

Aaron
LCS
 ->
MIS

Aaron
finding the largest set of non-crossing complete paths

Aaron
solving the LCS problem is equivalent to solving the MIS problem in Gc

Aaron
conflict graph Gc !Vc;Ec"

Aaron
相似的 analogous

Aaron
maximum clique

Aaron
MC problem on the complement of a conflict graph.

Aaron
互補 complement

Aaron
有效的 valid

Aaron
強迫的 constrained

Aaron
for two input strings

Aaron
NP-hard

Aaron
Repetition-free longest common subsequence problem

Aaron
RFLCS

Aaron
fixed parameter tractable (FTP) algorithm

Aaron
a constant factor approximation.

Aaron
a construct, merge, solve and adapt (CMSA) approach

Aaron
the multi-layered graph G concerning the two input strings

Aaron
no letter appears more than once in a solution.

Aaron
Longest arc-preserving common subsequence problem

Aaron
LAPCS

Aaron
An arc annotation of a string s is a pair of positions in s, say !i1; i2" with i1; i2 2 f1; . . . ; jsjg and i1 < i2.

Aaron
Any set S of non-crossing complete paths in P is a feasible LAPCS solution if the following additional condition is fulfilled.

Aaron
if !j1; k1" 2 P1—then !j2; k2" must be an arc annotation of s2

Aaron
反之亦然 vice versa

Aaron
RNA

Aaron
LCS找最大非交叉的完全路徑，因為如果有交叉，代表相同元素的順序相反，但這已違反LCS

Aaron
重要

Aaron
無重複最長共同子序列問題

Aaron
1. p and q cross each other. 2. p and q have the same letter: ‘!p" � ‘!q".

Aaron
最長保弧共同子序列問題

teristics, the state-of-the-art algorithm is either a heuristic based
on problem reduction, or an iterative probabilistic algorithm, both
of which solve reduced ILP models. The authors compared these
algorithms with the application of CPLEX to solve the MIS problem
in the corresponding conflict graphs.

To generate the conflict graph for a LAPCS problem instance
consisting of s1; P1ð Þ and s2; P2ð Þ, we first construct the two-
layered multi-graph G based on s1 and s2, as done in the classical
LCS problem case. Two complete paths p ¼ � 1;j1 ; � 2;j2

$
– q ¼

� 1;k1 ; � 2;k2

$
with j1 < k1 are in conflict if and only if they fulfill at

least one of the following two conditions:

1. p and q cross each other.
2. p and q violate the arc preservation constraints. This happens

when either j1; k1ð Þ 2 P1 and j2; k2ð Þ R P2, or j2; k2ð Þ 2 P2 and
j1; k1ð Þ R P1.

Fig. 4 shows an example LAPCS instance. The solution depicted
with dashed lines is infeasible because it matches v1;2 and v1;4 in s1
with, respectively, v2;4 and v2;5 in s2. An arc annotation links the
positions in s1 but not in s2, thus violating condition 2 above. The
solution depicted with straight, solid lines, in contrast, is feasible.

3. Conflict graph reduction

The size of the conflict graphs (in terms of the number of ver-
tices) mainly depends on the length and on the number of input
strings. Let nmax :¼ maxi¼1;...;m jsijf g. Then, the sizes of the conflict

graphs can be expressed as follows: O nm
max

$
in the case of the clas-

sical LCS problem, and O n2
max

$
in the case of the RFLCS and LAPCS

problems. In fact, during preliminary experiments we realized that
the conflict graphs are too large, even for rather small problem
instances from the literature, in the case of the classical LCS prob-
lem. Therefore, we henceforth focus exclusively on the RFLCS and
LAPCS problems. However, even for these two problems, the con-
flict graphs are very large when large-scale problem instances
are concerned. Therefore, we decided to investigate into tech-
niques for reducing the size of the conflict graphs. Note that there
are potentially two strategies for reducing the size of a given con-
flict graph Gc: (1) making use of problem-specific information rel-
ative to the respective LCS-type problems, and (2) analyzing and
reducing Gc from the point of view of the MC problem. However,
the latter strategy has proven ineffective in preliminary computa-
tional experiments. This is because solver LMC (the state-of-the-art
exact MC problem solver that we used (Jiang et al., 2016; Li et al.,
2017)) already implements powerful graph reduction procedures
which were not able to reduce Gc. Therefore we make use of LCS-
specific information to reduce the conflict graphs in a novel way.

The main idea for our reduction of the conflict graphs is based
on making use of a high-quality primal (lower) bound value lb
for the tackled problem, that is, the value of a high-quality solution.
The value of the best-known solution from the literature can be
taken for this purpose, for example. Before we proceed, the follow-
ing notation is required: given a string t and two indices
l; r 2 1; . . . ; jtjf g with l 6 r; t l; r½ % denotes the substring of t starting
at position l and ending at position r. Now, on the basis of the pri-
mal bound lb, it can be decided for every complete path

Fig. 3. Example of an arc-annotated sequence (RNA of Schizosaccharomyces octosporus). The connections between different positions of the RNA sequence, indicated by short
lines, are the members of the arc annotation set. Note that this graphic was obtained from the RNase P Database (Brown, 1999).

C. Blum et al. Computers and Operations Research 125 (2021) 105089

4

Aaron
an arc-annotated sequence (RNA of Schizosaccharomyces octosporus).

Aaron
reduction, or an iterative probabilistic algorithm

Aaron
Two complete paths p � #v1;j1 ; v2;j2 $ – q � #v1;k1 ; v2;k2 $ with j1 < k1 are in conflict if a

Aaron
違背 violate

Aaron
不合理的 infeasible

Aaron
length

Aaron
number

Aaron
nmax

Aaron
n: length, m: number of the input，條數為conflict graph的維度

Aaron
初步的 preliminary

Aaron
conflict graphs are too large

Aaron
從今以後 henceforth

Aaron
專門的 exclusively

Aaron
研究 investigate

Aaron
problem-specific information

Aaron
the point of view of the MC problem

Aaron
LMC (the state-of-the-art exact MC problem

Aaron
not able to reduce Gc

Aaron
處理 tackled

Aaron
a high-quality primal (lower) bound value lb

Aaron
t l;r denotes the substring of t starting at position l and ending at position r

p ¼ � 1;j1 ; . . . ; � m;jm of the multi-layered graph, if the corresponding
vertex vp can be removed from the conflict graph Gc without loos-
ing an optimal solution.1 This is done as follows. First, note that the
complete path under consideration splits each input string si into
two parts: si 1; ji & 1½ % (the left-hand side) and si ji þ 1; jsij½ % (the
right-hand side). Henceforth we denote the set of left-hand sides
corresponding to a complete path p by SLp, and the set of right-

hand sides by SRp . More formally:

SLp ¼ si 1; ji & 1½ %j i ¼ 1; . . . ;mf g

SRp ¼ si ji þ 1; jsij½ %j i ¼ 1; . . . ;mf g

Note that both SLp and SRp are subinstances of the original problem
instance. Therefore, any upper bound function UBðÞ known for the
problem (RFLCS, respectively LAPCS) can be used for (over)-
estimating the quality of the length of an optimal solution in SLp
and SRp . Given such an upper bound function UBðÞ, vertex vp and all
corresponding edges can be deleted from the conflict graph Gc iff

UB SLp
% &

þ 1þ UB SRp
% &

< lb: ð1Þ

For the following discussion, bear in mind that any upper bound
for the classical LCS problem is also an upper bound for the RFLCS
and LAPCS problems. This is, because these two problems corre-
spond to classical LCS problems with additional constraints. In
other words, the set of valid solutions of a RFLCS problem instance,
respectively a LAPCS problem instance, is a subset of the set of
valid solutions of the instance if solved as a classical LCS problem.
Therefore, upper bound functions developed for the classical LCS
problem are candidates to be used for UBðÞ in Eq. 1.

Blum et al. (2009), for example, introduced an upper bound
function henceforth labeled UBLCS

1 ðÞ for the classical LCS problem
(which is a tightened version of a bound originally introduced by
Fraser (1995)). Given a problem instance S;Rð Þ, for each input
string si 2 S and each letter a 2 R, let jsija be the number of occur-
rences of a in si and let ca Sð Þ ¼ minsi2Sjsja. Then, UB

LCS
1 ðÞ is defined as

follows:

UBLCS
1 Sð Þ ¼

X

a2R
ca Sð Þ

Let d a; Sð Þ for a 2 R evaluate to one, if letter a appears at least
once in each input string from S, and otherwise to zero. As each let-
ter from R can mostly appear once in a valid RFLCS solution, UBLCS

1 ðÞ

from above reduces to the following upper bound function in the
context of the RFLCS problem:

UBRFLCS
1 Sð Þ ¼

X

a2R
d a; Sð Þ

Finally, when used for our purposes—that is, for obtaining an
upper bound for (sub-) instances SLp and SRp in Equation 1 in the con-
text of an RFLCS instance—we can even exclude letter l pð Þ (the let-
ter of path p) from the sum. This results in:

UBRFLCS
1 S; pð Þ ¼

X

a2Rn l pð Þf g

d a; Sð Þ:

Wang et al. (2011) proposed another upper bound function for
the classical LCS problem, henceforth labeled UB2ðÞ, which is based
on dynamic programming (DP). This function is defined as follows:

UB2 Sð Þ ¼ min
i¼1;...;m&1

LCS si; siþ1ð Þ;

where LCS si; siþ1ð Þ refers to the length of the longest common sub-
sequence of input strings si and siþ1. Using the DP recursion of
Wang et al. (2010) we can obtain this bound in O mð Þ time by using
an appropriate preprocessing data structure known as the scoring
matrix (Wang et al., 2012; Inenaga and Hyyrö, 2018). In particular,
note that in the context of the RFLCS and LAPCS problems, the pre-
processing is done in O n2

$
time.

In summary, for the conflict graph reduction in the context of

the RFLCS problem, UBðÞ is defined as min UBRFLCS
1 ðÞ;UB2ðÞ

n o
; and

in the context of the LAPCS problem UBðÞ :¼ UB2ðÞ, because
UB2ðÞ < UBLCS

1 ðÞ in all cases.

4. Experimental evaluation

The aim of the computational experiments is to compare two
strategies to solve LCS problems: (1) their direct solution using a
specialized state-of-the-art algorithm, and (2) their transformation
to the MIS, respectively the MC, problems and the subsequent solu-
tion by CPLEX2 (in case of the MIS problem) or by the following MC
solvers:

(LMC. This exact MC solver was introduced by Jiang et al. (2016,
2017). It is currently one of the best exact solvers available for
the MC problem. It combines an aggressive preprocessing of
the graph with a MaxSAT solver (Li et al., 2009) in a branch-
and-bound scheme.

(LSCC-BMS. This is one of the best-performing heuristic algorithms
for the MC problem. Wang et al. (2016) introduced this local-
search-based algorithm, whose main strengths are a configura-
tion checking procedure that reduces the probability of cycling
during local search, and a low-complexity vertex swap neigh-
borhood which is fast even on massive graphs3.

Note that both CPLEX and LSCC-BMS were executed on a cluster of
12-core Intel Xeon 5670 CPUs at 2.9 GHz and at least 40 GB of
RAM. LMC was executed on a cluster with 8-core Intel Xeon E5-
2680 CPUs at 2.4 GHz and with 128 GB of memory. In both cases,
the memory consumption of each process was limited to 16 GB.

RFLCS benchmark instances. Two sets of problem instances can
be found in the related literature. The first set, henceforth denoted

Fig. 4. This example shows the undirected multi-layered graph G obtained from the
LAPCS instance consisting of s1 ¼ TAGC; P1 ¼ 2;4ð Þf gð) and
s2 ¼ TATACG; P2 ¼ 1;2ð Þ; 2;5ð Þf gð). The solution in dashed lines
p ¼ � 1;1; � 2;1ð Þ; q ¼ � 1;2; � 2;4ð Þ; r ¼ � 1;4; � 2;5ð Þ

! "
is not valid because arc 2;4ð Þ 2 P1

connects two chosen positions in s1, while the corresponding chosen positions in s2
— that is, positions 4 and 5 — are not connected by an arc from P2. The solution in
straight, solid lines is feasible.

1 Note that the conflict graph reduction will be described for a general case of n
input strings, even though we only have two input strings in the cases of the RFLCS
and LAPCS problems.

2 IBM ILOG CPLEX is an optimization software package that includes state-of-the-
art exact techniques for solving integer linear programming models, among others. It
is available for free for academic purposes. For more information, we refer the
interested reader to http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/index.html. In this work we made use of version 12.7.

3 We downloaded the code of LSCC-BMS from http://ai.nenu.edu.cn/wangyy/Yiyuan-
data/LocalSearchforMWCP.htm on April 29, 2019.

C. Blum et al. Computers and Operations Research 125 (2021) 105089

5

Aaron
p

Aaron
q

Aaron
r

Aaron
because arc !2; 4" 2 P1 connects two chosen positions in s1 , while the corresponding chosen positions in s2 — that is, positions 4 and 5 — are not connected by an arc from P2

Aaron
arc

Aaron
if the corresponding vertex vp can be removed from the conflict graph Gc without loos- ing an optimal solution.

Aaron
splits

Aaron
右半部

Aaron
左半部

Aaron
將字串依path分成兩部分

Aaron
upper bound function

Aaron
 L R UB Sp '1'UB Sp <lb:

Aaron
左半上限+1+右半上限 < lb

Aaron
個別的 respectively

Aaron
subset

Aaron
upper bound functions developed for the classical LCS

Aaron
upper
bound

Aaron
a在第i字串出現的次數 the number of occur- rences of a in s

Aaron
所有字母 在所有字串中出現的最少次數總和

Aaron
delta(a, S): a字母是否都出現過在每個輸入字串中

Aaron
if letter a appears at least once in each input string from S

Aaron
mostly appear once

Aaron
所有字母 在所有字串中是否都有出現過的總和

Aaron
不包含 exclude

Aaron
path代表一個字母，排除了一些字母

Aaron
今後 henceforth

Aaron
DP recursion

Aaron
scoring matrix

Aaron
UBRFLCS !"; UB2 !"

Aaron
LMC

Aaron
LSCC-BMS

Aaron
exact

Aaron
local- search-based algorithm

Aaron
the code of LSCC-BMS

Aaron
vp

Aaron
Vp

Aaron
請記住 bear in mind

Aaron
a在第1~n字串出現的最少次數

Aaron
j(i) = Vp 被移除了

Aaron
O!m"

Aaron
O#n2 $

Aaron
兩兩一組最小的LCS長度

by RFLCS-SET1, consists of 30 randomly generated problem instances
for each combination of the input sequence length
n 2 32;64;128;256;512;1024;2048;4096f g and the alphabet size
jRj 2 n

8 ;
n
4 ;

3n
8 ; n2 ;

5n
8 ; 3n4 ; 7n8

! "
. This results in a total of 1680 instances.

The second set, henceforth denoted by RFLCS-SET2, consists of 30 ran-
domly generated instances for each combination of the alphabet
size jRj 2 4;8;16;32;64;128;256;512f g and the maximal repeti-
tion of each letter, reps 2 3;4;5;6;7;8f g. In total, set RFLCS-

SET2 contains 1440 instances.
LAPCS benchmark instances. The recent literature on the LAPCS

problem considers both artificial instances (benchmark set LAPCS-

ARTI) and real RNA instances (benchmark set LAPCS-REAL). Each artifi-
cial instance consists of two randomly generated RNA strings of
length n 2 100;200; . . . ;900;1000f g. Moreover, each input string
has narcs 2 n

10 ;
n
5 ;

n
2

! "
randomly generated unique arc annotations.

Set LAPCS-ARTI consists of 30 instances for each combination of n
and narcs, which makes a total of 900 problem instances. Set LAPCS-

REAL consists of 10 problem instances that are composed of arc-
annotated RNA sequences downloaded from the RNase P Database
(Brown, 1999). Note that the alphabet size in all cases is equal to
four. Table 1 summaries the characteristics of these instances.

Due to the fact that the amount of reduction of the conflict
graphs from Section 3 depends on the quality of the used primal
bound per instance, we used the currently best-known solution
values from the literature for all considered instances. In the case
of the RFLCS problem, these values were taken from Blum and
Blesa (2018c), and in the case of the LAPCS problem from Blum
and Blesa (2018b).

4.1. Results without conflict graph reduction

All three methods—CPLEX, LMC, and LSCC-BMS—were applied with a
computation time limit of 3600 s (1 h) and a memory limit of
16 GB per run to all RFLCS and LAPCS problem instances. The
results are presented in numerical form in Tables 2 and 3 concern-
ing the RFLCS problem, and in Tables 4 and 5 concerning the LAPCS
problem. The first two columns in Tables 2–4 indicate the problem
instance characteristics, while the third column provides the cur-
rently best known results from the literature. In the case of the
RFLCS problem, the best known results were obtained by the cur-
rent state-of-the-art method—a hybrid CMSA algorithm—from
Blum and Blesa (2018c). The best-known results for the LAPCS
problem were obtained by two state-of-the-art algorithms—a
hybrid evolutionary algorithm (HYB-EA) and an ILP-based heuris-
tic—from Blum and Blesa (2018b). Note that, in this way, the
results of our transformation-based approaches are compared to
the current state-of-the-art methods. Each table row provides
results averaged over 30 problem instances of the same type.
Table 5 is slightly different. The first column provides the instance
name, while the second column indicates the best-known results

from the literature. Moreover, each table row only covers one sin-
gle problem instance. In the case of the LAPCS problem, the best-
known results from the literature are additionally marked either
by an a, indicating that an ILP-based heuristic has produced this
result, or by a b, which indicates that the HYB-EA algorithm has gen-
erated this result. In Tables 2–4, the results of CPLEX and LSM are each
provided in four columns. The first one (with heading result) con-
tains the average solution quality obtained for the 30 problem
instances. The second column (with heading t) indicates the aver-
age computation time at which the best solution of a run was
found, while the third column (with heading topt) provides the
average computation time at which optimality was proven. Finally,
the fourth table column contains the number of instances that
could be solved to optimality. This fourth table column is not pro-
vided in Table 5, as it only deals with one instance per table row.
Furthermore, the results of LSCC-BMS are given in two columns in
all cases, providing the (average) result and the (average) compu-
tation time. Note that a value in the columns with heading result
is indicated in bold font if the value is at least as good as the best
known one from the literature. Moreover, a value is marked by an
asterisk in case it corresponds to a new best-known result. Finally,
results of CPLEX and LMC are marked by a gray background if they
correspond to provenly optimal results.

The following observations can be made in the case of the RFLCS
problem:

(While both LMC and LSCC-BMS are able to provide feasible solutions
for all problem instances from both sets (RFLCS-SET1 and RFLCS-SET2),
CPLEX suffers from a sharp phase transition when the conflict
graphs become too large. Observe, for example, the case
jRj ¼ n=8;n ¼ 256ð Þ in Table 2 in comparison to the next larger
case jRj ¼ n=8;n ¼ 512ð Þ. While CPLEX is able to solve all
instances of the first case to optimality, it only provides very
short solutions in the second case.

(Concerning the comparison of the two exact solvers, we can
state that LMC (the MC solver) clearly outperforms CPLEX. LMC is
able to solve 1282 RFLCS-SET1 instances and 1237 RFLCS-

SET2 instances to optimality, while CPLEX can only solve 1221
RFLCS-SET1 instance and 1181 RFLCS-SET2 instances to optimality.
Moreover, LMC does not suffer from the above-mentioned phase
transition for the remaining instances, and it requires generally
less computation time. More specifically, while LSM requires—on
average—41:7 s for proving optimality (if possible) of RFLCS-

SET1 instances, CPLEX requires 187:2 s; respectively 34:07 and
127:14 s in the case of the RFLCS-SET2 instances.

(The heuristic MC solver LSCC-BMS is especially successful in those
cases in which the exact techniques start to fail. See, for exam-
ple, cases jRj ¼ n=8;n 2 512;1024f gð Þ in Table 2 and cases
jRj ¼ 256; reps 2 6;7;8f gð Þ in Table 3. LSCC-BMS can be seen as

Table 1
Characteristics of real instances from set LAPCS-REAL. All 20 arc-annotated RNA sequences were taken from the RNase P Database (Brown, 1999).

Instance First String Second string

RNA n narcs RNA n narcs

Real_1 Allochromatium vinosum 369 119 Haemophilus influenza 377 124
Real_2 Bacteroides thetaiotaomicron 361 121 Porphyromonas gingivalis 398 131
Real_3 Halococcus morrhuae 475 154 Haloferax volcanii 433 142
Real_4 Klebsiella pneumoniae 383 127 Escherichia coli 377 124
Real_5 Methanococcus jannaschii 252 75 Archaeoglobus fulgidus 229 67
Real_6 Methanosarcina barkeri 371 115 Pyrococcus abyssi 330 100
Real_7 Mycoplasma genitalium 384 119 Mycoplasma pneumoniae 369 112
Real_8 Saccharomyces kluveri 336 90 Schizosaccharomyces octosporus 281 71
Real_9 Serratia marcescens 378 125 Shewanella putrefaciens 354 115
Real_10 Streptomyces bikiniensis 398 135 Streptomyces lividans 405 138

C. Blum et al. Computers and Operations Research 125 (2021) 105089

6

Aaron
RFLCS-SET1

Aaron
RFLCS-SET2

Aaron
maximal repeti- tion of each letter

Aaron
randomly generated unique arc annotations

Aaron
the quality of the used primal bound per instance

Aaron
Results without conflict graph reduction

Aaron
RFLCS

Aaron
LAPCS

Aaron
a hybrid CMSA algorithm

Aaron
a hybrid evolutionary algorithm (HYB-EA) and an ILP-based heuris

Aaron
only covers one sin- gle problem instance.

Aaron
aver- age computation time

Aaron
heading topt

Aaron
optimality

Aaron
LMC (the MC solver) clearly outperforms CPLEX.

the most successful one among the techniques, providing new
best-known results in 35 cases (considering both instance sets
together), while LMC provides new best-known results in 30
cases and CPLEX in 24 cases.

All in all we can state that the idea of solving the RFLCS problem
by means of the transformation to the MC problem is very success-
ful, even before trying to reduce the size of the conflict graphs.

Let us now turn towards the LAPCS problem. In some aspects,
the observations that can be made in the context of the artificial
instances (LAPCS-ARTI; Table 4) are similar to the ones made for the
RFLCS problem. CPLEX suffers from a sharp phase transition. In fact,
it is only able to provide solutions for the case of the smallest prob-
lem instances (n ¼ 100). LMC does not suffer from this phase transi-
tion and is able to provide feasible solutions of reasonable quality
until instances with input strings of length n ¼ 500. Both LMC are

Table 2
Experimental results for RFLCS instances RFLCS-SET1.

C. Blum et al. Computers and Operations Research 125 (2021) 105089

7

CPLEX are able to solve 80 problem instances to optimality. And
finally, the heuristic MC solver LSCC-BMS is again very successful in
those cases in which LMC and CPLEX start to fail proving optimality
(see the instances with n ¼ 200). Concerning the results obtained
for the real instances (LAPCS-REAL; Table 5), we can state that LSM is,
by far, the most successful algorithm. While CPLEX is not able to
derive any feasible solutions and LSCC-BMS never matches the best
results from the literature, LSM matches the best results from the
literature in three cases and obtains new best-known solutions in
two additional cases. Nevertheless, we can state that the
results—obtained before trying to reduce the size of the conflict

graphs—are rather unsatisfactory in the context of the LAPCS prob-
lem. The main reason for this is the increased size of the conflict
graphs in comparison to the RFLCS problem, which is due to the
small alphabet size of four.

4.2. Results after conflict graph reduction

After reducing all the conflict graphs with the method described
in Section 3, we first measured the amount of reduction that was
achieved. This reduction is displayed for all RFLCS and LAPCS prob-
lem instances by means of boxplots in Figs. 5–8. More specifically,

Table 3
Experimental results RFLCS instances RFLCS-SET2.

C. Blum et al. Computers and Operations Research 125 (2021) 105089

8

Aaron
Results after conflict graph reduction

the boxplots show the percentage reduction concerning the num-
ber of vertices of the original conflict graphs. If the reduction for
an instance is at 60%, for example, this means that the reduction
technique was able to remove 60% of the vertices of the original
conflict graph. In the context of the RFLCS instances, we can state
that the percentage reduction tends to grow with a growing string
length and a growing alphabet size. Note that for long strings on
large alphabets we were able to achieve reduction percentages of
more than 90%. Concerning the LAPCS problem, it can be observed
that the reduction percentages grow with an increasing number of
arc annotations. However, they slightly increase with a growing

input string length. This is due to the small alphabet size of four.
Finally, it is worth mentioning that in the case of the real problem
instances (set LAPCS-ARTI; Figure 8) we were able to achieve very high
reduction percentages, sometimes well over 90%. This indicates
the difference in structure between artificial and real problem
instances.

The numerical results obtained by the three considered tech-
niques after conflict graph reduction are provided in Tables A.9,
A.10,A.11,A.12 that can be found in Appendix A. The structure of
these tables is very similar to the one of Tables 2–5, which was
described at the beginning of Section 4.1. The only difference is

Table 4
Experimental results for LAPCS instances LAPCS-ARTI.

Table 5
Experimental results for LAPCS instances LAPCS-REAL.

Inst. Spec. CPLEX LMC LSCC-BMS

Name Tech. result t topt result t topt result t

Real_1 268b – – – – – – 259 2691.58 – – 231 3504.69
Real_2 291b – – – – – – 283 637.94 – – 216 1088.45
Real_3 294b – – – – – – 284 104.13 – – 234 1580.28
Real_4 374b – – – – – – 374 34.59 – – 366 2148.66
Real_5 178b – – – – – – 179⁄ 6.04 – – 170 2336.97
Real_6 209b – – – – – – 206 30.64 – – 197 2181.59
Real_7 330b – – – – – – 330 43.61 – – 251 1461.38
Real_8 177b – – – – – – 175 3309.91 – – 173 448.26
Real_9 302b – – – – – – 304⁄ 44.36 – – 226 49.66
Real_10 361a – – – – – – 361 71.14 – – 272 496.70

C. Blum et al. Computers and Operations Research 125 (2021) 105089

9

Aaron
percentage reduction concerning the num- ber of vertices of the original conflict graphs.

Aaron
remove 60% of the vertices of the original conflict graph.

Aaron
grow with a growing string length and a growing alphabet size

Aaron
increasing number of arc annotations.

Aaron
small alphabet size

Aaron
over 90%

Fig. 5. Graph reduction (in %) for RFLCS instances from set RFLCS-SET1.

Fig. 6. Graph reduction (in %) for RFLCS instances from set RFLCS-SET2.

C. Blum et al. Computers and Operations Research 125 (2021) 105089

10

that the part on the state-of-the-art results—see the columns with
heading ‘‘Spec. Tech.”—is now extended by the corresponding com-
putation times, that is, the times at which these results were
obtained by the respective techniques.4 The computation time of
the fastest technique in each table row is underlined. Moreover, in
order to relate the two sets of results, the values in the columns with
heading result are marked in a different way. More specifically, val-
ues marked by a preceding =-symbol are equal to the values
obtained by the same technique before graph reduction. Further-
more, values marked in italic font and by a preceding &-symbol
are worse than the values obtained by the same technique before
graph reduction, and values marked in bold font and by a preceding
+-symbol are better than the corresponding values before conflict
graph reduction. In order to relate the performance of a technique
before graph reduction with its performance after graph reduction,
we also computed a set of measures that are provided in Table 6
for CPLEX and LMC, and in Table 7 for LSCC-BMS. The measures regarding
the exact techniques (see Table 6) are as follows.

1. Measure E-M1 refers to those instances that were solved to
optimality, both concerning the original conflict graph and the
reduced conflict graph. In particular, it provides the average
time saved for finding the best solution of a run (in seconds)
after reducing the respective graph.

2. Measure E-M2 is very similar, just that it refers to the average
time saving for proving optimality.

3. Measure E-M3 indicates the number of instances additionally
solved to optimality after graph reduction.

4. Measure E-M4 indicates the average improvement in solution
quality (in percent) for all those instances for which feasible
solutions can be found both before and after graph reduction,
but for which optimality cannot be proven.

5. Finally, measure E-M5 reports on the number of instances for
which a feasible (and possibly optimal) solution can be found
after graph reduction, and for which no feasible solution could
be found before graph reduction.

In the context of the heuristic MC solver LSCC-BMS (see Table 7), mea-
sures H-M1–H-M4 can be described as follows.

1. In all those cases in which the same result is obtained by LSCC-

BMS before and after conflict graph reduction, measure H-M1
refers to the average time saving per instance (in seconds) for
achieving this result.

2. Measure H-M2 indicates the number of instances for which the
result of LSCC-BMS improves after graph reduction.

3. Measure H-M3 refers to the number of cases in which the result
gets worse.

4. Finally, measure H-M4 counts the number of instances for
which LSCC-BMS can find a feasible solution after graph reduction,
while before graph reduction LSCC-BMS was not able to find any
feasible solution.

Remarks concerning the results for the RFLCS problem:

(The great beneficiary of the applied conflict graph reduction is
CPLEX. CPLEX is now able to solve 1478 RFLCS-SET1 instances (out of
1680) and 1314 RFLCS-SET2 instances (out of 1440) to optimality,
while LMC now solves 1366 RFLCS-SET1 instances and 1247 RFLCS-

SET2 instances to optimality. Nevertheless, CPLEX still suffers from
a sharp phase transition which, due to the graph reduction, has
been moved to larger problem instances. Also the time savings
achieved for finding the best solutions of a run and for proving
optimality are much higher in the case of CPLEX when compared
to those of LMC (see Table 6).

(The heuristic MC solver LSCC-BMS is also able to profit from the
graph reduction. It provides an improved result for 296 RFLCS-

SET1 instances and for 114 RFLCS-SET2 instances, while worse
results are only produced in 27, respectively 9, cases. Moreover,
in those cases in which LSCC-BMS obtains the same result before
and after graph reduction, the average time saving per instance
is approx. 77 s for the RFLCS-SET1 instances, and approx. 39 s for
the RFLCS-SET2 instances.

After studying the results obtained for the LAPCS instances, the
following observations can be made:

Fig. 7. Graph reduction (in %) for LAPCS instances from set LAPCS-ARTI.

Fig. 8. Graph reduction (in %) for LAPCS instances from set LAPCS-REAL.

4 Note that the state-of-the-art techniques for both the RFLCS and the LAPCS
problem were executed on the same computers as CPLEX and LSCC-BMS.

C. Blum et al. Computers and Operations Research 125 (2021) 105089

11

Aaron
Spec. Tech

Aaron
underlined

Aaron
=-symbol

Aaron
italic

Aaron
&-symbol

Aaron
bold

Aaron
+-symbol

Aaron
optimality

Aaron
average

Aaron
number

Aaron
quality (in percent)

Aaron
improves

Aaron
average time

Aaron
worse

Aaron
feasible

Aaron
feasible

Aaron
CPLEX

Aaron
LSCC-BMS

Aaron
RFLCS

Aaron
LAPCS

(Concerning the set of artificial problem instances (LAPCS-ARTI), it
can be observed that all three techniques are now able to pro-
vide solutions for some of the larger instances. CPLEX, for exam-
ple, can now provide solutions for the instances with n ¼ 200
and for the case n ¼ 300;narcs ¼ 30ð Þ, for which no result was
obtained before conflict graph reduction. However, while LSCC-

BMS is able to improve its results for many instances (see cases
n 2 200; . . . ;500f g), LSM is again not able to take much profit
from the graph reduction. In fact, the results of LSM after graph
reduction are sometimes even worse than before; see case
n ¼ 200 and narcs 2 20;40f g, for example. On average, LSM is
not able to improve its results for those instances for which a
feasible solution was obtained before and after conflict graph
reduction, but for which optimality could not be proven; see
measure E-H4 in Table 6. CPLEX is now able to solve 110 problem
instances to optimality, while LSM can solve 80 problem
instances, the same ones that it was able to solve before conflict
graph reduction. Again, LSCC-BMS performs best when the perfor-
mance of CPLEX and LSM starts to decline (see the cases with
n ¼ 200).

(Finally, the results—in particular those of CPLEX—for the real-life
instances of set LAPCS-REAL are quite pleasing. CPLEX is able to solve
seven out of 10 instances to optimality. In three of these cases,
the best-known result from the literature is improved. LSM, on
the other side, obtains exactly the same results as before con-
flict graph reduction, with the difference that optimality can
be proven now for five out of the 10 problem instances. LSCC-

BMS is again able to take profit from the graph reduction,
improving its results in 9 out of 10 cases.

A summary of the obtained results in comparison to the current
state of the art is provided in Table 8. Concerning the instances of
set RFLCS-SET1, for example, our approaches were able to improve the
current state-of-the-art algorithm from Blum and Blesa (2018c) in
23 out of 56 cases, the results were matched in 28 cases, and in
only five cases our results were inferior to the state of the art. In
general, Table 8 shows that our transformation-based approaches
are very successful in the context of the RFLCS problem, while they
only succeeded for the smaller instances of set LAPCS-ARTI and the
real-life instances from set LAPCS-REAL.

Finally, the following observations can be made concerning the
comparison of the computation times of our approaches with those
of the state of the art. In the context of the RFLCS problem, our

approaches are generally faster than the current state-of-the-art
approaches, especially for instances of RFLCS-SET1 with alphabets of
medium and large size. The state-of-the-art approaches are only
faster for RFLCS-SET1 instances with small alphabet sizes and rather
long input strings. The same happens for RFLCS-SET2 instances with
large alphabet sizes and many repetitions. The computation time
comparison concerning the LAPCS problem reflects the analysis
from above concerning solution quality. In particular, our
approaches—especially LSCC-BMS—are only faster than the current
state of the art for the smallest LAPCS-ARTI instances with input string
length n ¼ 100. Starting from LAPCS-ARTI instances with n ¼ 200, our
approaches require considerably more computation time than
state-of-the-art techniques. On the other side, in the context of
the real life instances of set LAPCS-REAL our approaches are faster in
eight out of 10 cases, reflecting the good results obtained for this
instance set.

5. Conclusions and future work

In this work we proposed a way to transform longest common
subsequence problem instances into instances of the maximum cli-
que problem. Moreover, we defined a technique for the reduction
of the resulting graphs, based on high-quality primal bounds. The
benefits of this approach were experimentally studied in the con-
text of two longest common subsequence variants: (1) the
repetition-free longest common subsequence (RFLCS) problem
and (2) the longest arc-preserving common subsequence (LAPCS)
problem. Both problem variants are known to be NP-hard even
for two input strings. We compared the application of CPLEX for
solving the maximum independent set problem, which is the com-
plimentary problem of the maximum clique problem, with the
application of recent heuristic and exact maximum clique solvers.
The three approaches were applied both before and after graph
reduction. The best results were obtained after graph reduction,
even though the impact of graph reduction was very different for
the three solvers. Summarizing, we were able to solve 2613 of
the 3120 RFLCS instances to optimality. Moreover, 110 out of 900
artificially created LAPCS problem instances were solved to opti-
mality. In the context of the LAPCS problem, it was especially
pleasing to see seven out of 10 real-life instances solved to opti-
mality for the first time.

Concerning future work, we plan to study further techniques for
graph reduction in order to be able to apply the utilized solvers to
even larger problem instances, in particular regarding the LAPCS
problem. Moreover, our current graph reduction technique relies
on the existence of a heuristic solution of reasonable quality to

Table 6
Differences in performance of the exact methods (CPLEX and LMC) summarized for the four different data sets. The five measures (E-M1–E-M5) are described in the text.

Data set CPLEX LMC

E-M1 E-M2 E-M3 E-M4 E-M5 E-M1 E-M2 E-M3 E-M4 E-M5

RFLCS-SET1 144.29 172.77 257 61.29 60 9.33 32.99 84 0.24 0
RFLCS-SET2 78.90 105.19 133 82.34 30 5.58 14.90 10 0.20 0
LAPCS-ARTI 330.89 526.45 30 &0.39 120 29.70 20.02 0 &0.0004 150
LAPCS-REAL – – – – 7 – – 9 – – – – 5 0.0 0

Table 7
Differences in performance of the heuristic method (LSCC-BMS) summarized for the four
different data sets. The four measures (H-M1–H-M4) are described in the text.

Data set LSCC-BMS

H-M1 H-M2 H-M3 H-M4

RFLCS-SET1 77.34 296 27 0
RFLCS-SET2 39.41 114 9 0
LAPCS-ARTI 176.21 280 33 30
LAPCS-REAL – – 9 1 0

Table 8
Number of instances for which better, equally good, and worse solutions were
obtained in comparison to the current state of the art.

RFLCS-SET1 RFLCS-SET2 LAPCS-ARTI LAPCS-REAL

Better 23 22 6 3
Equal 28 24 0 4
Worse 5 2 24 3

C. Blum et al. Computers and Operations Research 125 (2021) 105089

12

Aaron
LSCC- BMS is able to improve

Aaron
worse

Aaron
LSM is not able to improve its results

Aaron
In this work we proposed a way to transform longest common subsequence problem instances into instances of the maximum cli- que problem.

Aaron
reduction

Aaron
high-quality primal bounds

Aaron
CPLEX

Aaron
heuristic and exact

Aaron
larger problem instances

Aaron
LAPCS

Aaron
existence of a heuristic solution

any tackled problem instance. In some cases, such a solution might
not be available. In future work we plan to study the use of relaxed
decision diagrams (Bergman et al., 2016) for the purpose of graph
reduction in such cases. Finally, we also intend to study additional
variants of the longest common subsequence problem.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Christian Blum: Methodology, Writing - original draft, Writing
- review & editing, Supervision.Marko Djukanovic: Software, Con-

ceptualization, Writing - original draft, Writing - review & editing.
Alberto Santini: Conceptualization, Methodology. Hua Jiang: Soft-
ware, Data curation. Chu-Min Li: Validation, Writing - review &
editing. Felip Manyà: Methodology, Writing - review & editing.
Günter R. Raidl: Methodology, Writing - review & editing,
Supervision.

Acknowledgements

This work was supported by project CI-SUSTAIN funded by the
Spanish Ministry of Science and Innovation (PID2019-104156GB-
I00).

Appendix A. Tables showing the results after graph reduction

Tables A.9,A.10,A.11,A.12

C. Blum et al. Computers and Operations Research 125 (2021) 105089

13

Aaron
n some cases, such a solution might not be available.

Aaron
relaxed decision diagrams

Table A.9
Results obtained after graph reduction (RFLCS instances of RFLCS-SET1).

C. Blum et al. Computers and Operations Research 125 (2021) 105089

14

Table A.10
Results obtained after graph reduction (RFLCS instances of RFLCS-SET2).

C. Blum et al. Computers and Operations Research 125 (2021) 105089

15

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, athttps://doi.org/10.1016/j.cor.2020.105089.

References

Iliopoulos, C.S., Sohel Rahman, M., 2009. A new efficient algorithm for computing
the longest common subsequence. Theory Comput. Syst. 45, 355–371.

Castelli, M., Beretta, S., Vanneschi, L., 2013. A hybrid genetic algorithm for the
repetition free longest common subsequence problem. Oper. Res. Lett. 41, 644–
649.

Gusfield, D., 1997. Algorithms on Strings, Trees, and Sequences, Computer Science
and Computational Biology. Cambridge University Press, Cambridge.

Smith, T., Waterman, M., 1981. Identification of commonmolecular subsequences. J.
Mol. Biol. 147, 195–197.

Jiang, T., Lin, G., Ma, B., Zhang, K., 2002. A general edit distance between RNA
structures. J. Comput. Biol. 9, 371–388.

Kruskal, J.B., 1983. An overview of sequence comparison: time warps, string edits,
and macromolecules. SIAM Rev. 25, 201–237.

Brisk, P., Kaplan, A., Sarrafzadeh, M., 2004. Area-efficient instruction set synthesis
for reconfigurable system-on-chip design, in: Proceedings of DAC 2004 – The
41st Design Automation Conference, IEEE press, pp. 395–400..

Storer, J., 1988. Data Compression: Methods and Theory. Computer Science Press,
MD.

Aho, A., Hopcroft, J., Ullman, J., 1983. Data Structures and Algorithms. Addison-
Wesley, Reading, MA.

Table A.11
Results for LAPCS instances of set LAPCS-ARTI after graph reduction.

Table A.12
Results for LAPCS instances of set LAPCS-REAL after graph reduction.

C. Blum et al. Computers and Operations Research 125 (2021) 105089

16

https://doi.org/10.1016/j.cor.2020.105089
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0005
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0005
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0010
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0010
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0010
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0015
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0015
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0020
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0020
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0025
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0025
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0030
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0030
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0040
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0040
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0045
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0045

Maier, D., 1978. The complexity of some problems on subsequences and
supersequences. J. ACM 25, 322–336.

Adi, S.S., Braga, M.D.V., Fernandes, C.G., Ferreira, C.E., Martinez, F.V., Sagot, M.-F.,
Stefanes, M.A., Tjandraatmadja, C., Wakabayashi, Y., 2010. Repetition-free
longest common subsquence. Discr. Appl. Math. 158, 1315–1324.

Tsai, Y.-T., 2003. The constrained longest common subsequence problem. Inf.
Process. Lett. 88, 173–176.

Chen, Y.-C., Chao, K.-M., 2011. On the generalized constrained longest common
subsequence problems. J. Combinat. Optim. 21, 383–392.

Bonizzoni, P., Della Vedova, G., Dondi, R., Pirola, Y., 2010. Variants of constrained
longest common subsequence. Inf. Process. Lett. 110, 877–881.

Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M., 1999. The maximum clique
problem. In: Handbook of Combinatorial Optimization. Springer, pp. 1–74.

Lee, E.K., Easton, T., Gupta, K., 2006. Novel evolutionary models and applications to
sequence alignment problems. Ann. Oper. Res. 148, 167–187.

Jiang, H., Li, C.-M., Manyà, F., 2016. Combining efficient preprocessing and
incremental MaxSAT reasoning for MaxClique in large graphs, in: Proceedings
of ECAI 2016–22nd European Conference on Artificial Intelligence, pp. 939–
947..

Li, C.-M., Jiang, H., Manyà, F., 2017. On minimization of the number of branches in
branch-and-bound algorithms for the maximum clique problem. Comput. Oper.
Res. 84, 1–15.

Wang, Y., Cai, S., Yin, M., 2016. Two efficient local search algorithms for maximum
weight clique problem., in. In: Proceedings of AAAI 2016 – Conference on
Artificial Intelligence, pp. 805–811.

Blum, C., Festa, P., 2016. Metaheuristics for String Problems in Bio-informatics. John
Wiley & Sons.

Lee, E.K., Gupta, K., 2009. Algorithms for genomic analysis. In: Floudas, C.A.,
Pardalos, P.M. (Eds.), Encyclopedia of Optimization. Springer, US, pp. 33–54.

Chan, H.-T., Yang, C.-B., Peng, Y.-H., 2016. The generalized definitions of the two-
dimensional largest common substructure problems, in: Proceedings of the
33rd Workshop on Combinatorial Mathematics and Computation Theory,
National Taiwan University, Department of Mathematics, pp. 1–12..

Wang, Q., Korkin, D., Shang, Y., 2011. A fast multiple longest common subsequence
(MLCS) algorithm. IEEE Trans. Knowl. Data Eng. 23, 321–334.

Li, Y., Wang, Y., Zhang, Z., Wang, Y., Ma, D., Huang, J., 2016. A novel fast and memory
efficient parallel MLCS algorithm for long and large-scale sequences alignments,
in: IEEE 32nd International Conference on Data Engineering, pp. 1170–1181..

Peng, Z., Wang, Y., 2017. A novel efficient graph model for the multiple longest
common subsequences (mlcs) problem. Front. Genet. 8, 104.

Hart, P.E., Nilsson, N.J., Raphael, B., 1968. A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107.

Wang, Q., Pan, M., Shang, Y., Korkin, D., 2010. A fast heuristic search algorithm for
finding the longest common subsequence of multiple strings, in: Fox, M., Poole,
D. (Eds.), Proceedings of AAAI 2010 – Twenty-Fourth AAAI Conference on
Artificial Intelligence, AAAI press, pp. 1287–1292..

Djukanovic, M., Raidl, G.R., Blum, C., 2019. Finding Longest Common Subsequences:
New Hybrid A* Search Results, Technical Report AC-TR-19-008. Algorithms and
Complexity Group, TU Wien. http://www.ac.tuwien.ac.at/files/tr/ac-tr-19-008.
pdf.

Jiang, T., Li, M., 1995. On the approximation of shortest common supersequences
and longest common subsequences. SIAM J. Comput. 24, 1122–1139.

Bonizzoni, P., Della Vedova, G., Mauri, G., 2001. Experimenting an approximation
algorithm for the lcs. Discr. Appl. Math. 110, 13–24.

Tsai, Y., Hsu, J., 2002. An approximation algorithm for multiple longest common
subsequence problems, in: Proceeding of the 6th World Multiconference on
Systemics, Cybernetics and Informatics, SCI, pp. 456–460..

Huang, K., Yang, C.-B., Tseng, K.-T., et al., 2004. Fast algorithms for finding the
common subsequence of multiple sequences. In: Proceedings of the
International Computer Symposium. IEEE press, pp. 1006–1011.

Blin, G., Bonizzoni, P., Dondi, R., Sikora, F., 2012. On the parameterized complexity of
the repetition free longest common subsequence problem. Inf. Process. Lett.
112, 272–276.

Blum, C., Blesa, M.J., 2018a. A comprehensive comparison of metaheuristics for
the repetition-free longest common subsequence problem. J. Heurist. 24,
551–579.

Evans, P.A., 1999a. Finding common subsequences with arcs and pseudoknots, in:
Crochemore, M., Paterson, M. (Eds.), Proceedings of CPM 1999–10th Annual
Symposium on Combinatorial Pattern Matching, Volume 1645 of Lecture Notes
in Computer Science, Springer, Berlin Heidelberg, pp. 270–280..

Evans, P.A., 1999b. Algorithms and Complexity for Annotated Sequence Analysis, Ph.
D. thesis, University of Victoria..

Evans, P.A., 1999c. Finding common subsequences with arcs and pseudoknots, in:
Annual Symposium on Combinatorial Pattern Matching, Springer, pp. 270–280..

Jiang, T., Lin, G., Ma, B., Zhang, K., 2004. The longest common subsequence problem
for arc-annotated sequences. J. Discr. Algorithms 2, 257–270.

Gramm, J., Guo, J., Niedermeier, R., 2006. Pattern matching for arc-annotated
sequences. ACM Trans. Algorithms 2, 44–65.

Gorbenko, A., Popov, V., 2012. The c-fragment longest arc-preserving common
subsequence problem. IAENG Int. J. Comput. Sci. 39, 231–238.

Blum, C., Blesa, M.J., 2018b. Hybrid techniques based on solving reduced problem
instances for a longest common subsequence problem. Appl. Soft Comput. 62,
15–28.

Brown, J.W., 1999. The ribonuclease P database. Nucl. Acids Res. 27, 314. 314.
Blum, C., Blesa, M.J., López-Ibáñez, M., 2009. Beam search for the longest common

subsequence problem. Comput. Oper. Res. 36, 3178–3186.
Fraser, C.B., 1995. Subsequences and supersequences of strings, Ph.D. thesis,

University of Glasgow..
Wang, Q., Korkin, D., Shang, Y., 2011. A fast multiple longest common subsequence

(MLCS) algorithm. IEEE Trans. Knowl. Data Eng. 23, 321–334.
Wang, Q., Pan, M., Shang, Y., Korkin, D., 2010. A fast heuristic search algorithm for

finding the longest common subsequence of multiple strings, in: Proceedings of
AAAI 2010 – Conference on Artificial Intelligence, pp. 1287–1292..

Wang, L., Wang, S.-Y., Xu, Y., 2012. An effective hybrid EDA-based algorithm
for solving multidimensional knapsack problem. Expert Syst. Appl. 39,
5593–5599.

Inenaga, S., Hyyrö, H., 2018. A hardness result and new algorithm for the longest
common palindromic subsequence problem. Inf. Process. Lett. 129, 11–15.

C. M. Li, F. Manya, Maxsat, hard and soft constraints., in: Handbook of satisfiability,
volume 185, 2009, pp. 613–631..

Blum, C., Blesa, M.J., 2018c. A comprehensive comparison of metaheuristics for the
repetition-free longest common subsequence problem. J. Heurist. 24, 551–579.

Bergman, D., Cire, A.A., Van Hoeve, W.-J., Hooker, J., 2016. Decision Diagrams for
Optimization, vol. 1. Springer.

C. Blum et al. Computers and Operations Research 125 (2021) 105089

17

http://refhub.elsevier.com/S0305-0548(20)30206-9/h0050
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0050
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0055
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0055
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0055
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0060
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0060
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0065
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0065
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0070
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0070
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0075
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0075
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0080
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0080
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0090
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0090
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0090
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0095
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0095
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0095
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0100
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0100
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0105
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0105
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0115
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0115
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0125
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0125
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0130
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0130
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0140
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0140
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0140
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0140
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0145
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0145
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0150
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0150
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0160
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0160
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0160
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0165
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0165
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0165
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0170
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0170
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0170
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0190
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0190
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0195
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0195
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0200
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0200
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0205
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0205
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0205
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0210
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0215
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0215
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0225
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0225
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0235
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0235
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0235
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0240
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0240
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0250
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0250
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0255
http://refhub.elsevier.com/S0305-0548(20)30206-9/h0255

	Solving longest common subsequence problems via a transformation to the maximum clique problem
	1 Introduction
	1.1 LCS-focused literature review

	2 Considered problems and transformations
	2.1 Repetition-free longest common subsequence problem
	2.2 Longest arc-preserving common subsequence problem

	3 Conflict graph reduction
	4 Experimental evaluation
	4.1 Results without conflict graph reduction
	4.2 Results after conflict graph reduction

	5 Conclusions and future work
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Tables showing the results after graph reduction
	Appendix B Supplementary data
	References

