
Information Processing Letters 76 (2000) 7–11

Enumerating longest increasing subsequences and
patience sorting

Sergei Bespamyatnikh∗, Michael Segal1

Department of Computer Science, University of British Columbia, Vancouver, BC, Canada V6T 1Z4

Received 7 October 1999; received in revised form 20 July 2000
Communicated by P.M.B. Vitányi

Abstract

In this paper we present three algorithms that solve three combinatorial optimization problems related to each other. One
of them is thepatience sortinggame, invented as a practical method of sorting real decks of cards. The second problem is
computing thelongest monotone increasing subsequenceof the given sequence ofn positive integers in the range 1, . . . , n. The
third problem is toenumerate all the longest monotone increasing subsequencesof the given permutation. 2000 Elsevier
Science B.V. All rights reserved.

Keywords:Algorithms; Longest increasing subsequence; Van Emde Boas tree

1. Introduction

In this paper we consider the following three related
problems:

Longest increasing subsequence of permutation.
Given an arbitrary permutationπ of {1,2,3, . . . , n},
an increasing subsequence〈s1, s2, . . . , sk〉 of π is a
subsequence satisfying

s1< s2< · · ·< sk;
π(s1) < π(s2) < · · ·< π(sk).
The goal is to find the longest increasing subsequence
of a permutationπ.

* Corresponding author.
E-mail address:besp@cs.ubc.ca (S. Bespamyatnikh).

1 Work by Michael Segal has been supported by the Pacific
Institute for Mathematical Studies, Canada.

Enumerating all increasing subsequences of per-
mutation. Given an arbitrary permutationπ of {1,2,
3, . . . , n}, find all longest increasing subsequences of
a permutation.

Patience sorting. Take a deck of cards labeled 1,2,
3, . . . , n. The deck is shuffled, cards are turned up one
at a time and dealt into piles on the table, according
to the rule: A card with a low index may be placed on
a card with a higher index, or may be put into a new
pile to the right of the existing piles. At each stage we
see the top card on each pile. If the turned up card is
higher than the cards showing, then itmustbe put into
a new pile to the right of the others.

The target of the game is to finish with as few piles
as possible.

There are a lot of papers that deal with the longest
increasing subsequences and patience sorting prob-
lems. The patience sorting problem was discovered

0020-0190/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(00)00124-1



8 S. Bespamyatnikh, M. Segal / Information Processing Letters 76 (2000) 7–11

by Mallows [7] who actually proposed it as a way
for manually sorting cards. In the same paper Mal-
lows show that the number of piles in patience sort-
ing relates to the Young tableaux that was invented
by Schensted [8] in order to study the length of the
longest increasing subsequencel(π). Floyd [4] de-
scribed the patience sorting in letters between him and
Knuth [6] who gave an O(n logn)-time algorithm for
computing longest increasing subsequence for an ar-
bitrary sequence ofn numbers. In a very recent paper,
Aldous and Diaconis [1] proved several interesting re-
sults related to this problem. In particular, they proved
that thegreedystrategy (that is, to always place a card
on the leftmost possible pile) is optimal and, more-
over, the number of piles the greedy strategy ends with
is equal tol(π). The brute-force approach in [1] re-
quires O(n2) comparisons. They [1] pointed out that
according to the paper by Fredman [3] the algorithm
to find l(π) (and, thus, patience sorting) must perform
�(n logn) comparisons. Nevertheless, Hunt and Szy-
manski [5] gave an O(n log logn) runtime algorithm
for computing the longest increasing subsequence for
a given permutation. Their algorithm actually solves
the more general problem of computing the longest
common subsequence of two sequences. As a result
this algorithm applied to the longest increasing sub-
sequence problem is rather complicated and requires
redundant extra space (although remains O(n)).

We will present a direct, simple algorithm with
O(n log logn) runtime in order to solve the longest
increasing subsequence problem which can be used
to report all such subsequences in optimal time. The
previous approach [5] does not allow to do this.
Moreover, we show how to extend our approach to
solve patience sorting problem.

We present our algorithm for computing longest in-
creasing subsequence and enumerating all the subse-
quences in the next section. In Section 3 we describe
how to change this algorithm in order to solve the pa-
tience sorting problem. We conclude in Section 4.

2. Longest increasing subsequence

We recall that the input of our problem is some
permutationπ of n numbers. For each elementπ(i),
16 i 6 n the algorithm computes the length of the
longest increasing subsequence that ends onπ(i).
We keep all these values in an arrayL. In other

words,L[π(i)] is the length of the longest increasing
subsequence that ends onπ(i). The main idea of the
algorithm is to maintain a listT such thatj th element
of this list is the smallest element of permutationπ
that increasing subsequence of lengthj ends with.
To implementT we use the data structure invented
by van Emde Boas [9] (see also [2]) that allows to
maintain the sorted list of integers in the range 1, . . . , n

in O(log logn) time per insertion and deletion.
The data structureT allows the following list

operations:
• insert(i)—insert the numberi into S,
• delete(i)—delete the numberi from S,
• next(i)—get the successor ofi in S, if it does

not exist returnnil (takes O(1) time providedi is
already inserted intoS),
• prev(i)—get the predecessor ofi in S, if it does

not exist returnnil (takes O(1) time providedi is
already inserted intoS).
Stage1. At the first stage we proceed from the left to

the right of the permutationπ . Consider the moment
when theith elementπ(i) is processed. We need to
determine the lengthL[π(i)] of the longest increasing
subsequence that ends onπ(i). This length is defined
by longest increasing subsequence that ends on some
element ofπ that is smaller thanπ(i) and has been
considered before. In order to do this we insert the
numberπ(i) in the listT . The lengthL[π(i)] is equal
to 1 plus the length associated with the predecessor of
π(i) in the list T , i.e.,L[π(i)] = 1+ L[prev(π(i))].
If there is no predecessor we setL[π(i)] = 1. If the
successor ofπ(i) in the listT has the same associated
length, then we delete the successor ofπ(i) from T . If
there is no successor ofπ(i) we are done and proceed
to the next step.

Stage2. At the second stage we have filled array
L. It turns out thatL contains enough information
to construct the longest increasing subsequence ofπ

in linear time. Indeed, the lengthk = l(π) of this
subsequencēl = 〈s1, s2, . . . , sk〉 is determined by the
largest value that is stored inL. This subsequencēl
satisfies the following property:

L[π(s1)] = 1,

L[π(s2)] = 2,
...

L[π(sk)] = l(π).



S. Bespamyatnikh, M. Segal / Information Processing Letters 76 (2000) 7–11 9

The indexπ(sk) of the cell that stores the largest value
in L is equal to the last element of the listT . We can
find it either in the listT or by simple scanning the
arrayL.

To find the remaining elements of the subsequence
the algorithm goes from thesk th element of permuta-
tion to the first one. As was mentioned abovej th ele-
ment of this subsequencel̄ is the first indexi such that
L[π(i)] = j .

We give the formal description of the algorithm (the
output is the sequence〈s1, s2, . . . , sl(π)〉).

Longest Increasing Subsequence
1. T = ∅;

Stage1.
2. for i = 1 to n do
3. m= π(i);
4. insert(m)
5. if prev(m) 6= nil then
6. L[m] = L[prev(m)] + 1;
7. elseL[m] = 1;
8. if next(m) 6= nil then
9. if L[next(m)] == L[m] then

10. delete(next(m));
Stage2.

11.k = L[1]; index= 1;
12. for i = 2 to n do
13. if L[i]> k then
14. k = L[i]; index= i;
15. sk = index; j = k− 1;
16. for i = indexto 1 do
17. if L[π(i)] = j then
18. sj = i; j = j − 1;

Theorem 2.1. The algorithm above correctly find the
longest increasing subsequence of a given permutation
and hasO(n log logn) running time.

Proof. The correctness of the algorithm follows from
the discussion above. Steps 15–18 form an output
sequence〈s1, s2, . . . , sl(π)〉.

It is easy to evaluate the running time. All steps
from 3 to 10 take constant time except steps 4 and
10. Steps 4 and 10 are accomplished at mostn

times spending O(log logn) time. Clearly, the second
stage takes linear time. So the total running time is
O(n log logn). 2

2.1. Reporting all subsequences

The arrayL obtained by the previous algorithm con-
tains sufficient information to enumerate all longest in-
creasing subsequences ofπ .

Theorem 2.2. All longest increasing subsequences
of a given permutation can be reported in optimal
O(n + Kl(π)) time and optimalO(n) space, where
K is the number of such subsequences.

Proof. We first describe our algorithm and then prove
its correctness and running time. Recall thatL[π(j)]
is the length of the longest subsequence withπ(j) as
the last element.

Observation. Consider the indicesi1 < i2 < · · · <
im, such thatL[i1] = L[i2] = · · · = L[im]. Then, the
sequence〈π(i1),π(i2), . . . , π(im)〉 is decreasing.

For each elementj , 1 6 j 6 n, we store two
additional indicesleft1 and left2. They are defined
as follows. The value ofleft1(j) is the largest index
i, such thatL[i] = L[j ], i < j . If such i does not
exist, we setleft1(j) = nil . The value ofleft2(j) is
the largest indexi, such thatL[i] = L[j ] − 1, i < j .
If such i does not exist, we setleft2(j)= nil . We can
compute all the values ofleft1 andleft2 in linear time
by scanning the arrayL.

Reporting all subsequences
Enumerate(sk);

ProcedureEnumerate(z)
// Outputs all the subsequences that end byz.

1. if (L[z] = l(π)) or
(z <Out[L[z] + 1]) then

2. Out[L[z]] = z;
// z is the current element of subsequence.

3. else return;
4. z1= left2(z);

// z1 is the predecessor ofz in subsequence.
5. if z1= nil then
6. print(Out); // Out is already filled.
7. elseEnumerate(z1); // continue to fillOut.
8. while left1(z1) 6= nil do
9. Enumerate(left1(z1)); // start a new subsequence.

Our algorithm is based on a recursive procedure
Enumeratewhich on inputz reports all longest in-



10 S. Bespamyatnikh, M. Segal / Information Processing Letters 76 (2000) 7–11

creasing subsequences withz as the last element. It
uses an auxiliary arrayOut for storing the subsequence
which is currently being constructed. The arrayOut
is filled in the reverse order. The length of this ar-
ray is equal tol(π). The initial call of Enumerateis
done with parameterz = π(sk), where indexsk was
computed at the second stage of the previous algo-
rithm.

It is easy to see that the above algorithm requires
linear space and runs in time O(n + Kl(π)), where
whereK is a number of the longest monotone in-
creasing subsequences. To show the correctness we
observe that in fact our algorithm simulates the depth
first search strategy. During each step of our algorithm
we know the tail of the current longest subsequence,
namelyOut[L[z]],Out[L[z] + 1], . . . ,Out[l(π)]. The
algorithm tries to increase the tail of the current sub-
sequence by looking on all possible values for the
(L[z]− 1)th position. Our observation above provides
an efficient way to find these values using pointers
left1 andleft2, cutting the search at line 1.2

3. Patience sorting

A permutationπ of {1,2,3, . . . , n} can be identified
with an arrangement ofn-card deck, by specifying
that π(i) is the index of the card at positioni. The
algorithm of Aldous and Diaconis [1] applied the
following greedy strategy: a card is always placed on
the leftmost possible pile.

Let P be an array that stores the top cards of piles.
To store information about the cards in piles we use
an arraycardsof lengthn defined as follows:cards[i]
is the index of the card that lies below the card with
index i. Let S be the data structure of van Emde
Boas [9] that represents the list of top cards.

Consider the moment when theith card with index
π(i) is turned up. Note that the top cards in the piles
form an increasing sequence of integers. We need to
find the leftmost pile with a top card whose indexj
is greater thanπ(i). In order to do this we insert the
numberπ(i) in the listS of top cards. The numberj
is the successor ofπ(i) in the listS after the insertion
of π(i). To reflect the placement ofπ(i) on j , we
setcards[π(i)] = j and deletej from S. Eventually,
we fill an arrayP using list S. We give the formal
description of the algorithm.

Patience sorting
1. S = ∅;
2. for i = 1 to n do
3. P [i] = card[i] = 0;
4. for i = 1 to n do
5. k = π(i);
6. insert(k);
7. j = next(k);
8. if j 6= nil then
9. card[k] = j ;

10. delete(j);
11.k = i = 1;
12.while k 6= nil do
13. P [i] = k; k = next(k); i = i + 1;

Theorem 3.1. The algorithm of patience sorting is
correct and hasO(n log logn) running time.

Proof. The algorithm uses the correct greedy ap-
proach [1]. Steps 11–13 form an output arrayP con-
taining the top cards that are stored inS. Note that the
first element of the listS is 1.

Consider the running time of the algorithm. All
steps except steps 6 and 10 take linear time. Steps 6
and 10 are performed at mostn times spending
O(log logn) time which leads to the total O(n log logn)
running time. 2

4. Conclusions

In this paper we investigated three related problems
and we developed efficient algorithms for solving
them. The key idea of the algorithms is based on
using van Emde Boas [9] data structure for operations
on permutations. We expect that the same technique
can be used in order to solve the other permutation
problems.

References

[1] D. Aldous, P. Diaconis, Longest increasing subsequences: from
patience sorting to the Baik–Deift–Johansson, Bull. Amer.
Math. Soc. 36 (1999) 413–432.

[2] G.H. Gonnet, R. Baeza-Yates, Handbook of Algorithms and
Data Structures in Pascal and C, Addison-Wesley, Reading,
MA, 1991, pp. 216–217.

[3] M. Fredman, On computing the length of the longest increasing
subsequence, Discrete Math. 11 (1975) 29–35.



S. Bespamyatnikh, M. Segal / Information Processing Letters 76 (2000) 7–11 11

[4] B. Floyd, unpublished work, 1964.
[5] J. Hunt, T. Szymanski, A fast algorithm for computing longest

common subsequences, Comm. ACM 20 (1977) 350–353.
[6] D.E. Knuth, Sorting and Searching, The Art of Computer

Programming, Vol. 3, Addison-Wesley, Reading, MA, 1973.
[7] C. Mallows, Patience sorting, Bull. Inst. Math. Appl. 9 (1973)

216–224.

[8] C. Schensted, Longest increasing and decreasing subsequences,
Canad. J. Math. 13 (1961) 179–191.

[9] P. van Emde Boas, Preserving order in a forest in less than
logarithmic time and linear space, Inform. Process. Lett. 6
(1977) 80–82.


