N

e

Information
Processing
Letters

ELSEVIER Information Processing Letters 76 (2000) 7-11
www.elsevier.com/locate/ipl
Enumerating longest increasing subsequences and
patience sorting
Sergei Bespamyatnikh Michael Segat
Department of Computer Science, University of British Columbia, Vancouver, BC, Canada V6T 174
Received 7 October 1999; received in revised form 20 July 2000
Communicated by P.M.B. Vitanyi
Abstract

In this paper we present three algorithms that solve three combinatorial optimization problems related to each other. One
of them is thepatience sortinggame, invented as a practical method of sorting real decks of cards. The second problem is

computing thdongest monotone increasing subsequesfdbe given sequence afpositive integers in the range 1., n. The
third problem is toenumerate all the longest monotone increasing subsequefdbs given permutation 2000 Elsevier

Science B.V. All rights reserved.

Keywords:Algorithms; Longest increasing subsequence; Van Emde Boas tree

1. Introduction

In this paper we consider the following three related
problems:

Longest increasing subsequence of permutation.
Given an arbitrary permutationm of {1,2,3,...,n},
an increasing subsequenges, sz, ..., sx) of 7 is a
subsequence satisfying

51 <82 <--- < Sk,

w(sy) <m(s2) <--- <m(sg).

Enumerating all increasing subsequences of per-
mutation. Given an arbitrary permutation of {1, 2,
3,...,n}, find all longest increasing subsequences of
a permutation.

Patience sorting. Take a deck of cards labeled2,
3,...,n. The deck is shuffled, cards are turned up one
at a time and dealt into piles on the table, according
to the rule: A card with a low index may be placed on
a card with a higher index, or may be put into a new
pile to the right of the existing piles. At each stage we
see the top card on each pile. If the turned up card is
higher than the cards showing, themitistbe put into

The goal is to find the longest increasing subsequencea new pile to the right of the others.

of a permutationr.

- Corresponding author.
E-mail addressbesp@cs.ubc.ca (S. Bespamyatnikh).
1 work by Michael Segal has been supported by the Pacific
Institute for Mathematical Studies, Canada.

The target of the game is to finish with as few piles
as possible.

There are a lot of papers that deal with the longest
increasing subsequences and patience sorting prob-
lems. The patience sorting problem was discovered

0020-0190/00/$ — see front mattér 2000 Elsevier Science B.V. All rights reserved.

PIl: S0020-0190(00)00124-1

8 S. Bespamyatnikh, M. Segal / Information Processing Letters 76 (2000) 7-11

by Mallows [7] who actually proposed it as a way words, L[(i)] is the length of the longest increasing
for manually sorting cards. In the same paper Mal- subsequence that ends o). The main idea of the
lows show that the number of piles in patience sort- algorithm is to maintain a list' such thatjth element
ing relates to the Young tableaux that was invented of this list is the smallest element of permutation
by Schensted [8] in order to study the length of the that increasing subsequence of lengttends with.
longest increasing subsequence). Floyd [4] de- To implementT we use the data structure invented
scribed the patience sorting in letters between him and by van Emde Boas [9] (see also [2]) that allows to
Knuth [6] who gave an Q:logn)-time algorithm for maintain the sorted list of integersintherange.1, n
computing longest increasing subsequence for an ar-in O(loglogn) time per insertion and deletion.
bitrary sequence of numbers. In a very recent paper, The data structurel’ allows the following list
Aldous and Diaconis [1] proved several interesting re- operations:
sults related to this problem. In particular, they proved e insert(i)—insert the numberinto S,
that thegreedystrategy (that is, to always place a card e deletéi)—delete the numberfrom S,
on the leftmost possible pile) is optimal and, more- e nexti)—get the successor aof in S, if it does
over, the number of piles the greedy strategy ends with not exist returmil (takes @1) time providedi is
is equal tol(x). The brute-force approach in [1] re- already inserted int@),
quires Qn?) comparisons. They [1] pointed out that e previ)—get the predecessor ofin S, if it does
according to the paper by Fredman [3] the algorithm not exist returmil (takes @1) time providedi is
to find/(r) (and, thus, patience sorting) must perform already inserted int6).
Q(nlogn) comparisons. Nevertheless, Hunt and Szy- Stagel. At the first stage we proceed from the left to
manski [5] gave an Grloglogn) runtime algorithm the right of the permutation. Consider the moment
for computing the longest increasing subsequence for when theith elementr (i) is processed. We need to
a given permutation. Their algorithm actually solves determine the length[x (i)] of the longest increasing
the more general problem of computing the longest subsequence that ends ot). This length is defined
common subsequence of two sequences. As a resultpy Jongest increasing subsequence that ends on some
this algorithm applied to the longest increasing sub- element ofr that is smaller thamr (i) and has been
sequence problem is rather complicated and requiresconsidered before. In order to do this we insert the
redundant extra space (although remains) numberr (i) in the list7. The lengthL[z (i)] is equal

We will present a direct, simple algorithm with to 1 plus the length associated with the predecessor of
O(nloglogn) runtime in order to solve the longest ;) in the list7, i.e., L{x(i)] = 1 + L{prevr (i))].
increasing subsequence problem which can be usedif there is no predecessor we etz (i)] = 1. If the
to report all such subsequences in optimal time. The syccessor of (i) in the listT has the same associated
previous approach [5] does not allow to do this. |ength, then we delete the successar af) from 7. If
Moreover, we show how to extend our approach to there is no successor afi) we are done and proceed
solve patience sorting problem. to the next step.

We present our algorithm for computing longestin- stage2. At the second stage we have filled array
creasing subsequence and enumerating all the subsez, |t turns out thatZ contains enough information

quences in the ngxt sect.ion. I.n Section 3 we describe iq construct the longest increasing subsequence of
how to change this algorithm in order to solve the pa- i\ Jinear time. Indeed, the length = () of this

tience sorting problem. We conclude in Section 4. subsequencE= (s1, sz, ..., s¢) is determined by the
largest value that is stored ih. This subsequende
2. Longest increasing subsequence satisfies the following property:

We recall that the input of our problem is some L[x(s1)]=1,
permutationr of » numbers. For each element;), Ll (s2)] =2,
1 <i < n the algorithm computes the length of the .
longest increasing subsequence that endsran. :
We keep all these values in an arrdy In other Llm(sx)] =1(7).

S. Bespamyatnikh, M. Segal / Information Processing Letters 76 (2000) 7-11 9

The indexx (s;) of the cell that stores the largest value
in L is equal to the last element of the liEt We can
find it either in the listT or by simple scanning the
arrayL.

2.1. Reporting all subsequences

The arrayL obtained by the previous algorithm con-
tains sufficientinformation to enumerate all longestin-

To find the remaining elements of the subsequence creasing subsequencesmf

the algorithm goes from thg th element of permuta-
tion to the first one. As was mentioned abgith ele-
ment of this subsequentés the first index such that
Llz(@@)]= .

We give the formal description of the algorithm (the
output is the sequendey, s2, .. ., Si¢r)))-

Longest Increasing Subsequence
1.T=0;
Stagel.
2.fori=1ton do
3. m=mn();
insert(m)
if prev(m) # nil then
L[m] = L[prevm)] + 1;
elseL[m]=1;
if nextim) # nil then
if L[nexi{m)] == L[m] then
deleténexim));

©xo~N O

10.
Stage?.
11.k = L[1]; index=1;

12.for i =2ton do

13. if L[i]> k then

14. k=L[i]; index=1;
15.5, =index j =k —1;
16.for i =indexto 1do
17. if L[z (i)] = j then
18. sj=i,j=j-1

Theorem 2.1. The algorithm above correctly find the

Theorem 2.2. All longest increasing subsequences
of a given permutation can be reported in optimal
O + Kl(x)) time and optimalO(n) space, where
K is the number of such subsequences.

Proof. We first describe our algorithm and then prove
its correctness and running time. Recall tihdtr (7)]

is the length of the longest subsequence with) as
the last element.

Observation. Consider the indice$; < iz < --- <
im, such thatL[i1] = L[i2] = --- = L[i,;]. Then, the
sequencérn (i1), 7 (i2), ..., 7 (in)) IS decreasing.

For each elemeny, 1 < j < n, we store two
additional indicesleftl andleft2. They are defined
as follows. The value ofeftl(;) is the largest index
i, such thatL[i] = L[j], i < j. If suchi does not
exist, we setfeftl(j) = nil. The value ofleft2(j) is
the largest index, such thatL[i]=L[j] —1,i < j.
If suchi does not exist, we sé&ft2(;j) = nil. We can
compute all the values déftl andleft2 in linear time
by scanning the arrak.

Reporting all subsequences
Enumeratésy);

ProcedureEnumeratéz)
/I Outputs all the subsequences that end.by
Lif (L[z]=I(m)) or
(z < OutfL[z] + 1]) then

longestincreasing subsequence of a given permutation2. OuffL[z]] =z;

and hasO(n log logn) running time.

Proof. The correctness of the algorithm follows from

the discussion above. Steps 15-18 form an output g

sequencesl, $2, .y S](m).
It is easy to evaluate the running time. All steps

/I z is the current element of subsequence.
3. else return;
4. 71 =left2(z);
Il z1 is the predecessor ofin subsequence.
if z1 = nil then
6. print(Out); // Outis already filled.
7.elseEnumeratézl); // continue to fillOut.

from 3 to 10 take constant time except steps 4 and 8. while leftl(z1) = nil do

10. Steps 4 and 10 are accomplished at most
times spending Qoglogn) time. Clearly, the second
stage takes linear time. So the total running time is
O loglogn). O

9. Enumeratéeftl(zl)); // startanew subsequence.

Our algorithm is based on a recursive procedure
Enumeratewhich on inputz reports all longest in-

10 S. Bespamyatnikh, M. Segal / Information Processing Letters 76 (2000) 7-11

creasing subsequences withas the last element. It Patience sorting
uses an auxiliary arra@utfor storing the subsequence 1.5 =¢;

which is currently being constructed. The arr@ut 2.fori=1tondo
is filled in the reverse order. The length of this ar- 3. Plil=cardi]=0;
ray is equal td(rr). The initial call of Enumerateis 4.for i =1ton do
done with parametet = n(s), where indexs; was 2' k= ”(]’{){
computed at the second stage of the previous algo- 7 'Pie:fex)(’k),
rithm. , 8. if j#nilthen

It is easy to see that the above algorithm requires o cardik] = j:
linear space and runs in time(®©+ Ki(x)), where 10. deletd);
where K is a number of the longest monotone in- 11k =;=1;
creasing subsequences. To show the correctness we12.while k # nil do
observe that in fact our algorithm simulates the depth 13. P[i]=k; k=nexik); i =i+ L

first search strategy. During each step of our algorithm
we know the tail of the current longest subsequence,
namelyOut{L[z]], OufL[z] + 1],...,Outll(x)]. The
algorithm tries to increase the tail of the current sub-
sequence by looking on all possible values for the
(L[z] — Dth position. Our observation above provides
an efficient way to find these values using pointers
leftl andleft2, cutting the search at line 1.0

Theorem 3.1. The algorithm of patience sorting is
correct and ha$D(n log logr) running time.

Proof. The algorithm uses the correct greedy ap-
proach [1]. Steps 11-13 form an output arrdycon-
taining the top cards that are storedSinNote that the
first element of the lis§ is 1.

Consider the running time of the algorithm. All
steps except steps 6 and 10 take linear time. Steps 6
and 10 are performed at most times spending
O(loglogn) time which leads to the total@loglogn)
running time. O

3. Patience sorting

A permutationr of {1, 2, 3, ..., n} can be identified
with an arrangement of-card deck, by specifying
that 7 (i) is the index of the card at positian The
algorithm of Aldous and Diaconis [1] applied the
following greedy strategy: a card is always placed on
the leftmost possible pile.

Let P be an array that stores the top cards of piles.
To store information about the cards in piles we use
an arraycardsof lengthn defined as followscardgi]
is the index of the card that lies below the card with
index i. Let S be the data structure of van Emde
Boas [9] that represents the list of top cards.

Consider the moment when thth card with index
(i) is turned up. Note that the top cards in the piles
fprm an increasing sequence of integers. We_z need to References
find the leftmost pile with a top card whose indgx
is greater thamr (/). In order to do this we insert the 1) p. Aldous, P. Diaconis, Longest increasing subsequences: from
numberrn (i) in the list S of top cards. The number patience sorting to the Baik-Deift-Johansson, Bull. Amer.
is the successor of (i) in the listS after the insertion Math. Soc. 36 (1999) 413-432.
of 7(i). To reflect the placement of (i) on i, we [2] G.H. Gonnet, R. Baeza-Yates, Handbook of Algorithms and

. . . Data Structures in Pascal and C, Addison-Wesley, Reading,
setcardgx(i)] = j and deletej from S. Eventually, MA, 1001, pp. 216-217 4 9

we f”! an array P USing listS. We give the formal [3] M. Fredman, On computing the length of the longest increasing
description of the algorithm. subsequence, Discrete Math. 11 (1975) 29-35.

4. Conclusions

In this paper we investigated three related problems
and we developed efficient algorithms for solving
them. The key idea of the algorithms is based on
using van Emde Boas [9] data structure for operations
on permutations. We expect that the same technique
can be used in order to solve the other permutation
problems.

S. Bespamyatnikh, M. Segal / Information Processing Letters 76 (2000) 7-11 11

[4] B. Floyd, unpublished work, 1964. [8] C. Schensted, Longest increasing and decreasing subsequences,
[5] J. Hunt, T. Szymanski, A fast algorithm for computing longest Canad. J. Math. 13 (1961) 179-191.
common subsequences, Comm. ACM 20 (1977) 350-353. [9] P. van Emde Boas, Preserving order in a forest in less than

[6] D.E. Knuth, Sorting and Searching, The Art of Computer logarithmic time and linear space, Inform. Process. Lett. 6
Programming, Vol. 3, Addison-Wesley, Reading, MA, 1973. (1977) 80-82.

[7] C. Mallows, Patience sorting, Bull. Inst. Math. Appl. 9 (1973)
216-224.

