Hindawi

Mathematical Problems in Engineering
Volume 2020, Article ID 3050714, 11 pages
https://doi.org/10.1155/2020/3050714

Research Article

Hindawi

Solving the Set Packing Problem via a Maximum Weighted

Independent Set Heuristic

Ruizhi Li,"? Yupan Wang,3 Shuli Hu,’ Jianhua Iiang,1
Dantong Ouyang (9, and Minghao Yin ®>*

!School of Management Science and Information Engineering, Jilin University of Finance and Economics,
Changchun 130117, China

2School of Computer Science and Technology, Jilin University, Changchun 130012, China

?School of Computer Science and Information Technology, Northeast Normal University, Changchun 130024, China
*Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun 130117, China

Correspondence should be addressed to Dantong Ouyang; ouyd@jlu.edu.cn and Minghao Yin; ymh@nenu.edu.cn
Received 13 July 2020; Revised 15 October 2020; Accepted 18 November 2020; Published 16 December 2020
Academic Editor: Thomas Hanne

Copyright © 2020 Ruizhi Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The set packing problem (SPP) is a significant NP-hard combinatorial optimization problem with extensive applications. In this
paper, we encode the set packing problem as the maximum weighted independent set (MWIS) problem and solve the encoded
problem with an efficient algorithm designed to the MWIS problem. We compare the independent set-based method with the
state-of-the-art algorithms for the set packing problem on the 64 standard benchmark instances. The experimental results show
that the independent set-based method is superior to the existing algorithms in terms of the quality of the solutions and running

time obtained the solutions.

1. Introduction

The set packing problem is a classical combinatorial opti-
mization problem and it has been studied extensively by
researchers in recent years. In the set packing problem, there
are n objects and a set of exclusive constraints between some
objects of OB labelled as O, ..., O,,. Each object j€ OB is
associated with a positive weight ¢;. The aim of set packing
problem is to find out a packing that maximizes the total
weight of objects such that any constraint should not be
violated. The problem is widely used in various fields such as
routing and scheduling trains at intersections in railway
operations [1], selecting winning bids in combinatorial
auctions [2], surgical operations scheduling [3], and packets
scheduling and transmission in communication networks
[4] among many others.

The set packing problem is an NP-hard problem [5]. The
solving algorithms for this problem can be categorized into
two types of exact and inexact ones. In [6-8], new facets were
identified for the polyhedron of the problem, which

strengthen the solution of the relaxed problem. Rossi and
Smriglio used a branch and cut algorithm to solve the set
packing problems [9]. Kwon et al. proposed an approach for
ex-postevaluation of approximate solutions obtained by a
well-known simple greedy method for set packing [10].
Kolokolov and Zaozerskaya found the polynomial upper
bounds on average iterations number for L-class enumer-
ation algorithm and the first Gomory cutting plane algo-
rithm [11]. Landete et al. presented an alternative
formulation for the set packing problem in a higher di-
mension and the addition of a new family of binary variables
allowed the authors to find new valid inequalities, some of
which were shown to be facets of the polytope in the higher
dimension [12]. However, the computational time required
for this exact approach increases exponentially with the size
of the problem in general. The exact approach can only
obtain optimal solutions for relatively small-scale instances.
So as to solve larger-scale instances, heuristic algorithms
[13-17], which indeed play an important role in obtaining
high-quality solutions to combinatorial optimization

mailto:ouyd@jlu.edu.cn
mailto:ymh@nenu.edu.cn
https://orcid.org/0000-0003-4504-1423
https://orcid.org/0000-0002-6226-2394
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3050714

problems in a reasonable time [18-22], have been designed.
For set packing problem, Ronnqvist proposed a combination
of Lagrangian relaxation and the subgradient method to
solve the cutting stock problem, which is an application of
the set packing problem [23]. Chandra and Hallddrsson
proposed a combination of greedy algorithms and local
search methods to tackle the special cases of the set packing
problem [24]. Lau and Goh presented a greedy algorithm to
solving the set packing problem [25]. In the literature [26], a
greedy randomized adaptive search procedure (GRASP) was
proposed, and railway problem instances and random in-
stances were tested to measure the effectiveness of GRASP
[26]. In literature [27], Gandibleux et al. proposed an ant
colony optimization (ACO) method, and the random in-
stances were used to evaluate the ACO algorithm. Guo et at.
presented the simulated annealing heuristic with three local
moves to solving the bidding problem which can be mod-
elled as the set packing problem [28]. The set packing
problem was modelled as the unconstrained quadratic bi-
nary program and Tabu search was proposed to solve it [29].
Later, two improved versions of ACO were proposed in
[30, 31]. In [32], an approximation algorithm based on local
search methods was proposed. EA/G [33] was a recently
proposed evolutionary algorithm and was applied on ran-
dom instances. Chaurasia et al. presented an evolutionary
algorithm-based hyperheuristic framework for solving the
set packing problem [34]. Chaurasia and Kim proposed an
evolutionary algorithm-based hyperheuristic framework
that incorporates dynamic selection of parameters [35]. In
[36], a decomposition technique based on constraint par-
titioning was proposed for exploiting the semiblock-angular
structures of set packing problem and solving the original
problem through solving the subproblems of the obtained
structure.

Although some heuristic search algorithms have been
used to solve the set packing problem, their solving quality
still needs to be improved. In particular, the average solution
obtained by the existing algorithms differs a lot from the
optimal solution. In other words, the stability of the solution
obtained by the existing algorithms is not very good and has
a lot of randomness. Therefore, a new idea is proposed to
solve this problem, which is to transform the set packing
problem to the weighted independent set problem. As a
result, any solving method proposed for minimum weighted
independent set can be used to solve SPP via its independent
formulation. The idea of encoding a problem into an
equivalent problem to solve is appealing because of two
reasons: one is that we can solve the set packing problem
without designing dedicated set packing solving algorithms.
The other is that we can make full use of the minimum
weighted independent solving algorithms to better solve the
set packing problem. Furthermore, we can even use different
minimum weighted independent set algorithms to enlarge
the scale of solvable instances of the set packing problem. In
our paper, we solve the set packing problem by using the
efficient algorithm proposed previously for minimum
weighted independent set problem. To our knowledge, the
minimum weighted independent set-based methods for the
set packing problem have not been used before.

Mathematical Problems in Engineering

The rest of this article is structured as follows. In Section
2, we introduce the method of encoding set packing problem
as minimum weighted independent problem. Then, we
briefly review the algorithm DLSWCC (diversion local
search based on weighted configuration checking) for set
packing problem in Section 3. The experimental results and
the analyses of the experimental results on standard
benchmarks are presented in Section 4. The conclusions and
perspectives for future work are shown in Section 5.

2. The Encoding Method

In this section, we introduce the concepts used in this article
and the encoding method. According to the definitions in
literatures [26, 27], the set packing problem can be described
as follows. Given an object set OB={1, ..., n} and each
object i € OB is associated with a positive weight c;, we use O;
to represent a set of exclusive constraints between some
objects of OB, where jeJ={1, ..., m}. A packing PA is a
subset of OB such that IOj NPA|<1, Vj €],ie., at most one
object of O; can be in PA.

The aim of the set packing problem is to obtain a packing
that maximizes the total weight of the contained objects
without violating any constraint. Formally, the set packing
problem can be formulated as follows:

maximize z = Z CiXjs (1)
i€OB

subject to Z 0;ix; <1,

i,j v =

Vie OB, VjeOB (5

i€cOB
x; €{0,1}, VieOB, (3)
0,;€{0,1}, Vi€ OB, VjeOB. (4)

where x; is a binary variable, indicating whether object i is in
PA, x;=1 means in PA, otherwise, x; = 0 means not in PA, ¢;
is the weight of object i, and o, ; is also a binary variable,
indicating whether object i belongs to exclusive constraint
set O}, 0; ;=1 means belonging to set Oj, 0; ;=0 means not
belonging to set O;. Formula (1) is the objective function of
maximizing the total weight of objects belonging to PA.
Constraint (2) establishes that at most one object of O; can be
in PA. Equations (3) and (4) are integer constraints.

The set packing problem can be conveniently encoded as
the maximum weighted independent set problem. To see
this, we first review some basic symbols associated with the
MWIS problem. Given an undirected graph G = (Vt, Eg, w),
Vt={1, ..., n} is the vertex set, Eg C Vt x Vt is the edge set, w
is the vertex weighting function, and each vertex i € Vt is
assigned a positive integer weight w;. An independent set IS
of Gis a subset of Vit such that there is no pair of vertices in IS
linked by an edge in Eg, ie., Yu, velS, {u, v} ¢ Eg. The
weight of an independent set IS of G is the sum of all
contained vertices’ weights, i.e., w(IS) =) ;.;sw;. Then, the
maximum weighted independent set problem is to find the
independent set with the maximum sum of weights of the
contained vertices.

Mathematical Problems in Engineering

For a set packing problem instance, an object set OB = {1,
..., n}, and an exclusive constraint O;, j€ J={1, .. ., m}, each
object u € OB is associated with a positive weight c,. We give
a maximum weighted independent set instance (conflict
graph) G =(Vt, Eg, w) as follows:

(i) For an object u € OB, define a vertex u € Vt, whose
weight w,, is equal to ¢,. That is, Vt={1, ..., n},
YueV,w,=c,

(ii) For the exclusive constraint, define the edge matrix
Eg by

1,
em/ = 0)

It is easy to see an edge e,,, will link two vertices u and v if
the objects u and v are in the same exclusive constraint,
which indicates that the two objects are in conflict and
cannot be accepted at the same time. From the edge ma-
trices, we can easily check the objects that are included in the
same exclusive constraint.

According to the above transformation, it is not difficult
to find that a maximum weighted independent set IS ={v,,
..., .} of the conflict graph G = (V1, Eg, w) corresponding to
a feasible set packing PA={1, ..., r} of objects with maxi-
mum of the total weight of objects it contains without vi-
olating any constraint. So, any solving algorithm for the
minimum weighted independent set problem can be applied
to tackle the set packing problem.

To further illustrate the encoding, we give an example,
i.e,, a set packing problem instance with 6 objects and 4
constraints in Figure 1(a). The correspondent conflict graph
G = (Vt, Eg, w) with regard to the set packing problem
instance is described in Figure 1(b) where each object is
represented by a vertex whose weight is equal to that of the
object. An edge will link two vertices if they are included in
the same constraint. It is distinct that the optimal solution to
the maximum weighted independent set problem defined by
the conflict graph is given by the vertex set {v,, v5, v} which
represents the set of objects {1, 3, 6} with a maximum weight
of 29.

iquOjandVEOj,u,ve {L,...,n},je{l,....,m},

otherwise.

(5)

3. Diversion Local Search Based on Weighted
Configuration Checking for SPP

Given a set packing problem instance, we can encode this
instance as a maximum weighted independent set problem
instance according to the previous section. So, any algorithm
to solve the maximum weighted independent set can be used
to solve the set packing problem. As far as we know, the
maximum weighted independent set problem has two
equivalent problems, namely, minimum weighted vertex
cover (MWVC) problem and maximum weighted clique
(MWC) problem. Methods for solving MWVC problem can
be directly applied to tackle the MWIS problem. In this
paper, an eflicient local search algorithm called “Diversion
Local Search based on Weighted Configuration Checking
(DLSWCC)” is used to solve the MWIS problem [37]. The

algorithm has high efficiency in solving minimum weighted
vertex cover and set packing problem. Let us briefly review
the key factors of the DLSWCC algorithm. For a compre-
hensive description, the readers can refer to the literature
[37].

3.1. Dynamic Scoring Strategy. For a candidate solution, the
quality of the candidate solution can be improved by
selecting appropriate vertices to add to or remove from the
candidate solution, thus improving the performance of the
local search algorithm. We present a dynamic scoring
strategy to evaluate the benefit when the vertex is added to or
deleted from the candidate solution. The dynamic edge
weighting mechanism is used in dynamic scoring strategy.
The definition of dynamic edge weight is given below.

Definition 1 (dynamic edge weight). Given an undirected
graph G (Vt, Eg, w), each edge e € Eg is assigned a weight
denoted by dynmc_w (e), and the weight is dynamically
updated in the local search.

Specifically, we abide by the following two rules to
update edge weights.

W_Rulel: the dynmc_w (e) of each edge e € Eg is ini-
tialized as 1

W_Rule2: the dynmc_w (e) will be increased by 1 if edge
e is not covered by the candidate solution at the end of
each loop

On the basis of Definition 1, assuming that vertex subset
C ¢ Vtis a candidate solution, the Boolean function cover (e,
C) is used to indicate whether edge e € Eg is covered by
candidate solution C, i.e., whether at least one of €’s end-
points is a member of C. The quality of the candidate so-
lution C is measured by cost (C), which is defined by the
following formula:

cost(C) = Z

cover (e,C)=false

dynmc_w (e). 6)

From Formula (6), we can see that cost (C) represents the
weight sum of the edge uncovered by candidate solution C.
The candidate solution C is feasible if cost (C) is equal to 0.

The score of vertices is crucial to choose which vertex to
add to or remove from the candidate solution. In algorithm
DLSWCC, the authors use score (v) to define the score of
vertex v, as shown in the following formula:

cost(C) —cost (C")
w bl

(7)

score (v) =
v

where C is the current candidate solution, if v belongs to C,
then C' is the candidate solution after removing vertex v
from C; otherwise, C' is the candidate solution after adding
vertex v to C.

3.2. Weighted Configuration Checking Strategy. The cycling
problem is revisiting a scenario that has just been visited
during the local search phase. This problem will make the
algorithm fall into the local optimum, cause the waste of

IS=1{1,2,3,4,5,6}
Weights = {10, 8, 10, 12, 7, 9}
01 = {1» 2}

()

Mathematical Problems in Engineering

We=9
(b)

FiGgure 1: The original set packing problem instance (a) and the associated maximum weighted independent set problem instance (b).

time, and reduce the performance of the algorithm. Many
scholars have been working on how to avoid the cycling
problem. In literature [38], Cai et al. proposed the con-
figuration checking strategy, which can consider the
environmental information to avoid the cycling problem.
Up to now, CC strategy has been successfully used to
tackle many combinatorial optimization problems, i.e.,
the minimum vertex cover, SAT, MaxSAT, and set cover
problem [39-41].

However, the direct application of CC strategy to
MWVC problem will limit some promising vertices to be
added into the candidate solution, thus misleading the
search. That is, the original CC strategy is more restrictive. In
our algorithm, we will use the deformation strategy of CC
strategy, namely, weighted configuration checking (WCC)
strategy. The concept of weighted configuration is given
below.

Definition 2. (weighted configuration). Given an undirected
graph G = (Vt, Eg), each edge is associated with a weight, and
C is the candidate solution. The weighted configuration of
vertex v is defined as the states of all v’s neighbours and the
weights of the associated edges of all v’s neighbours.

In order to implement the weighted configuration
checking (WCC) strategy, we use an array wcnfg to record
whether the weighted configuration of each vertex has
changed since last leaving C. Each element of the array is a
binary variable. For a vertex v, wenfg [v] = 1 indicates that the
weighted configuration of vertex v has changed and wenfg
[v] =0 on the contrary. We update the wcnfg array according
to the following four rules:

(i) WCC_Rulel: in the initialization phase, the wenfg
value of each vertex v is assigned to 1
(ii) WCC_Rule2: if vertex v is removed from C, then the
wenfg value of v is assigned to 0 and the wenfg value
of v’s each neighbour is assigned to 1
(iii) WCC_Rule3: if vertex v is added into C, then the
wenfg value of v’s each neighbour is assigned to 1
(iv) WCC_Rule4: if edge e’s weight dynmc_w [e] is
updated, then the wenfg values of the two vertices u
and v linked by edge e are assigned to 1

3.3. Vertex Selection Strategy. In this subsection, we intro-
duce the vertex selection strategy, which combines the
dynamic scoring strategy with the weighted configuration
checking strategy. Before we introduce this strategy, let us
introduce the age concept that we will be using. The age of a
vertex is the number of iterations after the vertex’s state has
changed.

In the local search phase, we use the following two rules
to select suitable vertices to add to or remove from the
candidate solution.

(i) Rmv_Rule: the vertex with the highest score is se-
lected from the candidate solution, or the vertex with
the greatest age is selected if there are multiple
vertices to choose from. Then, wcnfg values of this
selected vertex and its neighbours are modified
according to WCC_Rule2.

(ii) Add_Rule: the vertex with the highest score and
wenfg value of 1 is selected from the vertices of the
noncandidate solution. If there are multiple optional
vertices, the vertex with the greatest age is selected.
Then, wenfg values of its neighbours are modified
according to WCC_Rule3.

3.4. DLSWCC Algorithm. In this subsection, we review the
main idea of DLSWCC algorithm, and the corresponding
pseudocode is shown in Algorithm 1. First, we construct the
initial solution C by the greedy method. Then, a perturbing
approach is applied on the initial solution C to improve its
quality. We use w(C) = Y, cw; to represent the objective
value of the candidate solution C. We use UB to record the
objective value of the global optimal solution and initialize
UB to w (C). It is obvious that if a better solution exists, the
objective value should be less than UB. In DLSWCC al-
gorithm, once the initial candidate solution has been built,
we will remove some vertices from the candidate solution
until the candidate solution becomes infeasible and the
objective value is less than UB. Then, we exchange the
vertices in C and the vertices in VA\C according to Rmv_Rule
and Add_Rule until C is a feasible solution. At this stage, if a
better solution is found, the value of UB needs to be updated.
At the end of each loop, the algorithm checks if each edge is
covered by the current solution, and if not, the algorithm

Mathematical Problems in Engineering

(1) Initialize wenfg array according to WCC_Rulel;
(2) initialize the dynmc_w of each edge assigned as 1;
(3) initialize the score of each vertex assigned as the degree of the vertex;
(4) initialize the candidate solution C greedily;
(5) UB=w (C);
6) C*—C;
(7) iter < 0;
(8) while stop criterion is not satisfied do
(9) while C covers all edges, then
10) UB=w (C);
11) C*—G
12) v «— x with the greatest score in C, breaking ties in favor of the oldest one;
(13) C—C\{v};
(14) update wenfg array according to WCC_Rule 2;
(15) end while
(16) v «— x with the greatest score in C and v is not in tabu_list, breaking ties in favor of the oldest one;
(17) C—C\{vh
18) update wenfg array according to WCC_Rule 2;
19) clear tabu_list;
(20) while C uncovers some edges do
(21) v «— x with the greatest score not in C and wenfg [x] ==1, breaking ties in favor of the oldest one;
(22) if w (C)+w (v) >UB then break;
(23) Ce— Culv);
(24) update wcenfg array according to WCC_Rule3;
(25) dynmc_w [e] «— dynmc_w [e] + 1, for each uncovered edge by C;
(26) update wenfg array according to WCC_Rule4;
27) add v into tabu_list;
(28) end while
(29) iter «— iter + 1;
(30) end while
(31) return C =;

ALGorrTHM 1: DLSWCC ().

adds the weight dynmc_w of the uncovered edge by 1, thus
giving the “hard to cover” edges a better chance to be
covered by the new candidate solution in the future itera-
tions and making the algorithm jump out of local optimum
effectively.

4. Computational Results

In this section, we will report a large number of experimental
results through using the introduced DLSWCC algorithm to
solve the set packing problem as a minimum weighted in-
dependent set on a large number of set packing problem
standard benchmarks. Further, DLSWCC is compared with
several state-of-the-art algorithms proposed in the literature.
Finally, we test the effectiveness of the dynamic scoring
strategy and the weighted configuration checking strategy.

4.1. Reference Algorithms and Experimental Protocol. We
compare DLSWCC with the current best solving algorithms,
i.e., CPLEX, GRASP approach [26], ACO approach [27], and
EA/G approach [33]. In this study, our DLSWCC algorithm
is implemented in C and executed on a computer with Intel
(R) Xeon (R) CPU E7-4830 with 2.13 GHz. The system that is
used to execute ACO and GRASP approaches [27] is Pen-
tium IIT at 800 MHz. EA/G approach [33] is implemented in
C and executed on a Core 2 Duo system with 2 GB RAM

running under Fedora 12 at 3.0 GHz. For each instance, our
algorithm DLSWCC is executed, where the cutoff condition
for each execution is to reach a given cutoft time 3600 (s) or
max iteration 1000000. Like EA/G [33], GRASP [26], and
ACO [27] approaches, DLSWCC is run 16 times indepen-
dently on each instance.

The railway problem instances and random instances are
two main types of standard benchmarks for set packing
problem [26]. As far as we know, because the railway problem
instances contained confidential data related to French rail-
ways, the data were not made public. Only the random in-
stance data are public. Therefore, we show the experiment
results of DLSWCC algorithm on random instances only.

4.2. Comparison with State-of-the-Art Algorithms. Tables 1
and 2 provide the instance characteristics and the results
found by CPLEX method (CPLEX), GRASP method [26]
(GRASP), ACO method [27] (ACO), EA/G method [33]
(EA/G), and our DLSWCC method (DLSWCC). Table 1
shows the experimental results of small-scale problem in-
stances with 100 and 200 variables, while Table 2 shows the
experimental results of medium-scale problem instances
with 500 and 1000 variables.

In Tables 1 and 2, column Var indicates the number of
variables, column Cnst indicates the number of constraints,

Mathematical Problems in Engineering

0091 100 LI'SOE LI'SOE 180 F¥8F0E €I'SOE €98 €SFH0E OI'SOE SE€ 9€H0E 06H0E LT0£96 LI'SOE 31ay
91 900 6l 61 S90 6I'ST 6l € Trst 61 S€T 908T 61 90's8T6T 61 [I-T] 8 097 009 00T 81pueIpOZqd
91 700 SsT ss¢ TCl 6IFSc ssT 11 STesT ssT 19¢ I€IsT ssT STWL sst [oT1] 8 05T 009 00T LIpueipozqd
91 0 6L 6L 860 TI'8L 6L €€ST LE8L 6L 89 I€8L 6L S8TLEVT 6L [I-1] (4 00T 009 00T 91pueIOZqd
91 100 926 9T6 LT 96 916 LT 96 96 ¥ 96 976 (A4 9t6 [0z ¢ 00’1 009 00T STpueipozqd
91 100 S¥ SV SL0 TOFF Sk 98 €¥WF S w6E Sb sk 1699001 s¥ [1-1] id 05T 009 00T ¥Ipueipozqd
91 €00 14§ LS WLT SL0LS LS €€0T '89S ILS 109 €799 IS 6£0€8 1S [oz1] ¥ 051 009 00T ¢1pueipozqd
91 0 ¥ & 80 ¥ 15 2 SR 2 & 10T €F ¥ L1 & [1-1] 8 09T 00z 00T cIpueipozqd
91 100 SPS SkS SO SPS SBS €€F SPS SKS 9€T SLFKS SBS €0 s¥s [oc1l 8 05T 00Z 00T T1pueipozqd
91 0 81T 8IT 940 SIT SIT v 81T 8IT ¥9¢ S8IT SII 200 s8It [1-1] (4 00’1 00Z 00T 0Tpueipozqd
91 0 BTl ¥Tel I€T bTEl BTEl €€L BTEL WCEL SLE BCEl Weel 00 peer focll ¢ 00T 00T 00T 60pueI0zqd
91 0 €8 €8 80 1878 €8 /9T SLT8 €8 1T L8T8 €8 700 g8 [1-1] i 051 00z 00T 80pueipozqd
91 700 ¥00I ¥00T 19T ¥6'€00T ¥00T €€9 S€00I ¥00I TF% TI'T00T <Z00T 00 ¥oor [0zl ¥ 051 00T 00T LOpueipozqd
91 900 ¥I VI S50 S€l vl Vo871 W1 8¥E LE€T ¥I 8908 ¥I [1°1] 8 05T 0001 00Z 90pueIp0zqd
91 S00 ¥8T ¥8T 0T ®8T ®8T 9T 95781 ¥8T 9% ¥8T ¥8T L&T1ICl ¥81 [0T-1] 8 05T 0001 00T Sopueipozqd
91 W00 V9 9 T60 SLT9 €9 €€VT €679 P9 TI6 €9 €9 1604659 ¥9 [1-1] (4 00T 0001 00Z ¥opuerpozqd
91 S00 I€L I€L S8T LT I€L €€VK TISTL 6TL 1801 18°TTL 9TL €TSOVS 1€L [0z ¢ 00’1 0001 00T €opueipozqd
91 100 T€ T€ 90 g € L9F1 9STIE TE S€L TE Te 9¢6019sT TE [1-1] i 051 0001 00T czOpueIpOzqd
9l ¥00 9 9IF 99T 9% 9IF €€LT STSIY 9K TE€L SUSIF 9 €£09/8 9% [0zl ¥ 05T 0001 00T Topueipozqd
91 0 €T € 1T0 €T € €€0 €6TC € €T €T €T 89 g (171 i 00°€ 00¢ 001 zIpueiporqd
91 0 90€ 90 F0 90€ 90 L9T 90€ 90€ 890 90€ 90€ 8%°0 90¢ [0zl ¥ 0r'e 00¢ 001 T1pueiporqd
91 0 0¥ oF ¥T0 886E OF I 796¢ OF STI OF o €11 o [1-1] (4 00T 00€ 001 O1pueip1qd
91 0 €9F €9F 8€0 €9F €9F L9T €9F €9F 9TT €9F €9¥ 670 €[0Tl ¢ 00T 00€ 001 60pueipO1qd
91 0 6 6 170 I8'8E 6€ £L90 898 6€ LSO SL8E 6€ 200 6 [1-1] i or'€ 001 00T 80pueip01qd
91 0 €0S €0S 8€0 €0S €0S I €0S €0S I €0S €0S 0 €os [oc1l ¥ 06T 001 00T Lopueipo1qd
91 0 ¥9 ¥ ¥I0 ¥9 ¥9 1 ¥9 9 690 ¥9 ¥9 10°0 ¥ [1-1] z 00T 001 001 90pueiporqd
91 0 6£9 6£9 S0 6£9 6£9 L9T 6£9 6€9 80 6£9 6€9 10°0 6€9 [0l ¢ 00T 001 001 Sopueipo1qd
91 0 91 9T 810 69ST 9T £90 9SST 9T 6T1 9I 91 98°7S or [1-1] i 00°€ 00S 001 ¥Opueip1qd
91 0 €07 €0T L£0 €0T €0T T €0z €0 VIT €0T €0C 182 €0z o1l ¥ 00°€ 00S 00T ¢€opueipo1qd
91 0 ve ve o ¥E Ve z v 2 (3 SR 7 ve 90 ve (11 4 00T 00S 00T zopuexporqd
9T 0 TLE TLE 8€0 TLE UE €€€ TS TS L6T TS US 6T ws ozl ¢ 00T 00S 00T T0pueiOIqd
YH 4LV 81av Is9g LALV SIAYV 3s9g ALV SIAV Is9g THLV 8Iay 3sdg LAL 1do IyBom QUOTIN (%) Aisusq Jsu) DA souesuy
DOMSTA D/vi 00V dSvdD XdTdO SonsLR)ORIRYD

‘S9[qeLrreA 007 pue Q01 YIm saduelsur uo ELH_HOM~N oeo jo COwMHNQEOU i 214V],

Mathematical Problems in Engineering

Go'ST 88'ST 90°'8TF CI'STF 1601 86FIF ISLIF 00V SH¥IF THLIF €L8F €S€IF 69SIF 00°81F sy
9T €T SLI SLI ITIc T9TLT ¥LI 00%6 SOLT €41 09C8 18041 TZ1 .SLT [I-1] 01 09°0 0001 0001 8pueIQOOTqd
L 998 6STT 09TT 8FFF 90°THTT €STT L9°96T 9S'6€TC 8¥TT OL6IT T¥Icc cTcee 09TT [0T1] 0T 85°0 0001 0001 Lpueipoo1qd
91 7S6S SI ST €0Tl 90F%FI ST 008 LE€I ST OVIF 89€l ¥I ST (1-1] 0S 59T 0001 0001 9pueIQO01qd
91 799 Tt Ter IT€T 88LIC TIT L9S8 TY6IC TTT 08%9 86LIc Ter .er [0T 1] 0S 09T 000T 0001 SpueIQOOTqd
91 679 8F 8y TI'ST SO 8F €€801 90'SF L OL6VI €89F 8 87 [1°1] 01 09°0 000S 0001 FPpueipoo1qd
9T TF9 199 199 T6TE I8THY 199 L900L SOF9 199 0TICT S6€9 6v9 199 [oc-1] 0T 09°0 000S 0001 ¢puepo01qd
91 80'IET ¥ i2 8S'C b€ ¥ 00T I8¢ ¥ 0g6E ST i2 i2 (1-1] 0s 65T 000S 0001 TpueIQOO1qd
9T 99671 L9 L9 F90T L9 L9 91T ¥9 L9 0S€S SS9 L9 L9 [oz1l oS 09°C 000S 0001 TpueIQO01qd
91 99T €1 €1 8T 18Tl €I 006 €FTI €1 €0Tl €I €1 €1 (1-1] 0T 07T 00ST 005 §TPueINOSqd
9T ¥9C w6l T6l SS'S 8€I6l T6I 004 1€88T T6I 8€8T SLI61 T6l .6l [oT1l 0C 07T 00ST 005 LIpuerposqd
91 STO 88 88 TIS L8 88 L909 TI98 88 I€9E €998 88 .88 (1-1] S 0L0 00ST 005 9TPueINOSqd
91 ST0 96IT 96IT 8901 T9SSIT 96IT L9191 €6°0611 9611 9€65 69811 9611 9611 [0T-1] S 040 00ST 005 STpueI0Sqd
91 S90 8¢ 8¢ 66F 889¢ 8 99ST S9¢ L LLOT F69E LS L€ (1-1] 01 0T'T 00ST 005 FIpuernosqd
91 150 b B 068 9589F HLF 00S0T 89F WLF 88TE 0L WF LW [oT1] 01 0T'T 00ST 005 €TpueI0sqd
91 €50 €€ €€ 00F 88TE €€ 008 79TE €€ 16Tl €€ €€ €€ (1-1] 07 07T 00S 00S crpuerposqd
91 001 ¥Th ¥Chb T6L 9SITH vTb €eL€ ST8IF WTk STl I€6Tv ¢Tv wek [oT 1l oC 0€°C 00S 005 TTpPueI0sqd
9T 900 61 6L TI'9 9S8LT 6L1 L9FF I€8LT 641 0T8T 9081 6L 6LI (1-1] S 040 00S 005 01pueISqd
91 9T0 9€¢C 9€TC 6¥TI 187TETC 9€TT €€¥8 €hbece 9€cT Fher sece sece 9ger (0T S 040 005 005 60pueIosqd
91 800 68 68 SLV ¥688 68 L9TC TI88 68 08'ST ST8S 68 68 (1-1] o1 0TT 00S 005 80pueI0sqd
9T €10 TII TPIT ¥96 ¥66EIT TPIT 00096 TPIT THIT €yl HIT TPIT THIT [0C-1] 01 0T'1 00S 005 Lopuerposqd
91 8% 8 8 LTT 88L 8 [966 LS. 8 80Tl 8 8 +8 (1-1] 0z 07T 00ST 005 90pueI0sqd
9T 1% el Tel e 9SICl Tel 001 T90Tl Tel syST STl Tel Ter [oTll o¢ 07T 00ST 00S sopuerposqd
91 ¥€0 T9 T9 909 809 T9 0069 9009 19 0€45 €109 19 <19 (1-1] S 040 00S7 005 Fopuerposqd
9T 860 9L 9LL 1901 S€ILL 9LL 00VKT SLTLL 9LL €€O0L €949L TLL 9L [0T-T] S 040 00ST 00S €opueisqd
9T 85T ST ST 9IS 9S€T ST L99T 90°€T ¥C TYST 69€T T K74 (1-1] 01 0T1 00S7 005 zopuerposqd
91 0T €T€ €€ €0L I€TCE €TE L9PST /86IE €T€ 80TE 8e6le gre gTe [oTT] 0T 0T'T 00ST 005 T0pueI0Sqd
WH I4LV 81ay 3sdg LHLV SIAy sdg JHLV Siay iog LHLV 31Ay 9 3O S duo W (%) Asusq ssu) 4vA

o) aduelsuy

OMSTA /v [e}0)4 dSV YD XdT1dO sonsLIdORIRYD)

"S[qeLIRA (00T PUB 005 YHIM

S9OUR)SUT U0 WPLIOZ[e yoes jo uostredwo)) :g 414Vv],

8 Mathematical Problems in Engineering
TaBLE 3: Comparison of each algorithm on instances with 2000 variables.
Characteristics CPLEX GRASP EA/G DLSWCC
Instance Var Cnst D?f)}s)l ty M_one Weight Opt Best Best Avrg ATET Best Avrg ATET Hit
0

pb2000rand1l 2000 10000 2.54 100 [1-20] 40 Yes 40 40.00 31.66 40 40.00 2115.64 16
pb2000rand2 2000 10000 2.55 100 [1-1] 2 Yes 2 2.00 10.38 2 2.00 2126.56 16
pb2000rand3 2000 10000 0.55 20 [1-20] 478" No 478 463.75 129.86 478 477.06 238.61 11
pb2000rand4 2000 10000 0.55 20 [1-1] 32 Yes 32 30.25 81.58 32 31.88 278.09 16
pb2000rand5 2000 2000 2.55 100 [1-20] 140* Yes 140 13550 61.03 140 140.00 1419.60 16
pb2000rand6 2000 2000 2.56 100 [1-1] 9* Yes 9 8.50 34.23 9 9.00 1395.76 16
pb2000rand7 2000 2000 0.56 20 [1-20] 1784* No 1784 176594 160.14 1811 1810.88 28.13 15
pb2000rand8 2000 2000 0.56 20 [1-1] 131" No 131 130.38 73.84 135 13413 23.19 2
Avrg 327.00 327.00 322.04 72.84 330.88 330.62 953.20 13.50

and column Density indicates the percentage of nonnull
elements in the constraint matrix. Column M_Omne indicates
the number of elements in the maximum set Oj, where j €
{1..., m}, and column Weight represents the range of object
weights in each instance. Note that the instances whose
ranges are [1-1] are instances of the unicost set packing
problem. The CPLEX solver can solve all small-scale in-
stances (the number of variables less than or equal to 200).
As shown in Table 1, column Opt indicates the optimal
solutions found by CPLEX and column TET indicates the
time to obtain the optimal solution. For the medium-scale
instances (the number of variables equal to 500 and 1000),
CPLEX cannot solve all of them. In such cases, we report the
best known value in Table 2. When CPLEX cannot obtain the
optimal solution, the best solution value found is marked by
an asterisk (*). For GRASP, ACO, and EA/G methods,
column Best indicates the best solution found, column Avrg
indicates the average solution quality, and column ATET
indicates the average execution time in seconds over 16 runs
in Tables 1 and 2. The column hit is the number of executions
reaching its best value of algorithm DLSWCC. Results of
CPLEX, GRASP, and ACO methods are obtained from the
literature [27]; results of EA/G approach are obtained from
[33]. The bold values indicate the best solution values ob-
tained among the compared algorithms. And the bold values
in Tables 3 and 4 indicate the same meaning.

Tables 1 and 2 distinctly show that the DLSWCC method
is superior to EA/G, GRASP, and ACO methods in solution
quality. Out of a total of 56 instances, DLSWCC obtained the
best solution that was superior to EA/G on 3 instances and
the same as EA/G on the rest. In terms of average solution
quality, DLSWCC is superior to EA/G on 39 instances and
the same as EA/G on the rest. DLSWCC obtained the best
solution that was superior to ACO on 7 instances and the
same as ACO on the rest. In terms of average solution
quality, DLSWCC is superior to ACO on 42 instances and
the same as ACO on the rest. DLSWCC obtained the best
solution that was superior to GRASP on 13 instances and the
same as ACO on the rest. In terms of average solution
quality, DLSWCC is superior to ACO on 32 instances and
the same as GRASP on the rest. On the whole, in term of the
best solution, DLSWCC method is superior to the three
comparison algorithms EA/G, ACO, and GRASP on 2 in-
stances. Similarly, in term of the average solution quality, the
DLSWCC method is superior to the three comparison

algorithms EA/G, ACO, and GRASP on 30 instances. More
significantly, in Table 2, DLSWCC sometimes gives better
values than CPLEX when CPLEX values are marked with
asterisk.

Note that the system that is used to perform GRASP and
ACO methods [27] is Pentium III at 800 MHz and the
system that is used to perform EA/G method is Fedora 12 at
3.0 GHz which are different from the system used to perform
DLSWCC. Therefore, running time cannot be compared
accurately. We just make a rough comparison on the run-
ning time. Our approach is faster than EA/G, GRASP, and
ACO methods on majority of the instances.

There were also 8 random instances with 2000 variables
(large-scale instances), which were not used to test the
ACO algorithm in literature [27]. However, in literatures
[26, 33], these instances are used to test the GRASP and EA/
G algorithms. Table 3 shows the results of CPLEX, GRASP,
EA/G, and DLSWCC on these instances. The results for
CPLEX and GRASP are obtained from [26]. When CPLEX
cannot obtain the optimal solution, the best solution value
found is marked by an asterisk (*). For GRASP algorithm, if
it can obtain the best known solution, then the column
corresponding to GRASP marks “yes”; otherwise, it marks
“no”. Out of the 8 instances, GRASP can obtain best known
values on 5 instances. DLSWCC, on the other hand, obtains
as good as or better than best known values on all instances.
On 2 instances, DLSWCC even improved the best known
values. For the running time, our approach is a little slower
than EA/G.

4.3. Comparison of Different Version of DLSWCC. To study
the effectiveness of the dynamic scoring strategy and the
weighted configuration checking strategy, we compare
DLSWCC with three other alternative algorithms named
DLSWCC_STATIC, DLSNOCC, and DLSECC.

In DLSWCC_STATIC, the scoring method works with a
static scoring strategy, i.e., the weight of each edge will not be
updated. DLSNOCC works without the weighted configu-
ration checking strategy, i.e., it selects the vertex with the
greatest score, breaking ties in favor of the oldest one during
the adding procedure. DLSECC works with a straightfor-
ward extension of the configuration checking strategy in-
stead of the weighted configuration checking strategy. We
tested the three algorithms on large-scale instances over 16

Mathematical Problems in Engineering

79°0¢¢e 88°0¢¢ LLYIE 00°sce 16°0¢¢€ 88°0¢¢ 05'9C¢ 05°6C¢ S1ay
cIvel el 90°I¢T eel 6T¥€l el sreel sel [1-1] 0¢ 9¢°0 000T 000T gpue100zqd
88°018I 1181 T1¢¢TLT 69L1 SL0T8I TI81 ¥7'98L1 0081 [0T-1] 0¢ 9490 000T 000T Lpueioozqd
6 6 00°6 6 00°6 6 00°6 6 [1-1] 00T 9¢'C 000T 000T 9pue1000zqd
ovI ovI 00°0% 1 ovI 00°0%I ov1 00°0% 1T ovI [oz-1] 00T §6'¢ 000¢ 000¢ spuei0ozqd
88°I¢ (4% 76°0¢ (4% 18°I¢ (43 SL'1E (43 [1-1] 0T Ss0 0000T 000T ypuerpoozqd
90°LLY 8LV 8815V SLY 1€9LY 8LV 99697 1744 [oz-1] 0¢ S50 0000T 000T ¢puei0pozqd
(4 (4 00°C (4 00T (4 00°C (4 [1-1] 00T SN 0000T 000T zpue100zqd
(Ui (lidg 00°0% [1idg 00°0% (Ui 00°0¥% oy [oz-1] 00T N4 0000T 000T 1pueI00ozqd
Siay 1s9g Siay 189¢g S1ay 189¢q S1ay 189 Y3 M QU0 N (%) Lsua(g) VA ueisy
DOMSTA OLLV.LS DOMSTA D0ES1d ODOONSTA SonstIL)oeIeyD w

"SI[QELIBA (00T M SIOUBISUT U0 DD MSTA PUB DDISTA DDONSTJ SWIod[e Jo synsay F T14Vv],

10

runs with different random seeds per instance. The results
are summarised in Table 4.

From Table 4, by comparing the experimental results of
algorithm DLSNOCC and algorithm DLSECC, we can see
the effectiveness of the configuration checking strategy. By
comparing the experimental results of algorithm DLSNECC
and algorithm DLSWCC, we can see the effectiveness of the
weighted configuration checking strategy. By comparing the
experimental results of algorithm DLSWCC_STATIC and
algorithm DLSWCC, we can see the effectiveness of the
dynamic scoring strategy.

Through the above comparison, we analyse that
DLSWCC algorithm is superior to EA/G algorithm, ACO
algorithm, and GRASP algorithm mainly because it adopts
weighted configuration checking strategy and dynamic
scoring strategy, which can effectively prevent the cycling
problem and avoid the algorithm falling into local
minimum.

5. Conclusions

The set packing problem is a significant combinatorial
optimization problem and has many real applications. In
this paper, we have first researched the method of solving the
SPP by encoding the problem as the maximum weighted
independent set problem and tackling it with an existing
maximum weighted independent set algorithm (DLSWCC).
Comparing with the current best solving algorithms (EA/G,
GRASP method, and ACO) for SPP, our method has yielded
best results. In terms of the optimal solution and the average
solution, our method has obvious advantages over the
comparison methods. In terms of the solving time, our
method is significantly faster than the comparison methods
on majority of the instances.

In the future work, we can extend our method to solve
other combinatorial optimization problems, such as dom-
inating set problem [42, 43], generalized vertex cover
problem [44], maximum diversity problem [45], maximum
edge weighted clique problem [46], and multiobjective
unconstrained binary quadratic programming problem [47].

Data Availability

The set packing problem data used to support the findings of
this study are included within the article.

Conflicts of Interest

The authors declare that they have no Conflicts of Interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (NSFC) under Grant nos. 61806082,
61972063, and 61976050, the National Social Foundation of
China under, Grant no. 19BJY246, 20BTJ062, Certificate of
China Postdoctoral Science Foundation, Grant no.
2019M651208, and Jilin Education Department 13th Five-
Year Science and Technology Project no. JJKH20190726K].

Mathematical Problems in Engineering

References

[1] J. Z. Peter, G. K. Leo, and P. V. Stan, “Routing trains through a
railway station based on a node packing model,” European
Journal of Operational Research, vol. 128, no. 1, pp. 14-33,
2001.

[2] D. V. Sven and V. V. Rakesh, “Combinatorial auctions: a
survey,” Informs Journal on Computing, vol. 15, no. 3,
pp. 284-309, 2003.

[3] R. Vela’squez and M. T. Melo, “A set packing approach for
scheduling elective surgical procedures,” in Operations Re-
search Proceedings, pp. 425-430, Springer, Berlin, Germany,
2006.

[4] E. Yuval, M. H. Magnu’s, M. Yishay, P. S. Boaz, R. Jaikumar,
and R. Dror, “Online set packing,” SIAM Journal on Com-
puting, vol. 41, no. 4, pp. 728-746, 2012.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W.H. Freeman and
Company, San Francisco, CA, USA, 1979.

[6] M. W. Padberg, “On the facial structure of set packing
polyhedra,” Mathematical Programming, vol. 5, no. 1,
pp. 199-215, 1973.

[7] L. Canovas, M. Landete, and A. Marin, “New facets for the set
packing polytope,” Operations Research Letters, vol. 27, no. 4,
pp. 153-161, 2000.

[8] L. Cénovas, M. Landete, and A. Marin, “Facet obtaining
procedures for set packing problems,” SIAM Journal Discrete
Math, vol. 16, pp. 127-155, 2003.

[9] F. Rossi and S. Smriglio, “A set packing model for the ground
holding problem in congested networks,” European Journal of
Operational Research, vol. 131, no. 2, pp. 400-416, 2001.

[10] R. H. Kwon, G. V. Dalakouras, and C. Wang, “On a posterior
evaluation of a simple greedy method for set packing,” Op-
timization Letters, vol. 2, no. 4, pp. 587-597, 2008.

[11] A. A. Kolokolov and L. A. Zaozerskaya, “On average number
of iterations of some algorithms for solving the set packing
problem,” IFAC Proceedings Volumes, vol. 42, no. 4,
pp. 1510-1513, 2009.

[12] M. Landete, A. M. Rodriguez-Chia, M. Antonio, and
Rodriguez-Chia, “Alternative formulations for the set packing
problem and their application to the winner determination
problem,” Annals of Operations Research, vol. 207, no. 1,
pp. 137-160, 2013.

[13] R.Li, S. Hu, Y. Wang, and M. Yin, “A local search algorithm
with tabu strategy and perturbation mechanism for gener-
alized vertex cover problem,” Neural Computing and Appli-
cations, vol. 28, no. 7, pp. 1775-1785, 2017.

[14] R. Z. Li, S. L. Hu, J. Gao, Y. P. Zhou, Y. Y. Wang, and
M. H. Yin, “GRASP for connected dominating set problems,”
Neural Computing and Applications, vol. 28, mno. 1,
pp. 1059-1067, 2017.

[15] J. F. Gongalves, M. G. C. Resende, and M. D. Costa, “A biased
random-key genetic algorithm for the minimization of open
stacks problem,” International Transactions in Operational
Research, vol. 23, no. 1-2, pp. 25-46, 2016.

[16] D. Ferone, P. Festa, and M. G. C. Resende, “Hybridizations of
GRASP with path relinking for the far from most string
problem,” International Transactions in Operational Research,
vol. 23, no. 3, pp. 481-506, 2016.

[17] J. S. Branddo, T. F. Noronha, M. G. C. Resende, and
C. C. Ribeiro, “A biased random-key genetic algorithm for
single-round divisible load scheduling,” International
Transactions in Operational Research, vol. 22, no. 5,
pp. 823-839, 2015.

Mathematical Problems in Engineering

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

Y. Wang, S. Cai, J. Chen, and M. Yin, “SCCWalk: an efficient
local search algorithm and its improvements for maximum
weight clique problem,” Artificial Intelligence, vol. 280,
p. 103230, 2020.

Y. Wang, C. Li, and M. Yin, “A two phase removing algorithm
for minimum independent dominating set problem,” Applied
Soft Computing, vol. 88, p. 105949, 2020.

X. Zhang, X. T. Li, and M. H. Yin, “An enhanced genetic
algorithm for the distributed assembly permutation flowshop
scheduling problem,” International Journal of Bio-Inspired
Computation, vol. 15, no. 2, pp. 113-124, 2020.

Y. Zhou, C. Qiu, Y. Wang, M. Fan, and M. Yin, “An improved
memetic algorithm for the partial vertex cover problem,” IEEE
Access, vol. 7, pp- 17389-17402, 2019.

X. Zhang, X. T. Li, and J. N. Wang, “Local search algorithm
with path relinking for single batch-processing machine
scheduling problem,” Neural Computing and Applications,
vol. 28, no. 1, pp. 313-326, 2017.

M. Ronngqvist, “A method for the cutting stock problem with
different qualities,” European Journal of Operational Research,
vol. 83, no. 1, pp. 57-68, 1995.

B. Chandra and M. M. Halldérsson, “Greedy local im-
provement and weighted set packing approximation,” Journal
of Algorithms, vol. 39, no. 2, pp. 223-240, 2001.

H. C. Lau and Y. G. Goh, “An intelligent brokering system to
support multi-agent Web-based 4/sup th/-party logistics,” in
Proceedings 14th IEEE International Conference on Tools with
Artificial Intelligence, 2002 (ICTAI 2002), pp. 154-161,
Washington, DC, USA, November 2002.

X. Delorme, X. Gandibleux, and J. Rodriguez, “GRASP for set
packing problems,” European Journal of Operational Re-
search, vol. 153, no. 3, pp. 564-580, 2004.

X. Gandibleux, X. Delorme, and V. T°Kindt, An Ant Colony
Optimisation Algorithm for the Set Packing Problem, pp. 49-
60, Springer-Verlag, Berlin, Germany, 2004.

Y. Guo, A. Lim, B. Rodrigues, and Y. Zhu, “Heuristics for a
bidding problem,” Computers & Operations Research, vol. 33,
no. 8, pp. 2179-2188, 2006.

B. Alidaee, G. Kochenberger, K. Lewis, M. Lewis, and
H. Wang, “A new approach for modeling and solving set
packing problems,” European Journal of Operational Re-
search, vol. 186, no. 2, pp. 504-512, 2008.

X. Gandibleux, J. Jorge, X. Delorme, and J. Rodriguez, An Ant
Algorithm for Measuring and Optimizing the Capacity of a
Railway Infrastructure, N. Monmarche’, F. Guinand, and
P. Siarry, Eds., ISTE Ltd and John Wiley, Hoboken, NJ, USA,
2010.

A. Merel, X. Gandibleux, and S. Demassey, “A collaborative
combination between column generation and ant colony
optimization for solving set packing problems,” in Proceedings
of the The IX Metaheuristics International Conference,
pp. 25-28, Udine, Italy, January 2011.

M. Sviridenko and J. Ward, “Large neighborhood local search
for the maximum set packing problem,” International Col-
loquium on Automata, Languages, and Programming,
pp- 792-803, Springer, Berlin, Germany, 2013.

S. N. Chaurasia, S. Sundar, and A. Singh, “A hybrid evolu-
tionary approach for set packing problem,” OPSEARCH,
vol. 52, no. 2, pp. 271-284, 2015.

S. N. Chaurasia, D. Jung, H. M. Lee, and J. H. Kim, “An
evolutionary algorithm based hyper-heuristic for the set
packing problem,” in Harmony Search and Nature Inspired
Optimization Algorithms. Advances in Intelligent Systems and

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

(43]

(44]

(45]

(46]

(47]

11

Computing, N. Yadav, A. Yadav, J. Bansal, K. Deep, and
J. Kim, Eds., Springer, Berlin, Germany, 2019.

S. N. Chaurasia and J. H. Kim, “An evolutionary algorithm
based hyper-heuristic framework for the set packing prob-
lem,” Information Sciences, vol. 505, no. 12, pp. 1-31, 2019.
M. Radman and K. Eshghi, “A framework to exploit the
structure of and solve set packing problems with a semi-block-
angular structure,” Computers ¢ Industrial Engineering,
vol. 137, no. Nov., pp. 106036.113-106036.1061, 2019.

R. Li, S. Hu, H. Zhang, and M. Yin, “An efficient local search
framework for the minimum weighted vertex cover problem,”
Information Sciences, vol. 372, pp. 428-445, 2016.

S. Cai, K. Su, and A. Sattar, “Local search with edge weighting
and configuration checking heuristics for minimum vertex
cover,” Artificial Intelligence, vol. 175, no. 9-10, pp. 1672-1696,
2011.

Y. Y. Wang, D. T. Ouyang, L. M. Zhang, and M. H. Yin, “A
novel local search for unicast set covering problem using
hyperedge configuration checking and weight diversity,”
SCIENCE CHINA Information Science, vol. 60, no. 6, Article
ID 062103, 2017.

C. Luo, S. W. Cai, K. L. Su, and W. Wu, “Clause states based
configuration checking in local search for satisfiability,” Cy-
bernetics, IEEE Transactions on.vol. 45, no. 5, pp. 1014-1027,
2015.

S. Cai and K. Su, “Local search for Boolean Satisfiability with
configuration checking and subscore,” Artificial Intelligence,
vol. 204, pp. 75-98, 2013.

Y. Wang, S. Cai, and M. Yin, “Local search for minimum
weight dominating set with two-level configuration checking
and frequency based scoring function,” Journal of Artificial
Intelligence Research, vol. 58, pp. 267-295, 2017.

R. Li, P. S. Hu, and M. Y. YinZhou, “A novel local search
algorithm for the minimum capacitated dominating set,”
Journal of the Operational Research Society, vol. 69, no. 6,
pp. 849-863, 2018.

S. Hu, R. Li, P. Zhao, and M. Yin, “A hybrid metaheuristic
algorithm for generalized vertex cover problem,” Memetic
Computing, vol. 10, no. 2, pp. 165-176, 2018.

B. Alidaee and H. Wang, “A note on heuristic approach based
on UBQP formulation of the maximum diversity problem,”
Journal of the Operational Research Society, vol. 68, no. 1,
pp. 102-110, 2017.

R. Li, X. Wu, H. Liu, J]. Wu, and M. Yin, “An eflicient local
search for the maximum edge weighted clique problem,” IEEE
Access, vol. 6, pp. 10743-10753, 2018.

Y. Zhou, J. Wang, Z. Wu, and K. Wu, “A multi-objective tabu
search algorithm based on decomposition for multi-objective
unconstrained binary quadratic programming problem,”
Knowledge-Based Systems, vol. 141, no. 2, pp. 18-30, 2018.

