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)e set packing problem (SPP) is a significant NP-hard combinatorial optimization problem with extensive applications. In this
paper, we encode the set packing problem as the maximum weighted independent set (MWIS) problem and solve the encoded
problem with an efficient algorithm designed to the MWIS problem. We compare the independent set-based method with the
state-of-the-art algorithms for the set packing problem on the 64 standard benchmark instances. )e experimental results show
that the independent set-based method is superior to the existing algorithms in terms of the quality of the solutions and running
time obtained the solutions.

1. Introduction

)e set packing problem is a classical combinatorial opti-
mization problem and it has been studied extensively by
researchers in recent years. In the set packing problem, there
are n objects and a set of exclusive constraints between some
objects of OB labelled as O1, . . ., Om. Each object j ∈OB is
associated with a positive weight cj. )e aim of set packing
problem is to find out a packing that maximizes the total
weight of objects such that any constraint should not be
violated.)e problem is widely used in various fields such as
routing and scheduling trains at intersections in railway
operations [1], selecting winning bids in combinatorial
auctions [2], surgical operations scheduling [3], and packets
scheduling and transmission in communication networks
[4] among many others.

)e set packing problem is an NP-hard problem [5]. )e
solving algorithms for this problem can be categorized into
two types of exact and inexact ones. In [6–8], new facets were
identified for the polyhedron of the problem, which

strengthen the solution of the relaxed problem. Rossi and
Smriglio used a branch and cut algorithm to solve the set
packing problems [9]. Kwon et al. proposed an approach for
ex-postevaluation of approximate solutions obtained by a
well-known simple greedy method for set packing [10].
Kolokolov and Zaozerskaya found the polynomial upper
bounds on average iterations number for L-class enumer-
ation algorithm and the first Gomory cutting plane algo-
rithm [11]. Landete et al. presented an alternative
formulation for the set packing problem in a higher di-
mension and the addition of a new family of binary variables
allowed the authors to find new valid inequalities, some of
which were shown to be facets of the polytope in the higher
dimension [12]. However, the computational time required
for this exact approach increases exponentially with the size
of the problem in general. )e exact approach can only
obtain optimal solutions for relatively small-scale instances.
So as to solve larger-scale instances, heuristic algorithms
[13–17], which indeed play an important role in obtaining
high-quality solutions to combinatorial optimization
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problems in a reasonable time [18–22], have been designed.
For set packing problem, Rönnqvist proposed a combination
of Lagrangian relaxation and the subgradient method to
solve the cutting stock problem, which is an application of
the set packing problem [23]. Chandra and Halldórsson
proposed a combination of greedy algorithms and local
search methods to tackle the special cases of the set packing
problem [24]. Lau and Goh presented a greedy algorithm to
solving the set packing problem [25]. In the literature [26], a
greedy randomized adaptive search procedure (GRASP) was
proposed, and railway problem instances and random in-
stances were tested to measure the effectiveness of GRASP
[26]. In literature [27], Gandibleux et al. proposed an ant
colony optimization (ACO) method, and the random in-
stances were used to evaluate the ACO algorithm. Guo et at.
presented the simulated annealing heuristic with three local
moves to solving the bidding problem which can be mod-
elled as the set packing problem [28]. )e set packing
problem was modelled as the unconstrained quadratic bi-
nary program and Tabu search was proposed to solve it [29].
Later, two improved versions of ACO were proposed in
[30, 31]. In [32], an approximation algorithm based on local
search methods was proposed. EA/G [33] was a recently
proposed evolutionary algorithm and was applied on ran-
dom instances. Chaurasia et al. presented an evolutionary
algorithm-based hyperheuristic framework for solving the
set packing problem [34]. Chaurasia and Kim proposed an
evolutionary algorithm-based hyperheuristic framework
that incorporates dynamic selection of parameters [35]. In
[36], a decomposition technique based on constraint par-
titioning was proposed for exploiting the semiblock-angular
structures of set packing problem and solving the original
problem through solving the subproblems of the obtained
structure.

Although some heuristic search algorithms have been
used to solve the set packing problem, their solving quality
still needs to be improved. In particular, the average solution
obtained by the existing algorithms differs a lot from the
optimal solution. In other words, the stability of the solution
obtained by the existing algorithms is not very good and has
a lot of randomness. )erefore, a new idea is proposed to
solve this problem, which is to transform the set packing
problem to the weighted independent set problem. As a
result, any solving method proposed for minimum weighted
independent set can be used to solve SPP via its independent
formulation. )e idea of encoding a problem into an
equivalent problem to solve is appealing because of two
reasons: one is that we can solve the set packing problem
without designing dedicated set packing solving algorithms.
)e other is that we can make full use of the minimum
weighted independent solving algorithms to better solve the
set packing problem. Furthermore, we can even use different
minimum weighted independent set algorithms to enlarge
the scale of solvable instances of the set packing problem. In
our paper, we solve the set packing problem by using the
efficient algorithm proposed previously for minimum
weighted independent set problem. To our knowledge, the
minimum weighted independent set-based methods for the
set packing problem have not been used before.

)e rest of this article is structured as follows. In Section
2, we introduce the method of encoding set packing problem
as minimum weighted independent problem. )en, we
briefly review the algorithm DLSWCC (diversion local
search based on weighted configuration checking) for set
packing problem in Section 3. )e experimental results and
the analyses of the experimental results on standard
benchmarks are presented in Section 4. )e conclusions and
perspectives for future work are shown in Section 5.

2. The Encoding Method

In this section, we introduce the concepts used in this article
and the encoding method. According to the definitions in
literatures [26, 27], the set packing problem can be described
as follows. Given an object set OB� {1, . . ., n} and each
object i ∈OB is associated with a positive weight ci, we use Oj
to represent a set of exclusive constraints between some
objects of OB, where j ∈ J� {1, . . ., m}. A packing PA is a
subset of OB such that |Oj ∩PA|≤ 1, ∀j ∈ J, i.e., at most one
object of Oj can be in PA.

)e aim of the set packing problem is to obtain a packing
that maximizes the total weight of the contained objects
without violating any constraint. Formally, the set packing
problem can be formulated as follows:

maximize z � 􏽘
i∈OB

cixi, (1)

subject to 􏽘
i∈OB

oi,jxi ≤ 1, ∀i ∈ OB, ∀j ∈ OB , (2)

xi ∈ 0, 1{ }, ∀i ∈ OB, (3)

oi,j ∈ 0, 1{ }, ∀i ∈ OB, ∀j ∈ OB. (4)

where xi is a binary variable, indicating whether object i is in
PA, xi � 1 means in PA, otherwise, xi � 0 means not in PA, ci
is the weight of object i, and oi, j is also a binary variable,
indicating whether object i belongs to exclusive constraint
set Oj, oi, j � 1 means belonging to set Oj, oi, j � 0 means not
belonging to set Oj. Formula (1) is the objective function of
maximizing the total weight of objects belonging to PA.
Constraint (2) establishes that at most one object ofOj can be
in PA. Equations (3) and (4) are integer constraints.

)e set packing problem can be conveniently encoded as
the maximum weighted independent set problem. To see
this, we first review some basic symbols associated with the
MWIS problem. Given an undirected graph G� (Vt, Eg, w),
Vt� {1, ... , n} is the vertex set, Eg⊂Vt×Vt is the edge set, w

is the vertex weighting function, and each vertex i ∈ Vt is
assigned a positive integer weight wi. An independent set IS
ofG is a subset ofVt such that there is no pair of vertices in IS
linked by an edge in Eg, i.e., ∀u, v ∈ IS, u, v{ } ∉ Eg. )e
weight of an independent set IS of G is the sum of all
contained vertices’ weights, i.e., w(IS) � 􏽐i∈ISwi. )en, the
maximum weighted independent set problem is to find the
independent set with the maximum sum of weights of the
contained vertices.
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For a set packing problem instance, an object setOB� {1,
. . ., n}, and an exclusive constraint Oj, j ∈ J� {1, . . .,m}, each
object u ∈OB is associated with a positive weight cu. We give
a maximum weighted independent set instance (conflict
graph) G� (Vt, Eg, w) as follows:

(i) For an object u ∈OB, define a vertex u ∈Vt, whose
weight wu is equal to cu. )at is, Vt� {1, . . ., n},
∀u ∈V, wu � cu.

(ii) For the exclusive constraint, define the edge matrix
Eg by

euv �
1, if u ∈ Oj and v ∈ Oj, u, v ∈ 1, . . . , n{ }, j ∈ 1, . . . , m{ },

0, otherwise.
􏼨

(5)

It is easy to see an edge euvwill link two vertices u and v if
the objects u and v are in the same exclusive constraint,
which indicates that the two objects are in conflict and
cannot be accepted at the same time. From the edge ma-
trices, we can easily check the objects that are included in the
same exclusive constraint.

According to the above transformation, it is not difficult
to find that a maximum weighted independent set IS� {v1,
. . ., vr} of the conflict graphG� (Vt, Eg, w) corresponding to
a feasible set packing PA� {1, . . ., r} of objects with maxi-
mum of the total weight of objects it contains without vi-
olating any constraint. So, any solving algorithm for the
minimum weighted independent set problem can be applied
to tackle the set packing problem.

To further illustrate the encoding, we give an example,
i.e., a set packing problem instance with 6 objects and 4
constraints in Figure 1(a). )e correspondent conflict graph
G � (Vt, Eg, w) with regard to the set packing problem
instance is described in Figure 1(b) where each object is
represented by a vertex whose weight is equal to that of the
object. An edge will link two vertices if they are included in
the same constraint. It is distinct that the optimal solution to
the maximum weighted independent set problem defined by
the conflict graph is given by the vertex set {v1, v3, v6} which
represents the set of objects {1, 3, 6} with a maximum weight
of 29.

3. Diversion Local Search Based on Weighted
Configuration Checking for SPP

Given a set packing problem instance, we can encode this
instance as a maximum weighted independent set problem
instance according to the previous section. So, any algorithm
to solve the maximumweighted independent set can be used
to solve the set packing problem. As far as we know, the
maximum weighted independent set problem has two
equivalent problems, namely, minimum weighted vertex
cover (MWVC) problem and maximum weighted clique
(MWC) problem. Methods for solving MWVC problem can
be directly applied to tackle the MWIS problem. In this
paper, an efficient local search algorithm called “Diversion
Local Search based on Weighted Configuration Checking
(DLSWCC)” is used to solve the MWIS problem [37]. )e

algorithm has high efficiency in solving minimum weighted
vertex cover and set packing problem. Let us briefly review
the key factors of the DLSWCC algorithm. For a compre-
hensive description, the readers can refer to the literature
[37].

3.1. Dynamic Scoring Strategy. For a candidate solution, the
quality of the candidate solution can be improved by
selecting appropriate vertices to add to or remove from the
candidate solution, thus improving the performance of the
local search algorithm. We present a dynamic scoring
strategy to evaluate the benefit when the vertex is added to or
deleted from the candidate solution. )e dynamic edge
weighting mechanism is used in dynamic scoring strategy.
)e definition of dynamic edge weight is given below.

Definition 1 (dynamic edge weight). Given an undirected
graph G (Vt, Eg, w), each edge e ∈ Eg is assigned a weight
denoted by dynmc_w (e), and the weight is dynamically
updated in the local search.

Specifically, we abide by the following two rules to
update edge weights.

W_Rule1: the dynmc_w (e) of each edge e ∈Eg is ini-
tialized as 1
W_Rule2: the dynmc_w (e) will be increased by 1 if edge
e is not covered by the candidate solution at the end of
each loop

On the basis of Definition 1, assuming that vertex subset
C⊆Vt is a candidate solution, the Boolean function cover (e,
C) is used to indicate whether edge e ∈Eg is covered by
candidate solution C, i.e., whether at least one of e’s end-
points is a member of C. )e quality of the candidate so-
lution C is measured by cost (C), which is defined by the
following formula:

cos t(C) � 􏽘
cover(e,C)�false

dynmc w(e).
(6)

From Formula (6), we can see that cost (C) represents the
weight sum of the edge uncovered by candidate solution C.
)e candidate solution C is feasible if cost (C) is equal to 0.

)e score of vertices is crucial to choose which vertex to
add to or remove from the candidate solution. In algorithm
DLSWCC, the authors use score (v) to define the score of
vertex v, as shown in the following formula:

score(v) �
cos t(C) − cos t C′( 􏼁

wv

, (7)

where C is the current candidate solution, if v belongs to C,
then C′ is the candidate solution after removing vertex v

from C; otherwise, C′ is the candidate solution after adding
vertex v to C.

3.2. Weighted Configuration Checking Strategy. )e cycling
problem is revisiting a scenario that has just been visited
during the local search phase. )is problem will make the
algorithm fall into the local optimum, cause the waste of
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time, and reduce the performance of the algorithm. Many
scholars have been working on how to avoid the cycling
problem. In literature [38], Cai et al. proposed the con-
figuration checking strategy, which can consider the
environmental information to avoid the cycling problem.
Up to now, CC strategy has been successfully used to
tackle many combinatorial optimization problems, i.e.,
the minimum vertex cover, SAT, MaxSAT, and set cover
problem [39–41].

However, the direct application of CC strategy to
MWVC problem will limit some promising vertices to be
added into the candidate solution, thus misleading the
search.)at is, the original CC strategy is more restrictive. In
our algorithm, we will use the deformation strategy of CC
strategy, namely, weighted configuration checking (WCC)
strategy. )e concept of weighted configuration is given
below.

Definition 2. (weighted configuration). Given an undirected
graphG� (Vt, Eg), each edge is associated with a weight, and
C is the candidate solution. )e weighted configuration of
vertex v is defined as the states of all v’s neighbours and the
weights of the associated edges of all v’s neighbours.

In order to implement the weighted configuration
checking (WCC) strategy, we use an array wcnfg to record
whether the weighted configuration of each vertex has
changed since last leaving C. Each element of the array is a
binary variable. For a vertex v,wcnfg [v]� 1 indicates that the
weighted configuration of vertex v has changed and wcnfg
[v]� 0 on the contrary. We update the wcnfg array according
to the following four rules:

(i) WCC_Rule1: in the initialization phase, the wcnfg
value of each vertex v is assigned to 1

(ii) WCC_Rule2: if vertex v is removed from C, then the
wcnfg value of v is assigned to 0 and the wcnfg value
of v’s each neighbour is assigned to 1

(iii) WCC_Rule3: if vertex v is added into C, then the
wcnfg value of v’s each neighbour is assigned to 1

(iv) WCC_Rule4: if edge e’s weight dynmc_w [e] is
updated, then the wcnfg values of the two vertices u
and v linked by edge e are assigned to 1

3.3. Vertex Selection Strategy. In this subsection, we intro-
duce the vertex selection strategy, which combines the
dynamic scoring strategy with the weighted configuration
checking strategy. Before we introduce this strategy, let us
introduce the age concept that we will be using. )e age of a
vertex is the number of iterations after the vertex’s state has
changed.

In the local search phase, we use the following two rules
to select suitable vertices to add to or remove from the
candidate solution.

(i) Rmv_Rule: the vertex with the highest score is se-
lected from the candidate solution, or the vertex with
the greatest age is selected if there are multiple
vertices to choose from. )en, wcnfg values of this
selected vertex and its neighbours are modified
according to WCC_Rule2.

(ii) Add_Rule: the vertex with the highest score and
wcnfg value of 1 is selected from the vertices of the
noncandidate solution. If there are multiple optional
vertices, the vertex with the greatest age is selected.
)en, wcnfg values of its neighbours are modified
according to WCC_Rule3.

3.4. DLSWCC Algorithm. In this subsection, we review the
main idea of DLSWCC algorithm, and the corresponding
pseudocode is shown in Algorithm 1. First, we construct the
initial solution C by the greedy method. )en, a perturbing
approach is applied on the initial solution C to improve its
quality. We use w(C) � 􏽐i∈Cwi to represent the objective
value of the candidate solution C. We use UB to record the
objective value of the global optimal solution and initialize
UB to w (C). It is obvious that if a better solution exists, the
objective value should be less than UB. In DLSWCC al-
gorithm, once the initial candidate solution has been built,
we will remove some vertices from the candidate solution
until the candidate solution becomes infeasible and the
objective value is less than UB. )en, we exchange the
vertices in C and the vertices inVt\C according to Rmv_Rule
and Add_Rule until C is a feasible solution. At this stage, if a
better solution is found, the value of UB needs to be updated.
At the end of each loop, the algorithm checks if each edge is
covered by the current solution, and if not, the algorithm

IS = {1, 2, 3, 4, 5, 6}

Weights = {10, 8, 10, 12, 7, 9}
O1 = {1, 2}
O2 = {1, 4}
O3 = {2, 4, 6}

O4 = {3, 4, 5}

(a)

V1 V4

V2

V3

V6 V5

W1 = 10

W5 = 7W6 = 9W2 = 8

W3 = 10W4 = 12

(b)

Figure 1: )e original set packing problem instance (a) and the associated maximum weighted independent set problem instance (b).
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adds the weight dynmc_w of the uncovered edge by 1, thus
giving the “hard to cover” edges a better chance to be
covered by the new candidate solution in the future itera-
tions and making the algorithm jump out of local optimum
effectively.

4. Computational Results

In this section, we will report a large number of experimental
results through using the introduced DLSWCC algorithm to
solve the set packing problem as a minimum weighted in-
dependent set on a large number of set packing problem
standard benchmarks. Further, DLSWCC is compared with
several state-of-the-art algorithms proposed in the literature.
Finally, we test the effectiveness of the dynamic scoring
strategy and the weighted configuration checking strategy.

4.1. Reference Algorithms and Experimental Protocol. We
compare DLSWCC with the current best solving algorithms,
i.e., CPLEX, GRASP approach [26], ACO approach [27], and
EA/G approach [33]. In this study, our DLSWCC algorithm
is implemented in C and executed on a computer with Intel
(R) Xeon (R) CPU E7-4830 with 2.13GHz.)e system that is
used to execute ACO and GRASP approaches [27] is Pen-
tium III at 800MHz. EA/G approach [33] is implemented in
C and executed on a Core 2 Duo system with 2GB RAM

running under Fedora 12 at 3.0GHz. For each instance, our
algorithm DLSWCC is executed, where the cutoff condition
for each execution is to reach a given cutoff time 3600 (s) or
max iteration 1000000. Like EA/G [33], GRASP [26], and
ACO [27] approaches, DLSWCC is run 16 times indepen-
dently on each instance.

)e railway problem instances and random instances are
two main types of standard benchmarks for set packing
problem [26]. As far as we know, because the railway problem
instances contained confidential data related to French rail-
ways, the data were not made public. Only the random in-
stance data are public. )erefore, we show the experiment
results of DLSWCC algorithm on random instances only.

4.2. Comparison with State-of-the-Art Algorithms. Tables 1
and 2 provide the instance characteristics and the results
found by CPLEX method (CPLEX), GRASP method [26]
(GRASP), ACO method [27] (ACO), EA/G method [33]
(EA/G), and our DLSWCC method (DLSWCC). Table 1
shows the experimental results of small-scale problem in-
stances with 100 and 200 variables, while Table 2 shows the
experimental results of medium-scale problem instances
with 500 and 1000 variables.

In Tables 1 and 2, column Var indicates the number of
variables, column Cnst indicates the number of constraints,

(1) Initialize wcnfg array according to WCC_Rule1;
(2) initialize the dynmc_w of each edge assigned as 1;
(3) initialize the score of each vertex assigned as the degree of the vertex;
(4) initialize the candidate solution C greedily;
(5) UB� w (C);
(6) C∗⟵C;
(7) iter⟵ 0;
(8) while stop criterion is not satisfied do
(9) while C covers all edges, then
(10) UB� w (C);
(11) C∗⟵C;
(12) v⟵ x with the greatest score in C, breaking ties in favor of the oldest one;
(13) C⟵C\{v};
(14) update wcnfg array according to WCC_Rule 2;
(15) end while
(16) v⟵ x with the greatest score in C and v is not in tabu_list, breaking ties in favor of the oldest one;
(17) C⟵C\{v};
(18) update wcnfg array according to WCC_Rule 2;
(19) clear tabu_list;
(20) while C uncovers some edges do
(21) v⟵ x with the greatest score not in C and wcnfg [x]� � 1, breaking ties in favor of the oldest one;
(22) if w (C) +w (v)≥UB then break;
(23) C⟵C∪{v};
(24) update wcnfg array according to WCC_Rule3;
(25) dynmc_w [e]⟵ dynmc_w [e] + 1, for each uncovered edge by C;
(26) update wcnfg array according to WCC_Rule4;
(27) add v into tabu_list;
(28) end while
(29) iter⟵ iter + 1;
(30) end while
(31) return C∗ ;

ALGORITHM 1: DLSWCC ( ).

Mathematical Problems in Engineering 5
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and column Density indicates the percentage of nonnull
elements in the constraint matrix. ColumnM_One indicates
the number of elements in the maximum set Oj, where j ∈
{1... , m}, and column Weight represents the range of object
weights in each instance. Note that the instances whose
ranges are [1-1] are instances of the unicost set packing
problem. )e CPLEX solver can solve all small-scale in-
stances (the number of variables less than or equal to 200).
As shown in Table 1, column Opt indicates the optimal
solutions found by CPLEX and column TET indicates the
time to obtain the optimal solution. For the medium-scale
instances (the number of variables equal to 500 and 1000),
CPLEX cannot solve all of them. In such cases, we report the
best known value in Table 2.When CPLEX cannot obtain the
optimal solution, the best solution value found is marked by
an asterisk (∗ ). For GRASP, ACO, and EA/G methods,
column Best indicates the best solution found, column Avrg
indicates the average solution quality, and column ATET
indicates the average execution time in seconds over 16 runs
in Tables 1 and 2.)e column hit is the number of executions
reaching its best value of algorithm DLSWCC. Results of
CPLEX, GRASP, and ACO methods are obtained from the
literature [27]; results of EA/G approach are obtained from
[33]. )e bold values indicate the best solution values ob-
tained among the compared algorithms. And the bold values
in Tables 3 and 4 indicate the same meaning.

Tables 1 and 2 distinctly show that the DLSWCCmethod
is superior to EA/G, GRASP, and ACO methods in solution
quality. Out of a total of 56 instances, DLSWCC obtained the
best solution that was superior to EA/G on 3 instances and
the same as EA/G on the rest. In terms of average solution
quality, DLSWCC is superior to EA/G on 39 instances and
the same as EA/G on the rest. DLSWCC obtained the best
solution that was superior to ACO on 7 instances and the
same as ACO on the rest. In terms of average solution
quality, DLSWCC is superior to ACO on 42 instances and
the same as ACO on the rest. DLSWCC obtained the best
solution that was superior to GRASP on 13 instances and the
same as ACO on the rest. In terms of average solution
quality, DLSWCC is superior to ACO on 32 instances and
the same as GRASP on the rest. On the whole, in term of the
best solution, DLSWCC method is superior to the three
comparison algorithms EA/G, ACO, and GRASP on 2 in-
stances. Similarly, in term of the average solution quality, the
DLSWCC method is superior to the three comparison

algorithms EA/G, ACO, and GRASP on 30 instances. More
significantly, in Table 2, DLSWCC sometimes gives better
values than CPLEX when CPLEX values are marked with
asterisk.

Note that the system that is used to perform GRASP and
ACO methods [27] is Pentium III at 800MHz and the
system that is used to perform EA/G method is Fedora 12 at
3.0GHz which are different from the system used to perform
DLSWCC. )erefore, running time cannot be compared
accurately. We just make a rough comparison on the run-
ning time. Our approach is faster than EA/G, GRASP, and
ACO methods on majority of the instances.

)ere were also 8 random instances with 2000 variables
(large-scale instances), which were not used to test the
ACO algorithm in literature [27]. However, in literatures
[26, 33], these instances are used to test the GRASP and EA/
G algorithms. Table 3 shows the results of CPLEX, GRASP,
EA/G, and DLSWCC on these instances. )e results for
CPLEX and GRASP are obtained from [26]. When CPLEX
cannot obtain the optimal solution, the best solution value
found is marked by an asterisk (∗). For GRASP algorithm, if
it can obtain the best known solution, then the column
corresponding to GRASP marks “yes”; otherwise, it marks
“no”. Out of the 8 instances, GRASP can obtain best known
values on 5 instances. DLSWCC, on the other hand, obtains
as good as or better than best known values on all instances.
On 2 instances, DLSWCC even improved the best known
values. For the running time, our approach is a little slower
than EA/G.

4.3. Comparison of Different Version of DLSWCC. To study
the effectiveness of the dynamic scoring strategy and the
weighted configuration checking strategy, we compare
DLSWCC with three other alternative algorithms named
DLSWCC_STATIC, DLSNOCC, and DLSECC.

In DLSWCC_STATIC, the scoring method works with a
static scoring strategy, i.e., the weight of each edge will not be
updated. DLSNOCC works without the weighted configu-
ration checking strategy, i.e., it selects the vertex with the
greatest score, breaking ties in favor of the oldest one during
the adding procedure. DLSECC works with a straightfor-
ward extension of the configuration checking strategy in-
stead of the weighted configuration checking strategy. We
tested the three algorithms on large-scale instances over 16

Table 3: Comparison of each algorithm on instances with 2000 variables.

Instance
Characteristics CPLEX GRASP EA/G DLSWCC

Var Cnst Density
(%) M_one Weight Opt Best Best Avrg ATET Best Avrg ATET Hit

pb2000rand1 2000 10000 2.54 100 [1-20] 40 Yes 40 40.00 31.66 40 40.00 2115.64 16
pb2000rand2 2000 10000 2.55 100 [1-1] 2 Yes 2 2.00 10.38 2 2.00 2126.56 16
pb2000rand3 2000 10000 0.55 20 [1-20] 478∗ No 478 463.75 129.86 478 477.06 238.61 11
pb2000rand4 2000 10000 0.55 20 [1-1] 32∗ Yes 32 30.25 81.58 32 31.88 278.09 16
pb2000rand5 2000 2000 2.55 100 [1-20] 140∗ Yes 140 135.50 61.03 140 140.00 1419.60 16
pb2000rand6 2000 2000 2.56 100 [1-1] 9∗ Yes 9 8.50 34.23 9 9.00 1395.76 16
pb2000rand7 2000 2000 0.56 20 [1-20] 1784∗ No 1784 1765.94 160.14 1811 1810.88 28.13 15
pb2000rand8 2000 2000 0.56 20 [1-1] 131∗ No 131 130.38 73.84 135 134.13 23.19 2
Avrg 327.00 327.00 322.04 72.84 330.88 330.62 953.20 13.50
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runs with different random seeds per instance. )e results
are summarised in Table 4.

From Table 4, by comparing the experimental results of
algorithm DLSNOCC and algorithm DLSECC, we can see
the effectiveness of the configuration checking strategy. By
comparing the experimental results of algorithm DLSNECC
and algorithm DLSWCC, we can see the effectiveness of the
weighted configuration checking strategy. By comparing the
experimental results of algorithm DLSWCC_STATIC and
algorithm DLSWCC, we can see the effectiveness of the
dynamic scoring strategy.

)rough the above comparison, we analyse that
DLSWCC algorithm is superior to EA/G algorithm, ACO
algorithm, and GRASP algorithm mainly because it adopts
weighted configuration checking strategy and dynamic
scoring strategy, which can effectively prevent the cycling
problem and avoid the algorithm falling into local
minimum.

5. Conclusions

)e set packing problem is a significant combinatorial
optimization problem and has many real applications. In
this paper, we have first researched the method of solving the
SPP by encoding the problem as the maximum weighted
independent set problem and tackling it with an existing
maximum weighted independent set algorithm (DLSWCC).
Comparing with the current best solving algorithms (EA/G,
GRASP method, and ACO) for SPP, our method has yielded
best results. In terms of the optimal solution and the average
solution, our method has obvious advantages over the
comparison methods. In terms of the solving time, our
method is significantly faster than the comparison methods
on majority of the instances.

In the future work, we can extend our method to solve
other combinatorial optimization problems, such as dom-
inating set problem [42, 43], generalized vertex cover
problem [44], maximum diversity problem [45], maximum
edge weighted clique problem [46], and multiobjective
unconstrained binary quadratic programming problem [47].
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