
European Journal of Operational Research 209 (2011) 37–50
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization

An integer linear programming-based heuristic for scheduling heterogeneous,
part-time service employees

Mehran Hojati ⇑, Ashok S. Patil
Edwards School of Business, University of Saskatchewan, Saskatoon, Canada S7N 5A7

a r t i c l e i n f o a b s t r a c t
Article history:
Received 3 May 2008
Accepted 1 September 2010
Available online 7 September 2010

Keywords:
Scheduling
Assignment
Heuristics
Integer programming
Rostering
0377-2217/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.ejor.2010.09.004

⇑ Corresponding author. Tel.: +1 306 966 8428; fax
E-mail address: Hojati@Edwards.usask.ca (M. Hoja
Scheduling of heterogeneous, part-time, service employees with limited availability is especially chal-
lenging because employees have different availability and skills, and work different total work hours
in a planning period, e.g., a week. The constraints typically are to meet employee requirements during
each hour in a planning period with shifts which have a minimum & maximum length, and do not exceed
5 work days per week for each employee. The objectives typically are to minimize over staffing and to
meet the target total work hours for each employee during the planning period. We decompose this prob-
lem into (a) determining good shifts and then (b) assigning the good shifts to employees, and use a set of
small integer linear programs to solve each part. We apply this method to the data given in a reference
paper and compare our results. Also, several random problems are generated and solved to verify the
robustness of our solution method.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

We consider the scheduling of heterogeneous, part-time employees of a service organization, e.g., a restaurant, bank, call center, or a
large retail store. There is usually a pool of active employees who are available, but only during part of the time on some days, and only
have some of the skills (i.e., can perform only some of the tasks). Also, they tend to work different total work hours in the planning period
(e.g., a week). The demand (work load) typically fluctuates throughout a day and across days, although it follows similar patterns, such as
lunch or dinner peaks.

There are typically three steps in performing employee scheduling for a service organization. The first step is to forecast the demand (or
hourly sales) for each working hour of each day during the next planning period (e.g., a week). (Some services may use half-hour or quarter-
of-hour as the unit time interval). The second step is to translate the demand (or hourly sales) forecasts into employee requirements for
each working hour of the planning period in order to provide a given customer service level. The third step is to meet the employee require-
ments for each working hour of the planning period by determining the work days, and a shift on each work day, for each employee. There
are usually some government employment standards which must be met, such as a maximum length for a shift and a minimum number of
days off in a week. In addition, there are some organizational policies/practices. In this paper, for illustration, we use the general practice of
most McDonald’s restaurants: a shift should be between 3 and 8 hours long; the number of work days in a week should be limited to 5, but
the work days need not be consecutive.

For simplicity, in the remainder of this paper we consider a week as the planning period, but the results can be applied to other intervals,
e.g., 2 weeks or a month.

The major objectives of weekly employee scheduling are (a) to cover the hourly employee requirements during the week with a min-
imum number of total employee hours (i.e., to minimize over staffing), and (b) to meet the target weekly work hours for each employee.
The latter is determined either by agreement between the manager and the employee or is based on a fair share scheme, e.g., as a percent-
age of total employee availabilities. It is reasonable to assume that the sum of target weekly work hours for all employees equals the sum of
hourly employee requirements during the week.

This employee scheduling problem is hard to solve optimally: it requires solving a very large integer linear program. Unfortunately,
there are not many references in the literature that solve this problem. Of the methods available, to the best of our knowledge none
can guarantee a close-to-optimal feasible solution in a reasonable amount of time.
ll rights reserved.

: +1 306 966 2515.
ti).

http://dx.doi.org/10.1016/j.ejor.2010.09.004
mailto:Hojati@Edwards.usask.ca
http://dx.doi.org/10.1016/j.ejor.2010.09.004
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

38 M. Hojati, A.S. Patil / European Journal of Operational Research 209 (2011) 37–50
In this paper, our objective is to determine a simple and practical solution method (i.e., one which can be solved on a personal computer
using a spreadsheet software such as Excel) for scheduling heterogeneous, part-time service employees with limited availability. We will
decompose the problem into (a) determining good shifts and (b) assigning the shifts to the employees, and use a set of small integer linear
programs to solve each part. We apply this method to the data given in Loucks (1987) and Loucks and Jacobs (1991), and compare our
results. Also, we generate several random problems and test our solution method.

The remainder of this paper is as follows. Section 2 provides literature review. The problem is formulated as a large integer linear pro-
gram in Section 3. Section 4 contains our solution method, which is applied to a specific problem in Section 5. Section 6 describes how
computational experiments were performed to validate our solution method, whereas Section 7 describes how our method can be applied
to some more general environments. Finally, Section 8 concludes the paper.
2. Literature review

As it can be seen in the review paper by Ernst et al. (2004), there are only a limited number of articles on weekly (or ‘‘tour”) scheduling of
heterogeneous, part-time employees. These are reviewed below. The model used in Loucks (1987) and Loucks and Jacobs (1991) is identical
to ours, while their solution technique differs from ours as follows: Instead of decomposing the problem into (a) determining good shifts
and (b) assigning them to employees, they tried to solve the whole problem in two phases. They focussed on an hour, instead of a shift, as
the unit of work interval. In the first phase, called the construction phase, the task-hour with the lowest number of available and eligible
employees minus requirements is identified and then an available and eligible employee is chosen according to a set of rules and is as-
signed to it (the maximum 5 work days constraint is relaxed in this phase). If an available and eligible employee cannot be found, an ex-
change mechanism is used between two employees. In the second phase, called the improvement phase, any excess above the 5 workdays
is eliminated by assigning the excess shift to other employees. Also, attempts are made to reduce over staffing, deviations from target
weekly work hours for each employee, and the changes in tasks within multi-segmented shifts (each segment involving a different task).
This method produces excessive number of multi-segmented shifts. Also, it may not find a feasible solution (i.e., one or more shifts may be
left unassigned at the termination of the solution method).

Thompson (1988)’s model differs from ours as follows: There was no distinction made between different skills, i.e., the require-
ments were aggregated across skills. Also, there was no target for weekly work hours of each employee, but a distinction was made
between full time and part-time employees. Another difference is that a quarter-of-an-hour was used as the unit interval of time, and
that half-an-hour of break time for 5 hours shifts and one hour of meal break for 6 to 8 hours shifts were scheduled. Two different
methods were used.

In Method 1, Thompson (1988) first determined the days-on (a maximum of 5 days) for each employee in order to meet the daily
employee requirements and to maximize the total daily availability of employees. Then, shifts were constructed for each day using
three different techniques: (a) an iterative adding and dropping heuristic, (b) a linear program which considers the work breaks explic-
itly, and (c) a linear program without work breaks, followed by a break insertion method. In both linear programming techniques (b)
and (c), availability of employees are taken into account by determining the intersection of availability periods (called regions) of
every subset of employees and making sure that the number of shifts in each region is not larger than the number of employees avail-
able in the region. Finally, shifts are assigned first to full time employees using a ranking procedure, and then to part-time employees
as follows: (i) find the day with least total availability hours, (ii) solve the linear programming formulation of the standard assignment
problem with the objective of assigning those employees who have least availability outside of the day, and (iii) continue until all days
are considered.

In Method 2, Thompson (1988) first determined the shifts for each day using the three techniques given in Method 1 above. Then, the
day with most shift hours still unassigned is chosen. Next, a shift with least number of employees available during it is chosen on that day.
Finally, the employee with closest fit of availability and the (chosen) shift hours (whose number of work days does not exceed 5) is assigned
the shift. It is not clear if either method guarantees a feasible solution.

Glover and McMillan (1986) considered a more general employee scheduling problem where the unit of work interval is the set of pos-
sible shifts (called a tour) for an employee during one week. They used minimum and maximum weekly work hours for each employee
instead of target weekly work hours. The use of tours increases the number of variables substantially (billions). Therefore, they used Tabu
Search to solve their problem. The authors report good solutions for most of the problems they tested. However, like other search heuris-
tics, the performance of Tabu search cannot be guaranteed.

Love and Hoey (1990) considered employee scheduling in four Burger King restaurants. Their model differed from ours as follows: They
used a half-hour as unit interval of time. Instead of a target for weekly work hours for each employee, they used a target for the number of
days to work for each employee. Each number-of-days-to-work-per-week by each employee had a coefficient in the objective function.
These coefficients also prevented the employee from being assigned to more than 5 work days. Also, the availability and skill of each em-
ployee was represented as coefficients of the shifts being assigned to the employees in the objective function. They formulated and solved
each of (a) determining shifts and (b) assigning them to employees as a network flow problem. However, problem (b) was very large and
needed a special network flow solution method and software.

Gopalakrishnan et al. (1993) considered the problem of determining part time employee requirements and scheduling them in the
distribution department of a newspaper publisher. The start times of the 21 shifts in a week were fixed, but their lengths varied be-
tween 4 and 8 hours. Workers had different availabilities and preferences for shifts. Each worker was guaranteed a minimum of
24 hours a week. The solution method used by the authors was a two phase heuristic: in phase 1 each worker, starting from most
senior, received close to but not exceeding 24 hours of work per week. If the requirement of some shifts was still not satisfied, they
were assigned to employees, again starting from most senior, up to the maximum hours determined for that employee. The authors
tested this simple greedy heuristic only on 3 very small problems. Our problem deals with a more general situation where the
employees and shifts have different skills and skill requirements. Also, we consider the more general case where each employee
may have a different target weekly work hours.

M. Hojati, A.S. Patil / European Journal of Operational Research 209 (2011) 37–50 39
Litchfield et al. (2003) considered a restaurant whose employees had the same skills. The shifts were 6 hours long and pre-determined.
Hence, there was no need to determine good shifts first. They used a minimum and a maximum number of shifts per week for each employ-
ee rather than target weekly work hours. The integer linear program (ILP) of the assignment-of-shifts-to-employees had approximately 600
binary variables and 1,400 constraints. This is normally solvable by a good ILP software. However, the authors decided to use a two phase
method: (a) a construction heuristic and (b) a Tabu Search improvement method. The construction phase is as follows: at each step, the
shift with least number of available employees is assigned to the employee who has the least number of shifts available to him/her. The
solution method was programmed in Excel using Visual Basic for Applications.

Eveborn and Ronnqvist (2004) used the tours of work for employees during one or more weeks as the unit work interval. In addition to
cost of over staffing and under staffing, they minimized the penalty of the worst tour among the employees (this penalty includes cost of
receiving a different weekly work hours than the target for the employee). Given that the formulated integer linear program is very large,
they first generated one feasible tour for each employee, and then improved the solution by generating more feasible tours as needed (a
column generation method). The solution procedure appears complex and may take some time before a good solution is obtained. For
example, for the six test problems considered, after 20 minutes the average gap between the best solution obtained and its lower bound
was 28%.

Gordon and Erkut (2004) considered scheduling gate volunteers for the Edmonton Folk Festival which occurs annually over a 4 days
period. This is a smaller version of our problem and therefore solvable by an integer linear programming solver. Most shifts are determined
by coordinators while a small set-covering model determines the shifts during the weekend days. The assignment of volunteers to the
determined shifts is formulated as an integer linear program and solved by Premium Solver in Excel. Each volunteer works 20 hours during
the 4 days and his/her availability is reflected in his/her preference for each shift which is maximized over all volunteers. The constraints
include restrictions on morning & afternoon shifts and percentage requirements for having experienced and skilled volunteers on each
shift.

Zolfaghari et al. (2007) considered a very general version of our problem, and formulated it as a large integer linear programming prob-
lem. The formulation contains both hard and soft constraints, and the violations of the latter are reflected in the objective function as pen-
alties. However, they do not solve this problem, but only propose various heuristics for reducing the number of shifts that should be used
under various demand scenarios. These heuristics are not needed if the problem is decomposed, as we have done in this paper, into (a)
determining good shifts for each skill & day and then (b) assigning these good shifts to the employees. The reason is that the size of each
sub-problem will be small enough in our method.

The solution methods used in the above articles show the diversity of methods that can be used to solve our employee scheduling prob-
lem. For a classification of these and other methods, see Alfares (2004).

There are several workforce management software packages that claim to perform optimized employee scheduling. Some of these, hav-
ing revenues of more than $5 million per year, were reviewed in Degnan Manning et al. (2006). Although most of these software claim to
use ILP and/or search heuristics, the details of their solution method are unknown due to trade secrecy. Also, it is not clear if they use tar-
gets for weekly work hours for each employee as an objective. ESP by Thoughtworks Inc is a specialized employee scheduling software for
fast food restaurants (used by McDonald’s restaurants in Canada). It uses linear programming for determining preferred shifts and Simu-
lated Annealing for assigning these shifts to the employees.

None of the above references explicitly consider the objective of target weekly work hours for each employee and actually solve the
problem. Also, using a tour as the unit work interval makes the problem more complicated, without adding any advantages, because tours
for part-time employees are very flexible (the shifts do not have to start at the same time each work day).
3. Problem formulation

As with most of the methods reviewed above, we will use the task-shift, as opposed to task-hour or a tour, as our unit of work interval.
This will make the problem easier to solve. Let

h = index of working hours during a day, e.g., h = 1, . . . ,18
d = index of days in a week, d = 1, . . . ,7
t = index of tasks/skills, e.g., t = Grill (Gr), Drive Through (DT), Counter (Co)
e = index of employees, e.g., e = 1, . . . ,40
s = index of possible shifts (within a day), e.g., s = 1, . . . ,81, where s = 1 consists of hours (1,2,3), s = 2 consists of hours (1, . . . ,4), etc. We
assume shifts are contiguous, with no work breaks.
ystd ¼ number of employees scheduled on shift s for task t on day d
ahstd ¼ 1 if hour h is in shift s for task t on day d; 0 otherwise
rhtd ¼ number of employees needed during hour h for task t on day d
xestd ¼ 1 if shift s for task t on day d is assigned to employee e; 0 otherwise
bestd ¼ 1 if employee e is available and eligible to perform on shift s for task t on day d; 0 otherwise
hrss ¼ number of hours in shift s (i.e., its duration)
Trgte ¼ number of hours per week targeted for employee e; we assume

P
eTrgte ¼

P
h

P
t

P
drhtd

ku
e ¼ number of hours that the assigned hours to employee e is under the target Trgte

ko
e ¼ number of hours that the assigned hours to employee e is over the target Trgte

The weekly heterogeneous, part-time service employee scheduling problem with limited availability can be formulated as the following
bi-criteria integer linear program:

40 M. Hojati, A.S. Patil / European Journal of Operational Research 209 (2011) 37–50
Minimize
X

d

X
t

X
s

hrss � ystd ð1Þ

Minimize
X

e

ku
e þ

X
e

ko
e ð2Þ

Subject to :
X

s

ahstd � ystd P rhtd for each hour h; task t;day d; ð3ÞX
e

bestd � xestd ¼ ystd for each shift s; task t;day d; ð4ÞX
s

X
t

bestdxestd 6 1 for each employee e;day d; ð5ÞX
s

X
t

X
d

bestd � xestd 6 5 for each employee e; ð6ÞX
s

X
t

X
d

hrss � bestd � xestd þ ku
e � ko

e ¼ Trgte for each employee e; ð7Þ

ystd ¼ integer for each shift s; task t;day d; ð8Þ
xestd ¼ binary for each employee e; shift s; task t;day d; ð9Þ
ku

e ; ko
e P 0 for each employee e: ð10Þ
Objective (1) minimizes the total employee hours used (which is equivalent to minimizing over staffing). Objective (2) minimizes the total
deviation from target weekly work hours for the employees. For each task and day, Constraint (3) requires that for each hour, the total num-
ber of employees on all shifts which include the hour meet or exceed the employee requirements for the hour. For each task and day, Con-
straint (4) ensures that each shift is assigned to the right number of available and eligible employees. Constraint (5) is the requirement that
each employee may only work one shift per day. Constraint (6) is the requirement that each employee can work a maximum of 5 days a
week. Constraint (7) ensures that total weekly work hours assigned to each employee plus any underage minus any overage equals the target
weekly work hours for the employee. Constraint (8) ensures that a whole number is used for the number of employees scheduled for each
shift. Constraint (9) ensures that the variables assigning each shift to each employee are zero/one. Finally, Constraint (10) ensures that the
deviations from the target weekly work hours for each employee are non-negative.

In order to be able to use a single-objective integer linear programming software to solve this problem, we replace objectives (1) and (2)
with the ‘‘weighted” sum of the two:
Minimize
X

d

X
t

X
s

hrss � ystd þ a
X

e

ku
e þ

X
e

ko
e

 !
ð11Þ
By varying a, one can generate different Pareto-optimal solutions. We will use a ¼ 1 in this paper.
The above model is very large. For example, for 40 workers, 6 a.m. to 12 a.m. operating hours, 3 to 8 hours shifts, and typical

density of matrix bestd, there will be approximately 40,000 binary & integer variables and 4,000 constraints. This problem cannot
be solved in a reasonable amount of time on any personal computer. We entered the problem given in (Loucks, 1987 and Loucks
and Jacobs, 1991) in CPLEX using the MPL modeling language. After 9 hours of computation, we received a memory overflow error
message.

As it may be seen from the coefficient matrix of Constraints (3)–(7), this matrix is sparse. Note that most of the rows are due to Con-
straints (4), relating ystd to xestd. Therefore, it is reasonable to decompose the problem into sub-problems (a) determining good shifts and
then (b) assigning them to the employees. The transition between (a) and (b) can be programmed using e.g., Excel’s Visual Basic for Appli-
cations. Sub-problem (a) is presented in Section 4.1 and sub-problem (b) in Section 4.2 below.

4. Our solution method

4.1. Determining good shifts

Despite the decomposition, we will not totally ignore the employees in determining good shifts. To do so may result in shifts that cannot
be assigned to any employee. Therefore, for each possible shift, we will determine how many employees are available and eligible for it, and
choose those shifts that maximize the total number of available and eligible employees as well as minimize overstaffing.

Also, we will limit the number of employee-shifts
P

systd

� �
for each task on each day, because the total number of employee-shifts

should be less than five times the number of employees or else the problem will be infeasible.
We will use the following three step solution method:

1. Determine a target number of employee-shifts for each task on each day. We assume that an average employee will work 4 days a week.
Thus, for say 40 employees, the total target number of employee-shifts will be 160 per week. We will split the 160 shifts in proportion to
total employee hours needed for each task on each day, i.e.,

P
hrhtd.

2. Determine the number of employees available and eligible for each shift.
3. Formulate an integer linear program for each task on each day and solve it. First let
Trgttd ¼ target number of employee-shifts for task t on day d
Estd ¼ number of employees available and eligible for shift s, task t, day d
ku

td ¼ number of employee-shifts under the target Trgttd

ko
td ¼ number of employee-shifts over the target Trgttd

Solve the following integer linear program for each task t on each day d:

M. Hojati, A.S. Patil / European Journal of Operational Research 209 (2011) 37–50 41
Minimize
X

s

hrss � ystd þ dko
td � e

X
s

Estd � hrss � ystd ð12Þ

Subject to :
X

s

ahstd � ystd P rhtd for each hour h; ð13ÞX
s

ystd þ ku
td � ko

td ¼ Trgttd ð14Þ

ystd ¼ integer for each shift s; ð15Þ
ku

td; ko
td P 0: ð16Þ
The objective function (12) is a variation of (1) with two other terms added: (i) the second term dko
td minimizes the number of employee-

shifts over the target, which will allow shift overage but tries to keep it to a minimum, (ii) the third term, �e
P

sEstd � hrss � ystd, tries to max-
imize the selection of those shifts with larger number of available and eligible employees. The coefficients d and e are small numbers which
are determined by trial and error. We used d ¼ 2 and e ¼ :01.

The above integer linear programs are easy to solve, because their linear programming relaxations have mostly integer optimal solu-
tions (due to the consecutive 1s in the columns of Constraints 13). Also, the number of variables is small enough so that Excel’s standard
Solver can be used. For example, if shifts start and end on the hour, are between 3 & 8 hours long, and daily operating hours are between
6 a.m. and 11 p.m., there will be 83 variables. The computation time for each integer linear program is approximately a second.

4.2. Assigning the good shifts to the employees

We could formulate this problem as an integer linear program (ILP) as well. First, let fŝg ¼ the subset of shifts with positive optimal
values for ystd, obtained from solving (12)–(16) in Section 4.1 above. If for any shift ŝ the optimal yŝtd ¼ n P 2, then n copies of the shift
ŝ are produced and used. This will make the assignment problem easier to solve.

Solve the following integer linear program:
Minimize
X

e

ku
e þ

X
e

ko
e ð17Þ

Subject to :
X

e

beŝtd � xeŝtd ¼ 1 for each shift ŝ; task t;day d; ð18ÞX
s

X
t

beŝtd � xeŝtd 6 1 for each employee e;day d; ð19ÞX
s

X
t

X
d

beŝtd � xeŝtd 6 5 for each employee e; ð20ÞX
s

X
t

X
d

hrsŝ � beŝtd � xeŝtd þ ku
e � ko

e ¼ Trgte for each employee e; ð21Þ

xeŝtd ¼ binary for each e; ŝ; t;d; ð22Þ
ku

e ; ko
e P 0 for each employee e: ð23Þ
The objective (17) is identical to (2). The constraints (18)–(21) are identical to (4)–(7), but only the selected shifts ŝ from Section 4.1 are used.
The above integer linear program is much smaller than the original ILP. For the problem given in Loucks (1987) and Loucks and Jacobs

(1991), the number of binary variables is 2,170 and the number of constraints is 485. This problem was solved on a personal computer
using CPLEX in 32 minutes. However, a randomly generated problem took more than one hour to solve. Because the solution is not guar-
anteed in a reasonable amount of time, we have devised the following heuristic for solving this problem.

4.2.1. Integer linear programming-based heuristic for assignment of good shifts to employees
We will determine all the (good) shifts to be assigned to an employee at once (using a small integer linear program), one employee at a

time. This method differs from methods of Loucks (1987) and Loucks and Jacobs (1991), Thompson (1988), and ESP software which assign
one shift at a time to an employee. Our method has similarities with the Lagrangian relaxation and (interior point) barrier methods in that
some of constraints are put in the objective function with weights (penalties) that are increased as the solution gets close to violating them.

When assigning a (good) shift to an employee, it is important to realize that by doing so, this employee may not be able to take on an-
other shift later during the solution procedure for which he/she will be the only available and eligible employee. To avoid problems such as
this, we will explicitly keep track of and use:

– The number of remaining available and eligible employees for each remaining shift
– The number of shifts remaining during each day and the number of available and eligible employees remaining during each day
– The total number of shifts remaining and the total number of available and eligible employee-shifts remaining for the week.

The heuristic is simple, but unfortunately the required notation makes it appear complicated. Let,

bSr
ed ¼ number of remaining shifts that employee e is available and eligible for on day dbSr
e ¼ total number of remaining shifts that employee e is available and eligible for in the week; bSr

e ¼
P

d
bSr

ed

Er
ed ¼ 1 if employee e is available and eligible for at least one remaining shift during day d, i.e., if bSr

ed P 1; 0 otherwise
Er

d ¼ total number of remaining employees available and eligible for at least one shift during day d; Er
d ¼

P
e2remaining employeesE

r
ed

Er ¼ total number of remaining employee-days available and eligible for at least one shift during a day (up to a maximum of 5 days a
week); Er ¼

P
e2remaining employees min

P
dEr

ed;5
� �

42 M. Hojati, A.S. Patil / European Journal of Operational Research 209 (2011) 37–50
Er
ŝtd ¼ number of remaining employees available and eligible for shift ŝ, for task t, on day d

Er
Ld ¼ minimum number of remaining employees available and eligible for any L-hour shift on day d; Er

Ld ¼ minŝ;tfEr
ŝtd : hrsŝ ¼ LgbSr

d ¼ number of shifts remaining on day d
Kr

u ¼ total number of hours under the target weekly work hours so far
Kr

o ¼ total number of hours over the target weekly work hours so far
du

e ¼ days of work under 5 for employee e
xLd ¼ 1 if a shift of L-hour length is chosen to be assigned on day d; 0 otherwise

Our heuristic for assigning the good shifts to employees is as follows. Initially, let Kr
u ¼ 0 and Kr

o ¼ 0.

1. Calculate the total number of remaining shifts each employee is available and eligible for ðbSr
eÞ. Find that employee with the smallest bSr

e,
say employee ei.

2. For employee ei,
i. for each remaining shift ŝ, determine the total number of remaining employees (including ei) who are available and eligible for it
ðEr

ŝtdÞ
ii. for each length of shift L for remaining shifts on each day d, determine the minimum number of remaining employees (including ei)

available and eligible ðEr
LdÞ

iii. for each day d, determine the total number of remaining employees (including ei) who are available and eligible for at least one shift
ðEr

dÞ
iv. determine the total number of remaining employee-days available and eligible for at least one shift during a day, up to a maximum

of 5 days a week ðErÞ
v. for each day d, determine the number of shifts remaining ðbSr

dÞ
vi. Solve the following integer linear program for employee ei:
Table 1
Employ

Wor

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
ee capabilities (1 means employee can perform the task) and weekly target hours for the Example.

ker Tasks Targets

Gr DT FF BC Co
1 2 3 4 5

1 6
1 1 1 1 12

1 1 8
1 10
1 10
1 1 1 1 1 18
1 15
1 1 18
1 12

1 1 1 16
1 1 1 1 1 20

1 1 1 1 15
1 1 1 1 18
1 1 1 1 14

1 1 1 15
1 1 1 1 1 25

1 1 1 1 24
1 1 16
1 1 20

1 1 1 1 20
1 1 1 1 26
1 1 1 1 20

1 1 1 1 24
1 1 24

1 20
1 1 24
1 1 1 25

1 1 1 1 22
1 25

1 1 1 1 30
1 1 1 1 1 35

1 1 25
1 1 1 1 35

1 32
1 35

1 1 1 32
1 35
1 1 1 1 1 35
1 1 1 30
1 1 32

Table 2
Availab

Wor

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

M. Hojati, A.S. Patil / European Journal of Operational Research 209 (2011) 37–50 43
Minimize ð1þ eKr
uÞk

u
e þ ð1þ eKr

oÞk
o
e þ

d1du
e

Er �
P

d
bSr

d þ e
� d2

X
d

X
L

xLd

Er
Ld � ð1� eÞ

 !
� d3

X
d

P
LxLd

Er
d � bSr

d þ e

 !
ð24Þ

Subject to :
X

d

X
L

xLd þ du
e ¼ 5 ð25ÞX

d

X
L

xLdLþ ku
e � ko

e ¼ Trgte ð26ÞX
L

xLd 6 1 for each d ð27Þ

xLd 6 Er
Ld for each L and d ð28Þ

xLd ¼ binary for each L and d ð29Þ
du

e ; ku
e ; k

o
e P 0: ð30Þ
ili

ke
Let the optimal solution to the above ILP be fx�Ldg. Note that fx�Ldg can have a maximum of 5 members (i.e., a maximum of 5 x’s
can be 1).
vii. Assign each shift in fx�Ldg to employee ei and delete the shift. Remove employee ei. Update Kr
u ¼ Kr

u þ ku
e or Kr

o ¼ Kr
o þ ko

e . Go back to
Step 1 unless all shifts have been assigned, in which case terminate.

In Step 1, we find the employee with the smallest number of remaining available and eligible shifts, because finding shifts for this em-
ployee in order to reach his/her target weekly work hours Trgte appears to be most difficult. In (24), the coefficient of ku

e or ko
e is chosen so

that as the total deviation (underage or overage) from the target weekly work hours so far, Kr
u or Kr

o, increases, the coefficient increases as
well. This forces the solution toward balancing Kr

u and Kr
o, and minimizes the total deviation from weekly target work hours. The coefficient

e is a small number, and is determined by trial and error. We used e ¼ :1. Also in (24), the coefficient of du
e is chosen so that as Er gets close

to
P

d
bSr

d from above, this coefficient increases sharply. Similarly in (24), the coefficient of xLd is chosen so that as Er
Ld gets close to 1 from

above, this coefficient becomes a large negative number, thus making the xLd more attractive to select. Finally in (24), the coefficient ofP
LxLd is chosen so that as Er

d approaches bSr
d from above, this coefficient becomes a large negative number, thus making this

P
LxLd more
ties of each employee for the Example.

r Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Start End Start End Start End Start End Start End Start End Start End

4 p.m. 8 p.m. 8 a.m. 4 p.m.
6 a.m. 5 p.m. 6 a.m. 5 p.m. 6 a.m. 5 p.m.

5 p.m. 10 p.m. 6 p.m. 10 p.m. 6 p.m. 10 p.m. 6 p.m. 10 p.m. 6 p.m. 10 p.m. 6 p.m. 12 a.m. 6 p.m. 12 a.m.
7 a.m. 2 p.m. 7 a.m. 2 p.m. 7 a.m. 2 p.m. 7 a.m. 2 p.m. 7 a.m. 4 p.m.
7 a.m. 2 p.m. 7 a.m. 2 p.m. 7 a.m. 2 p.m. 7 a.m. 2 p.m. 7 a.m. 2 p.m. 7 a.m. 2 p.m.

6 a.m. 5 p.m. 12 p.m. 5 p.m. 12 p.m. 5 p.m. 9 a.m. 5 p.m. 6 a.m. 1 a.m.
7 a.m. 2 p.m. 7 a.m. 2 p.m. 7 a.m. 2 p.m. 7 a.m. 2 p.m. 7 a.m. 2 p.m. 7 a.m. 2 p.m. 7 a.m. 2 p.m.
6 a.m. 12 a.m. 5 p.m. 8 p.m. 5 p.m. 8 p.m. 5 p.m. 1 a.m. 6 a.m. 1 a.m.

5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 5 p.m. 6 a.m. 5 p.m. 6 a.m. 5 p.m. 6 a.m. 5 p.m. 6 a.m. 5 p.m.
6 a.m. 5 p.m. 6 a.m. 5 p.m. 6 a.m. 5 p.m. 6 a.m. 5 p.m. 6 a.m. 5 p.m.

6 a.m. 12 a.m. 8 a.m. 3 p.m. 8 a.m. 3 p.m. 8 a.m. 3 p.m. 6 a.m. 1 a.m.
6 a.m. 5 p.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 1 a.m. 6 a.m. 5 p.m.

4 p.m. 12 a.m. 4 p.m. 12 a.m. 4 p.m. 12 a.m. 4 p.m. 12 a.m. 4 p.m. 1 a.m. 6 a.m. 1 a.m.
5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 3 p.m. 6 a.m. 3 p.m. 6 a.m. 3 p.m. 6 a.m. 3 p.m. 6 a.m. 3 p.m. 6 a.m. 3 p.m. 6 a.m. 3 p.m.
6 a.m. 7 p.m. 7 a.m. 3 p.m. 7 a.m. 3 p.m. 7 a.m. 3 p.m. 7 a.m. 3 p.m. 7 a.m. 5 p.m. 6 a.m. 7 p.m.
4 p.m. 12 a.m. 4 p.m. 12 a.m. 4 p.m. 12 a.m. 4 p.m. 12 a.m. 4 p.m. 12 a.m. 4 p.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 10 p.m. 1 p.m. 10 p.m. 4 p.m. 10 p.m. 4 p.m. 10 p.m. 4 p.m. 10 p.m. 4 p.m. 1 a.m. 6 a.m. 1 a.m.

7 a.m. 7 p.m. 7 a.m. 7 p.m. 7 a.m. 7 p.m. 7 a.m. 7 p.m. 7 a.m. 7 p.m. 7 a.m. 7 p.m.
6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 1 a.m.
6 a.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 12 a.m. 5 p.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 6 p.m. 6 a.m. 6 p.m. 6 a.m. 6 p.m. 6 a.m. 6 p.m. 6 a.m. 6 p.m. 6 a.m. 6 p.m. 6 a.m. 6 p.m.
1 p.m. 12 a.m. 1 p.m. 12 a.m. 1 p.m. 12 a.m. 1 p.m. 12 a.m. 1 p.m. 12 a.m. 1 p.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 12 a.m. 12 p.m. 12 a.m. 5 p.m. 12 a.m. 12 p.m. 12 a.m. 6 a.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 7 p.m. 6 a.m. 7 p.m. 6 a.m. 7 p.m. 6 a.m. 7 p.m. 6 a.m. 7 p.m. 6 a.m. 7 p.m. 6 a.m. 7 p.m.
6 a.m. 7 p.m. 6 a.m. 7 p.m. 6 a.m. 7 p.m. 6 a.m. 7 p.m. 6 a.m. 7 p.m. 6 a.m. 7 p.m. 6 a.m. 7 p.m.
6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 12 a.m. 8 a.m. 12 a.m. 8 a.m. 12 a.m. 8 a.m. 12 a.m. 8 a.m. 12 a.m. 8 a.m. 1 a.m. 5 p.m. 1 a.m.

6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 4 p.m. 6 a.m. 12 a.m. 6 a.m. 4 p.m. 6 a.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 1 a.m. 6 a.m. 1 a.m.
6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 12 a.m. 6 a.m. 1 a.m. 6 a.m. 1 a.m.

Table 3
The hourly employee requirements for a given week (1 = 6–7 a.m., 2 = 7–8 a.m., . . .) for the Example.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Gr DT FF BC Co Gr DT FF BC Co Gr DT FF BC Co Gr DT FF BC Co Gr DT FF BC Co Gr DT FF BC Co Gr DT FF BC Co

1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 6 a.m.
2 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 7 a.m.
3 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1 2 8 a.m.
4 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 3 2 1 1 2 9 a.m.
5 2 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 3 2 1 1 2 10 a.m.
6 2 2 1 1 1 3 2 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 3 4 3 1 1 3 11 a.m.
7 3 3 1 1 2 4 3 1 1 3 4 3 1 2 3 4 3 1 2 3 4 3 1 2 3 4 4 1 2 3 4 4 2 2 4 12 p.m
8 2 2 1 1 2 3 2 1 1 2 2 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 3 1 1 2 4 4 2 2 4 1 p.m.
9 2 2 1 1 2 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 3 3 1 1 3 2 p.m.
10 2 2 1 1 2 2 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 3 2 1 1 2 3 p.m.
11 2 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 3 2 1 1 2 4 p.m.
12 2 1 1 1 1 3 2 1 1 2 2 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 3 1 1 2 2 2 1 1 2 5 p.m.
13 2 2 1 1 1 3 2 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 3 2 2 1 1 2 6 p.m.
14 2 1 1 1 1 2 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1 2 3 2 1 1 2 2 1 1 1 7 p.m.
15 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 8 p.m.
16 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 1 2 1 1 1 9 p.m.
17 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 1 1 1 2 1 1 10 p.m.
18 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 11 p.m.
19 2 1 1 2 1 1 12 p.m.

44
M

.H
ojati,A

.S.Patil/European
Journal

of
O

perational
R

esearch
209

(2011)
37–

50

M. Hojati, A.S. Patil / European Journal of Operational Research 209 (2011) 37–50 45
attractive to select. In (24), d1; d2; d3 are small numbers that are determined by trial and error. Too small a value for them result in an
infeasible solution but too large a value results in a large total deviation. We used d1 ¼ d2 ¼ d3 ¼ 3. Eq. (25) is just the maximum 5 work
day constraint. Eq. (26) is just the target weekly work hours constraint. Inequality (27) will force a maximum of one shift length to be se-
lected per day. Inequality (28) will force the variable for a given shift length to be 0 if employee ei is unavailable or ineligible for any shift of
that length on that day.

Each integer linear program above has 42 binary variables, but a maximum of five of them can be 1. Therefore, the computation time for
solving each ILP is usually just a few seconds.

Although most instances of the problem are solved feasibly using the integer linear programming-based heuristic above, some instances
require the following special adjustments.

4.2.2. Special adjustments required

1. The total number of remaining employees available and eligible for at least one shift during day d, Er
d, is sometimes inflated. This hap-

pens when more than m ‘‘similar” employees, m P 1, are available and eligible for a set of m shifts on a day and those shifts are the only
possible shifts on that day for these employees. Let ebSr

ed
2M

= set of similar employees who are only available and eligible for a set of m

shifts, M, on day d. Then, compute and subtract ðjebSr
ed
2M
j �mÞ from Er

d, where j j denotes the cardinality (i.e., number of members) of a set.

In practice (i.e., based on our experience with random problem experiments, described in Section 6 below), we have found that inves-
tigating subsets of employees who are available and eligible for up to m shifts, 1 6m 6 12, is sufficient.

2. If the number of shifts remaining on day d, bSr
d, equals the number of employees available and eligible for at least one shift on the day, Er

d,
possibly after adjustment 1 above, then it is important that only members of ebSr

ed
2M
; 1 6jM j6 12, be assigned to their available and

eligible shifts. Otherwise, we will end up with more shifts than employees on day d. Therefore, remove all the other employees asso-
ciated with these shifts.

3. If there are two or more similar shifts (in terms of availability and eligibility for a subset of size m, m P 2, of the remaining employees)
with Er

ŝtd 6 m, then Er
ŝtd of each of these shifts should be reduced by the number of these shifts �1. This is because assigning one of these

shifts to an available and eligible employee will automatically reduce Er
ŝtd for the rest of these shifts. More formally, let
Table 4
The des

Tota
Num

Table 5
The des

Hour
Num

Hour
Gr
DT
FF
BC
Co

Num
Gr
DT
FF
BC
Co
ŝr
dðsimilar : Er

ŝtd6mÞ¼ set of shifts on day d with Er
ŝtd6m which are available and eligible for a subset of size m of the remaining employees
Then, for each member of ŝr
dðsimilar : Er

ŝtd 6 mÞ, reduce Er
ŝtd byĵsr

dðsimilarÞ : Er
ŝtd 6 mÞj � 1. In practice, we have found that investigating sub-

sets of shifts with Er
ŝtd up to m, 2 6m 6 7 is sufficient.

4. If the number of shifts remaining on day d, bSr
d, equals the number of employees available and eligible for at least one shift on the day, Er

d,
possibly after adjustment 1 above, then it is important that only members of ŝr

dðsimilar : Er
ŝtd 6 mÞ; 2 6 m 6 7, be assigned to their avail-

able and eligible employees. Otherwise, we will end up with more shifts than employees on day d. Therefore, remove all the other shifts
associated with the employees who are available and eligible for ŝr

dðsimilar : Er
ŝtd 6 mÞ. This also applies for shifts with Er

ŝtd ¼ 1.

5. Example

We will use the problem given in Loucks (1987) and Loucks and Jacobs (1991), which is from a McDonald’s restaurant, as a preliminary
test problem. This enables comparison of performance of our and their solution methods.
ired number of shifts per day for the Example.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday Total

l employee hours required 110 116 117 120 123 141 151 878
ber of shifts desired 20 21 21 22 22 26 28 160

ired number of daily shifts for each task for the Example.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday Total

s required 110 116 117 120 123 141 151 878
ber of shifts 20 21 21 22 22 26 25 160

s required by task:
37 42 40 42 42 45 49
27 26 26 27 29 35 36
11 9 11 11 11 15 13
13 15 16 16 16 18 17
22 24 24 24 25 28 36

ber of shifts by task:
7 8 7 8 8 8 9
5 5 5 5 5 6 7
2 2 2 2 2 3 2
2 3 3 3 3 3 3
4 4 4 4 4 5 7

46 M. Hojati, A.S. Patil / European Journal of Operational Research 209 (2011) 37–50
There are 40 employees. Some have the skill for one or two of the tasks, and the others know most or all the five tasks. These and weekly
target hours for a specific week are given in Table 1. Some employees are available some of the days and a part of the day, and the others are
available all days and all operating hours during the day. These are given in Table 2. For each day and each task, the hourly employee
requirements are derived from Appendix B of Loucks (1987). These are given in Table 3.

Our shift scheduling method starts by determining the number of employee-shifts desired for each task on each day. We assume that an
average employee will work 4 days a week, thus 40 employees will be assigned 160 employee-shifts. Splitting 160 in proportion to total
Table 6
The determined good shifts for each day (1 = 6–7 a.m., 2 = 7–8 a.m.,. . .) for the Example.

Gr DT Co BC FF

Start End Start End Start End Start End Start End

Sunday
1 3 1 7 1 8 3 9 4 11
1 7 5 9 7 10 10 15 12 14
4 8 7 11 9 11
7 11 10 13 12 18
9 11 13 18
12 18
12 18

Monday
1 3 1 7 1 7 2 8 6 11
1 7 6 8 6 8 9 11 12 14
4 8 7 10 7 13 12 16
6 8 10 14 12 18
7 11 12 18
9 13
12 18
12 18

Tuesday
1 7 1 7 1 7 2 7 2 4
1 7 6 8 6 8 7 11 6 11
6 8 6 13 7 13 12 16 12 14
7 11 12 14 12 18
9 13 13 18
12 18
13 18

Wednesday
1 3 1 7 1 7 2 7 2 4
1 7 6 8 6 8 7 11 6 11
4 8 6 13 7 13 12 16 12 14
6 8 11 13 12 18
7 11 13 18
9 13
12 18
12 18

Thursday
1 3 1 7 1 7 2 7 2 4
1 7 6 8 6 8 7 11 6 11
4 8 6 13 7 14 12 16 12 14
6 8 10 14 12 18
7 11 13 18
9 13
12 18
12 18

Friday
1 3 1 7 1 7 2 7 2 4
1 7 6 8 6 8 7 11 6 11
4 8 6 8 6 13 12 18 12 17
6 11 7 13 12 14
7 11 10 14 13 19
12 14 12 17
12 19 16 19
12 19

Saturday
1 3 1 3 1 3 2 8 3 8
1 8 3 9 3 9 7 11 7 13
4 8 4 9 4 9 12 16
4 8 6 8 6 8
6 11 7 11 7 11
9 13 10 13 10 13
9 13 12 19 12 19
14 19
14 19

M. Hojati, A.S. Patil / European Journal of Operational Research 209 (2011) 37–50 47
employee hours required per day results in the desired number of daily shifts, which are given in Table 4. We rounded the numbers to the
nearest integer, but when the total did not sum to 160, we rounded the number closest to .5 the other way. For example, Sunday should
have 20 shifts because (110/878)(160) = 20.0456, which is rounded to 20.

For each day, these target (desired) number of employee-shifts are further subdivided in proportion to employee hours required for each
task. Again, we rounded the numbers to the nearest integer, but when the total did not sum right, we rounded the number closest to .5 the
other way. The results are shown in Table 5. For example, Sunday Grill should have 7 shifts because (37/110)(20) = 6.727, which is rounded
to 7.

Then, for each possible shift (on each day and for each task) the number of employees available and eligible for it is computed using
Excel’s VBA. For example, for the 6 a.m.–9 a.m. Sunday Grill shift, using the information given in Tables 1 and 2, there are 13 available
and eligible employees.

For each day and task, using Excel’s standard Solver, we solved the integer linear program (12)–(16) to determine the good shifts. There
were 35 ILPs, one for each of 5 tasks on each of 7 days. Each ILP for Sunday–Thursday had 83 variables and 19 constraints, and each ILP for
Friday–Saturday had 89 variables and 20 constraints. The results are displayed in Table 6. Each ILP took approximately 2 seconds to find an
optimal solution.

Next, we assigned the good shifts to employees using the target hours given in Table 1. This involved solving 40 ILPs (24)–(30), one for
each of the 40 employees. Each ILP had 45 variables and 93 constraints. Our heuristic resulted in the assignments given in Table 7, where
Table 7
The assignments of good shifts to employees for the Example.

Iteration Worker Sunday Monday Tuesday Wednesday Thursday Friday Saturday Target Worked Over Under

1 wkr1 d6 t3 6–8 6 3 3
2 wkr3 d1 t5 12–14 8 3 5
3 wkr4 d6 t1 4–8 d7 t1 4–8 10 10
4 wkr5 d4 t1 4–8 d7 t1 4–8 10 10
5 wkr7 d1 t1 4–8 d2 t1 4–8 d5 t1 4–8 15 15
6 wkr9 d3 t1 13–18 d6 t1 12–14 d7 t1 1–3 12 12
7 wkr8 d2 t5 12–14 d4 t5 12–14 d6 t5 12–17 d7 t1 14–19 18 18
8 wkr19 d1 t1 1–3 d2 t1 9–13 d3 t5 12–14 d5 t5 12–14 d7 t1 14–19 20 20
9 wkr18 d6 t1 12–19 d7 t1 1–8 16 16
10 wkr25 d1 t1 9–11 d2 t1 12–18 d4 t1 9–13 d5 t1 9–13 20 20
11 wkr29 d1 t1 12–18 d2 t1 7–11 d4 t1 7–11 d6 t1 1–3 d7 t1 9–13 25 25
12 wkr26 d1 t1 7–11 d3 t1 9–13 d5 t1 7–11 d6 t5 2–4 d7 t1 6–11 24 24
13 wkr34 d1 t1 12–18 d4 t1 12–18 d5 t1 12–18 d6 t1 6–11 d7 t1 9–13 32 32
14 wkr37 d2 t1 12–18 d3 t1 12–18 d4 t1 12–18 d5 t1 12–18 d6 t1 1–7 35 35
15 wkr10 d2 t4 9–11 d4 t5 2–4 d5 t5 2–4 d6 t3 1–7 16 16
16 wkr40 d1 t1 1–7 d2 t1 1–3 d3 t1 1–7 d4 t1 1–7 d6 t1 12–19 32 32
17 wkr2 d3 t5 2–4 d5 t5 6–11 d7 t2 1–3 12 12
18 wkr24 d3 t4 7–11 d4 t4 7–11 d5 t4 7–11 d6 t4 2–7 d7 t3 1–3 24 24
19 wkr15 d1 t2 13–18 d3 t2 12–14 d6 t3 12–14 d7 t2 6–8 15 15
20 wkr35 d1 t3 1–8 d2 t3 1–7 d5 t3 7–14 d6 t3 6–13 d7 t3 10–13 35 35
21 wkr32 d1 t3 12–18 d2 t5 6–11 d4 t5 6–11 d5 t3 6–8 d7 t3 6–8 25 25
22 wkr6 d1 t3 9–11 d3 t1 7–11 d6 t1 7–11 d7 t4 12–16 18 18
23 wkr12 d1 t4 10–15 d2 t2 6–8 d3 t2 6–8 d5 t2 6–8 15 15
24 wkr14 d2 t3 12–18 d4 t2 11–13 d7 t2 10–13 14 14
25 wkr17 d3 t3 6–8 d4 t2 6–8 d5 t4 2–7 d6 t4 7–11 d7 t5 7–13 24 24
26 wkr20 d2 t3 6–8 d3 t5 6–11 d4 t3 6–8 d6 t2 6–8 d7 t2 7–11 20 20
27 wkr11 d2 t2 7–10 d3 t1 6–8 d4 t1 1–3 d5 t1 1–3 d6 t2 1–7 20 20
28 wkr27 d2 t1 6–8 d3 t1 1–7 d4 t1 6–8 d5 t1 1–7 d7 t3 7–11 25 25
29 wkr16 d2 t1 1–7 d3 t4 2–7 d5 t1 6–8 d6 t2 6–8 d7 t5 3–8 25 25
30 wkr13 d1 t3 7–10 d5 t4 12–16 d6 t2 16–19 d7 t4 7–11 18 18
31 wkr23 d1 t2 10–13 d2 t4 12–16 d3 t4 12–16 d4 t4 12–16 d7 t3 4–9 24 25 1
32 wkr22 d4 t2 13–18 d5 t3 12–18 d6 t3 13–19 20 20
33 wkr21 d1 t2 5–9 d3 t3 1–7 d4 t4 2–7 d7 t3 12–19 26 26
34 wkr30 d1 t2 7–11 d2 t2 10–14 d3 t3 12–18 d4 t3 12–18 d5 t2 13–18 30 30
35 wkr39 d1 t4 3–9 d3 t2 13–18 d5 t2 10–14 d6 t2 10–14 d7 t4 2–8 30 30
36 wkr28 d2 t2 1–7 d4 t2 1–7 d6 t5 6–11 d7 t2 4–9 22 26 4
37 wkr36 d1 t2 1–7 d3 t2 1–7 d4 t3 1–7 d5 t2 1–7 d6 t2 12–17 32 34 2
38 wkr31 d2 t2 12–18 d3 t3 7–13 d4 t3 7–13 d6 t2 7–13 d7 t2 3–9 35 35
39 wkr33 d1 t5 4–11 d2 t3 7–13 d5 t3 1–7 d6 t4 12–18 d7 t3 3–9 35 36 1
40 wkr38 d2 t4 2–8 d3 t2 6–13 d4 t2 6–13 d5 t2 6–13 d7 t2 12–19 35 39 4

12 8

Table 8
Comparison of results of Loucks and our solution method for the Example.

Loucks Our method

Hours of overstaffing 6 4
Total deviation from target weekly hours 40 20a

Number of task changes within shifts 91 7b

a This happens to be the optimal total deviation.
b Due to adding some odd jobs such as Lobby Clean to regular tasks such as Bin Call.

48 M. Hojati, A.S. Patil / European Journal of Operational Research 209 (2011) 37–50
days 1, . . . ,7 are Sunday, . . . , Saturday, and Tasks 1, . . . ,5 are Grill, Drive Thru, Counter, Bin Call, and French Fries, respectively. The 40 ILPs
took approximately 18 minutes to find their optimal solutions.

Table 8 compares the results of our method with that of Loucks (1987) and Loucks and Jacobs (1991). Clearly, our method has found a
better solution. Note that because Loucks (1987) and Loucks and Jacobs (1991) used task-hours (vs our task-shifts) as unit work interval,
their method resulted in significantly more task changes within shifts.

Just out of interest, we entered our good shifts derived in the above example as fixed shifts in the ESP software (which uses Sim-
ulated Annealing for assigning the shifts to the employees), and ran it. Unfortunately, after a few minutes ESP terminated with 6 unas-
signed shifts.

6. Computational experiments

Based on the data from Loucks (1987) and Loucks and Jacobs (1991), we generated 100 random problems to test our solution method.
The random problems were created ‘‘backwards” so that the optimal solution for each problem had zero overstaffing and zero total devi-
ation from target weekly hours for each employee. For each of the 40 employees, the procedure was to randomly determine:

a. his/her Number of workdays: used frequency distribution
Days
 1
 2
 3
 4
 5

Frequency
 2
 1
 8
 12
 17
and days worked: used frequency distribution
Day
 Sunday
 Monday
 Tuesday
 Wednesday
 Thursday
 Friday
 Saturday

Frequency
 20
 21
 22
 23
 23
 26
 27
b. the start time for each shift (1 = 6 a.m., 2 = 7 a.m., etc.): used frequency distribution:
Start time
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

Frequency
 33
 16
 10
 13
 7
 34
 29
 8
 14
 12
 9
 33
 10
 5
 2
 1
and shift length (which depends on the start time) for each shift: used frequency distributions
6 a.m. start time
 Duration
 3 hours
 4
 5
 6
 7
 8

Frequency
 7
 1
 1
 1
 20
 3
7 a.m. start time
 Duration
 3 hours
 4
 5
 6
 7
 8

Frequency
 5
 1
 1
 5
 3
 1
. . .
8 p.m. start time
 Duration
 3 hours
 4

Frequency
 1
 1
9 p.m. start time
 Duration
 3 hours

Frequency
 1
c. the number of tasks he/she can perform: used frequency distribution
No. of tasks
 1
 2
 3

Frequency
 17
 14
 9
and the nature of tasks employee can perform: used frequency distributions:

if can perform 1 task:
No. of tasks
 Grill
 Counter

Frequency
 13
 6
if can perform 2 tasks:
No. of tasks
 Grill & Drivethru
 Grill & Counter
 Drivethru & Counter

Frequency
 1
 1
 12
d. the task performed on each work day: used frequency distributions:
If can perform Grill & Drivethru
 Task
 Grill
 Drivethru

Frequency
 1
 1

M. Hojati, A.S. Patil / European Journal of Operational Research 209 (2011) 37–50 49
If can perform Grill & Counter
 Task
 Grill
 Counter

Frequency
 1
 1
If can perform Drivethru & Counter
 Task
 Drivethru
 Counter

Frequency
 2
 1
If can perform Grill, Counter, and Drivethru
Task
 Grill
 Counter
 Drivethru

Frequency
 10
 1
 10
e. whether available or not on a non-work day: used frequency distribution
Available
 Yes
 No

Frequency
 1
 1
f. the start time (1 = 6 a.m., 2 = 7 a.m., etc.) and availability length for each work day and available non-work days: used frequency dis-

tributions Available start time:
Start time
 1
 2
 3
 4
 5
 6
 7
 8
 9

Frequency
 155
 44
 22
 14
 12
 11
 14
 15
 8

Start time
 10
 11
 12
 13
 14
 15
 16

Frequency
 7
 19
 30
 10
 3
 2
 1
Availability length: If available start time = 6 a.m.
Duration
 3 hours
 4
 5
 6
 7
 8
 9
 10
 11

Frequency
 1
 1
 1
 1
 1
 1
 8
 3
 17

Duration
 12
 13
 14
 15
 16
 17
 All day

Frequency
 8
 17
 1
 1
 2
 1
 91
If available start time = 7 a.m.
Duration
 3 hours
 4
 5
 6
 7
 8
 9
 10
 11

Frequency
 1
 1
 1
 1
 18
 5
 2
 2
 1

Duration
 12
 13
 14
 15
 16
 17

Frequency
 7
 1
 1
 1
 1
 1

. . .
If available start time = 8 p.m.
Duration
 3 hours
 4

Frequency
 1
 1
If available start time = 9 p.m.
Duration
 3 hours

Frequency
 1
Note that the availability period should include the shift period during a work day determined in step b. We used 6 a.m. to midnight work
hours every day.

All the steps of the algorithm, except the ILPs, were programmed in Excel’s VBA. The ILPs were solved using Excel’s standard Solver. Our
method found a feasible solution to every problem, and created an average of only 1.01 hours of over staffing and an average of 17.31 hours
of total deviation from the weekly targets, which is only approximately half-an-hour per employee. The average time to solve one problem
was approximately 5 minutes.

7. Extensions of our method

The model used in this paper includes the basic characteristics of heterogeneous, part-time, limited-available employee scheduling
problem. However, individual managers may have additional requirements. Some of these can be included in our method. Two of these
and their treatment are as follows:

50 M. Hojati, A.S. Patil / European Journal of Operational Research 209 (2011) 37–50
(a) Lunch breaks for long shifts. These can easily be included by inserting a break period in the long shifts of shift determination phase of

Section 4.1: For example, the coefficients ahstd, for all h, in Constraint (13) for a 6 a.m. till 3 p.m. shift with a lunch break during

10 a.m. to 11 a.m. hour can be represented by the column (1,1,1,1,0,1,1,1,1,0,0,0, . . .).

(b) At least two consecutive days off. This can only be done as a soft ‘‘constraint” by including a term in the objective function (24) which

would make at least two-consecutive days offs attractive. This is done as follows. To the ILP (24)–(30), add six binary variables,

u1, . . . ,u6, which represent pairs of consecutive days Sunday–Monday, . . . , Friday–Saturday, and six constraintsP
LxL;d¼1 þ

P
LxL;d¼2 6 2ð1� u1Þ; . . . ;

P
LxL;d¼6 þ

P
LxL;d¼7 6 2ð1� u6Þ, and add �ðu1 þ u2 þ u3 þ u4 þ u5 þ u6Þ to (24). We have found

through random experiments that approximately 80% of employee will have at least one two-consecutive days offs using this

modification.

8. Conclusion

In this article, we have described a two-stage procedure for solving the employee scheduling problem for services employing hetero-
geneous, part-time employees with limited availability. First, good shifts are determined using a series of small integer linear programs
for each day and each task. Then, an integer linear programming-based heuristic is used to assign the good shifts to the employees, one
employee at a time. This heuristic assigns all the shifts of an employee to him/her at once, as opposed to assigning one shift at a time
to an employee, done by most other methods given in the literature. Our method considers all the constraints for each employee and there-
fore does not need backtracking (i.e., exchanging shifts between two employees).

We have shown, through solving many random problems, that our method is robust. It provided a close-to-optimal (feasible) solution
every time.

References

Alfares, H.K., 2004. Survey, categorization, and comparison of recent tour scheduling literature. Annals of Operations Research, 145–175.
Degnan Manning, C., Garf, R., Sweeney, J. 2006. Workforce Management Landscape: The Right People in the Right Place at the Right Time. AMR Research.
Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D., 2004. An annotated bibliography of personnel scheduling and rostering. Annals of Operations Research, 21–144.
Eveborn, P., Ronnqvist, M., 2004. Scheduler—A System for Staff Planning. Annals of Operations Research, 21–45 (12, Special Issue on Staff Scheduling and Rostering).
Glover, F., McMillan, C., 1986. The general employee scheduling problem: An integration of MS and AI. Computers and Operations Research 13 (5), 563–573.
Gopalakrishnan, M., Gopalakrishnan, S., Miller, D.M., 1993. A decision support system for scheduling personnel in a newspaper publishing environment. Interfaces 23 (4),

104–115.
Gordon, L., Erkut, E., 2004. Improving volunteer scheduling for the Edmonton folk festival. Interfaces 34 (5), 367–376.
Litchfield, J.A., Ingolfsson, A., Cheng, K.J., 2003. Rostering for a restaurant. INFOR 41 (3 Aug), 287–300.
Loucks, J.S. 1987. A Multi-objective Heuristic Procedure for the Tour Scheduling and Task Assignment of Fast Food Restaurant Workers. PhD Thesis, Indiana University.
Loucks, J.S., Jacobs, F.R., 1991. Tour scheduling and task assignment of a heterogeneous workforce: A heuristic approach. Decision Sciences 22 (4 Sep/Oct), 719–738.
Love Jr., R.R., Hoey, J.M., 1990. Management science improves fast-food operations. Interfaces 20 (2 Mar–Apr), 21–29.
Thompson, G.M. 1988. A Comparison of Techniques for Scheduling Non-homogeneous Employees in a Service Environment Subject to Non-cyclical Demand. PhD Thesis,

Florida State University.
Zolfaghari, S., El-Bouri, A., Namiranian, B., Quan, V., 2007. Heuristics for large scale labour scheduling problems in retail sector. INFOR 45 (3 Aug), 111–122.

	An integer linear programming-based heuristic for scheduling heterogeneous, part-time service employees
	Introduction
	Literature review
	Problem formulation
	Our solution method
	Determining good shifts
	Assigning the good shifts to the employees
	Integer linear programming-based heuristic for assignment of good shifts to employees
	Special adjustments required

	Example
	Computational experiments
	Extensions of our method
	Conclusion
	References

