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Abstract. Locating longest common subsequences is a typical and
important problem. The original version of locating longest common sub-
sequences stretches a longer alignment between a query and a database
sequence finds all alignments corresponding to the maximal length of
common subsequences. However, the original version produces a lot of
results, some of which are meaningless in practical applications and rise
to a lot of time overhead. In this paper, we firstly define longest com-
mon subsequences with limited penalty to compute the longest common
subsequences whose penalty values are not larger than a threshold τ .
This helps us to find answers with good locality. We focus on the effi-
ciency of this problem. We propose a basic approach for finding longest
common subsequences with limited penalty. We further analyze features
of longest common subsequences with limited penalty, and based on it
we propose a filter-refine approach to reduce number of candidates. We
also adopt suffix array to efficiently generate common substrings, which
helps calculating the problem. Experimental results on three real data
sets show the effectiveness and efficiency of our algorithms.

Keywords: Longest common subsequence · Penalty score · Common
substring

1 Introduction

The longest common subsequence (LCS) problem is a classic and well studied
problem in computer science with extensive applications in diverse areas ranging
from spelling error corrections to molecular biology. Especially in bioinformatics,
LCS is the most important metric in all of local alignments, which are used
for comparing primary biological sequence information, such as the amino-acid
sequences of proteins or the nucleotides of DNA sequences. Locating LCS enables
a researcher to compare a query sequence with a library or database of sequences,
and identify library sequences that resemble the query sequence. The longest
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common subsequence problem for two strings, is to find a common subsequence
in both strings, having maximum possible length, where a subsequence of a string
is obtained by deleting zero or more symbols of that string. In this paper, we
require to get their matching regions for the strings.

The original version of LCS stretches a longer alignment between the query
and the database sequence in the left and right directions, from the position
where the exact match occurred. The extension does not stop until the accu-
mulated threshold. However, in practice, the original LCS produces too many
alignments, some of which are meaningless. For example, bio-scientists prefer to
find matches of bio-sequences locally (i.e. within a small region). To tackle this
problem, in this paper we propose a new version of LCS, called longest com-
mon subsequences with limited penalty, denoted LCSp. LCSp adopts a penalty
threshold to maintain the same level of sensitivity for detecting sequence simi-
larity.

The main challenges and contributions of this paper are listed as follows:

– In order to satisfy the requirement of real applications, we propose a new
version of longest common subsequences with limited penalty score in Sect. 3.
In order to be consistent with the alignment problem in bio-sequences, we
adopt the flexible scoring scheme in bio-applications to quantify penalties in
the LCS.

– Obviously, generating LCSs using dynamic programing and checking every
generated LCS under the penalty threshold are time consuming. We propose
an approach by concatenating common substrings to avoid the dynamic pro-
gramming in Sect. 4. Furthermore, this could be help to generate small number
of LCSs for checking using the penalty threshold. This algorithm can retrieve
all correct results, and is thus an exact algorithm.

– The number of concatenated common substrings could be large, especially
when the given strings are long. In order to reduce this number, we propose
a filter-refine approach to further improve our algorithm, which can avoid
useless concatenated common substrings and early terminate calculations in
Sect. 5. We also in Sect. 6 to show how to efficiently find common substrings
by constructing suffix array index structure.

– We conduct experimental evaluations on three real data sets with different
alphabets, lengths, and distributions to test and analyze our algorithms in
Sect. 7. The results demonstrate the effectiveness and efficiency of our proposed
algorithms.

2 Related Work

A lot of research efforts have been made to design algorithms for string alignment,
such as Needleman-Wunsch [14], Smith-Waterman [18], and their correspond-
ing improvements OASIS [14], BWT-SW [11] and ALAE [21], all of which are
based on dynamic programming. When conducting sequence comparison, these
algorithms consider exact matching, as well as insertion, deletion and substitu-
tion, and assign a score scheme to these transformation operations. The goal
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of sequence matching is to find out the optimal matching, i.e. maximizing the
number of matches and minimizing the number of spaces and mismatches. These
algorithms usually suffer large space consumption, requiring a space complexity
of O(mn) [17], where m and n are the lengths of the two strings.

Although improvements have been made to reduce space complexity and
enhance running efficiency using suffix array, they might return unsatisfactory
results, which is caused by inappropriate score setting. Such a result typically
acquires a decent score in their forepart, but confronts a score drop in the mid-
part because of mismatches, and gets a relatively high score in the last part.
As a consequence, these results usually end up with high overall scores, but are
still unsatisfactory since their mismatched mid-parts are inconsistent with users’
actual demands. Edit distance based approaches [8] retrieve dissimilar parts of
the two strings, and restore them to the original strings, based on which the
string similarity is evaluated. Other algorithms like BLAST [10] firstly acquire
exact matched part of the two strings, then expand it to left/right, and form
high-score matched sequences. In spite of their higher efficiency compared to
dynamic programming based algorithms, they cannot guarantee retrieving all
high-score segments without omission.

The classic dynamic programming solution to LCS problem, invented by
Wagner and Fischer [19], has O(mn) worst case running time. To reduce the
space complexity, Hirschberg [4] provide an algorithm with O(n) worst space
cost, using a divide-and-conquer approach. The fastest known algorithm by
Masek and Paterson [13] runs in O(n2/ log n) time. However, faster algorithms
exist with complexities depending on special cases, such as when the input con-
sists of permutations or when the output is known to be very long or very short.
For example, Myers in [15] and Nakatsu et al. in [16] presented an O(nB) algo-
rithm, where the parameter B is the simple Levenshtein distance between the
two given strings [12]. Hunt and Szymanski [3] studied the complexity of the
LCS problem in terms of matching index pairs, i.e., they defined t to be the
number of index-pairs (i, j) with ai = bj (such a pair is called a match) and
designed an algorithm that finds the LCS of two sequences in O(t log n) time.
For a survey on the LCS problem see [2].

The rest of this paper is structured as follows: Sect. 3 elaborates the prelim-
inaries of this paper and the problem definition; Sect. 4 proposes a basic app-
roach for finding longest common subsequences with limited penalty. In Sect. 5,
we analyze features of longest common subsequences with limited penalty, and
based on it we propose a filter-refine approach to reduce number of candidates.
And in Sect. 6 we adopt suffix array to efficiently generate common substrings,
which helps calculating the problem. In Sect. 7 we present experimental results
on real data sets to demonstrate the accuracy and time efficiency of the proposed
technique. Then finally in Sect. 8, we conclude the paper.

3 Preliminaries and Problem Definition

Let Σ be an alphabet. For a string X of the characters in Σ, we use |X| to denote
the length of X, X[i] to denote the i-th character of X (starting from 1), and
X[i . . . j] to denote the substring from its i-th character to its j-th character.
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A subsequence of a string is obtained by deleting zero or more symbols of
that string. The longest common subsequence problem for two strings, is to find
a common subsequence in both strings, having maximum possible length.

Definition 1. Longest common subsequence (LCS). Given two strings X =
X[1]X[2] . . . X[m] and Y = Y [1]Y [2] . . . Y [n]. A subsequence X[i1]X[i2] . . . X[ir]
of X (0 < i1 < i2 < . . . < ir ≤ m) is obtained by deleting m − r symbols
from X. A common subsequence of two strings X and Y , denoted cs(X,Y ), is a
subsequence common to both X and Y . The longest common subsequence of X
and Y , denoted lcs(X,Y ) or LCS(X,Y ), is a common subsequence of maximum
length. We denote the length of lcs(X,Y ) by |lcs(X,Y )|.

For example, for the two strings X = traobcybgsfd and Y = tracycy
raogsfdy, lcs(X,Y ) = tracygsfd. Based on the alignment of longest common
subsequence, there exist three common substrings tra, cy, and gsfd along the
alignment of lcs(X,Y ). We use (Xa, Y b, l) to represent that X[a . . . a+l−1] and
Y [b . . . b+l−1] share a common substring, where a and b are start positions of
the matching substring in X and Y , respectively. In between every two adja-
cent common substrings, there is an uncommon substring pair 〈Xi, Yi〉. We use
penalty to evaluate the difference between all uncommon substrings in a longest
common subsequence.

Definition 2. Penalty of an LCS. Given two strings X and Y , let
〈X1, Y1〉, . . . , 〈Xk, Yk〉 be the pairs of uncommon substrings in lcs(X,Y ). The
penalty of lcs(X,Y ) is defined as:

p(lcs(X,Y )) =
k∑

i=1

α · M(Xi, Yi) + β · S(Xi, Yi), (1)

where M(Xi, Yi) and spaces S(Xi, Yi) represent the number of mismatches and
spaces between Xi and Yi, and (α, β) is the scoring scheme where α and β are
penalty scores of a mismatch and a space, respectively.1

For ease of presentation, we use Fig. 1 to show the penalties of different LCSs.
From this figure, we can easily see that there are two alignments corresponding to
the same LCS subsequence lcs(X,Y ) = tracygsfd. The first alignment consists
of common strings tra with (X1, Y 1, 3), cy with (X6, Y 4, 2), and gsfd with
(X9, Y 11, 4), and its penalty is 2β + (α + 4β). The second alignment consists of
tra with (X1, Y 1, 3), cy with (X6, Y 6, 2), and gsfd with (X9, Y 11, 4), and its
penalty is 2α+(α+2β). When both α and β equals 1, these two alignment have
different penalties 7 and 5.

1 Notice that, the definition of penalty score of LCS is different from edit distance
even when α = β = 1. The edit distance between two strings represents the minimal
number of edit operations transforming from one string to another string, which
does not guarantee to find an alignment with longest common subsequences as LCS
does.
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Fig. 1. Common substrings of X = traobcybgsfd and Y = tracycyraogsfdy.

Problem Definition. The problem of longest common subsequence with lim-
ited penalty (a.k.a. LCSp) is to locate positions of every exact matching sub-
strings along the longest common subsequences whose penalty is not greater than
τ given two strings X and Y , and a penalty threshold τ , denoted lcsp(X,Y, τ).

4 A Basic Approach Based on Common Substrings

A straightforward approach of locating LCSp includes the following three steps:
(i) calculate LCS using dynamic programming in O(mn) time, where m and
n are string lengths of the two given strings X and Y ; (ii) get all possible
alignments along the alignment of lcs(X,Y ) in O(n log n) (assuming m ≤ n);
and (iii) keep alignments whose penalty is not greater than the given penalty
threshold. Therefore, the total cost is O(mn).

Obviously, generating all LCSs firstly and then checking their penalties are
time consuming. Now we propose our approach based on common substrings
(We discuss how to get common substrings of X and Y in O(n) time in Sect. 6).
The basic idea of our approach is to start from the common substrings of X
and Y since the final results must contain certain substring pair in the set of
common substrings of X and Y . Then we concatenate the common substrings to
get longer substring pairs of X and Y (lines 4–9), and verify each concatenated
substring pair by calculating its penalty (lines 10–12). We call this baseline
approach BasicLCSp (see Algorithm 1).

Reexamine the two strings X = traobcybgsfd and Y = tracycyraogsfdy
and their common substrings tra with (X1, Y 1, 3), rao with (X2, Y 8, 3),
cy with (X6, Y 4, 2) and (X6, Y 6, 2), y with (X7, Y 15, 1), and gsfd with
(X9, Y 11, 4). The algorithm BasicLCSp firstly puts these common substrings
in a candidate set Cset. Secondly, it gets 10 concatenated substring pairs from
the above common substrings, which are 〈X[1 . . . 7], Y [1 . . . 5]〉, 〈X[1 . . . 7], Y [1
. . . 7]〉, 〈X[1 . . . 4], Y [1 . . . 10]〉, 〈X[1 . . . 7], Y [1 . . . 15]〉, 〈X[1 . . . 12], Y [1 . . . 14]〉,
〈X[6 . . . 12], Y [4 . . . 14]〉, 〈X[6 . . . 7], Y [4 . . . 15]〉, 〈X[6 . . . 7], Y [6 . . . 15]〉,
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Algorithm 1. BasicLCSp

Input: X and Y : Two strings; C: A set of common substrings; τ : A given
penalty threshold

Output: lcsp(X, Y, τ)

1 Common substrings Cset ← CalComStr(X, Y );
2 Rank strings in Cset in the order of their start positions in ascending order;
3 k ← number of common substrings in Cset;
4 for i = 1; i < k; i + + do

5 strc ← the i-th common substring (Xa, Y b, li) in Cset;
6 for j = i + 1; j ≤ k; j + + do

7 Let the j-th common substring be (Xc, Y d, lj);
8 if a < c && b < d then
9 Generate a candidate substring X ′ start from strc and end at the

j-th common string in Cset;
10 if penalty of X ′ ≤ τ then
11 Can ← X ′;
12 strc ← X ′;

13 return the longest string in Can;

〈X[2 . . . 7], Y [8 . . . 15]〉, and 〈X[2 . . . 12], Y [8 . . . 14]〉. The algorithm keeps the
concatenated substring as a candidate if its penalty ≤ τ . Finally it returns the
longest candidate as lcsp(X,Y, τ).

The algorithm BasicLCSp is correct. Any LCS of two strings X and Y must
contain their common substrings and it must start from one common substring
and end at another common substring. The time complexity of BasicLCSp is
O(k2), where k is the number of common substrings of X and Y .

5 Reducing Number of Concatenated Common
Substrings

The algorithm BasicLCSp enumerates all possible concatenated common sub-
strings. Some of them will not generate the LCSp. To locate LCSp efficiently,
we propose a filter-refine approach, called ImprovedLCSp. We first analyze the
feature of LCSp, based on which we carefully prune those common substrings
that could not generate LCSp. We propose one filtering in Sects. 5.1 and an
early termination approach to avoid useless calculations in Sect. 5.2.

5.1 Avoiding Useless Concatenation of Common Substrings

property 1. Let A be an alignment of an LCSp of X and Y under the penalty
threshold τ . For any two common substrings C1 with (Xa, Y b, l1) and C2 with
(Xc, Y d, l2) in A (a < c, b < d). The penalty of the concatenated substring pair
〈X[a, c+l2−1], Y [b, d+l2−1]〉 must satisfy p(X[a, c+l2−1], Y [b, d+l2−1]) ≤ τ .
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Lower Bound of Penalty. Let C1 with (Xa, Y b, l1) and C2 with (Xc, Y d, l2) be
two common substrings of strings X and Y , if there does not exist any common
substring C with (Xe, Y f , l3) (a < e < c, b < f < d), the lower bound of penalty
of concatenating C1 and C2 is

LB(C1, C2) = min(α, β) · max(c − a − l1, d − b − l1). (2)

Theorem 1. Two common substrings C1 with (Xa, Y b, l1) and C2 with (Xc,
Y d, l2) cannot belong to the same alignment of an LCSp if there does not
exist any common substring C with (Xe, Y f , l3) (a < e < c, b < f < d) and
LB(C1, C2) > τ

Proof. Assume C1 and C2 belong to the same alignment when Eq. 2 holds. Since
there does not exist any common substring C with (Xe, Y f , l3) (a < e < c, b <
f < d), we let 〈Xi, Yi〉 be the uncommon substring pair in between C1 and
C2, then according to Eq. 1, we know α · M(Xi, Yi) + β · S(Xi, Yi) ≤ τ . Since
min(α, β)max(|Xi|, |Yi|) ≤ M(Xi, Yi) + β · S(Xi, Yi), and |Xi| = c − a − l1,
|Yi| = d − b − l1, we can see the above assumption does not hold.

Based on Theorem 1, we can prune concatenated substrings that satisfy Eq. 2.
For example, let α = 1, β = 1. Given τ = 5, it is useless to concatenate the
two common substrings with (X6, Y 4, 2) and (X7, Y 15, 1) since min(α = 1,
β = 1) · max(7 − 6 − 2, 15 − 4 − 2) = 9 > τ . The same reason, we do not
concatenate (X1, Y 1, 3) with (X7, Y 15, 1), and (X6, Y 6, 2) with (X7, Y 15, 1).

5.2 Early Termination of Calculations

Since we want to find the longest common subsequences with limited penalty, we
prefer to check two common substrings with longest position distance. Therefore,
instead of storing common substrings in an ordered set, we store them in a lattice
such that we can use it to easily prune useless concatenation and early terminate
the calculation of LCSp.

A Lattice Structure. We use a lattice to store all common substrings of
X and Y . Each node in the lattice represents a common substring. Consider
any two common substrings with (Xa, Y b, l1) and (Xc, Y d, l2). If a < c and
b < d, we call (Xa, Y b, l1) dominates (Xc, Y d, l2). Furthermore, if there does
not exist any other common substring with (Xe, Y f , l3) such that a < e < c,
b < f < d, then there is an edge from (Xa, Y b, l1) to (Xc, Y d, l2), we call
(Xa, Y b, l1) strictly dominates (Xc, Y d, l2). We label the edge between any two
common substrings with strictly dominate relationship using the penalty of its
corresponding uncommon substring.

Figure 2 shows an example of the lattice for our running example. There is
an edge in between (X1, Y 1, 3) and (X6, Y 4, 2), and the edge is labelled 2 since
the penalty of concatenating these two common substrings is 2. Therefore, the
penalty of concatenating strings along the path (X1, Y 1, 3), (X6, Y 4, 2), and
(X7, Y 15, 1) is 2 + 7 = 9.
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(X1, Y 1, 3)

(X6, Y 6, 2)(X6, Y 4, ()2 X2, Y 8, 3)

(X9, Y 11, 4) (X7, Y 15, 1)

2 2 4

5
3 7

4
9 4

Fig. 2. A lattice of common substrings of X = traobcybgsfd and Y = tracycyraogsfdy

when α = 1 and β = 1.

Pruning Useless Concatenation Using the Lattice for Common Sub-
strings. From the above example, we can see that the lattice structure can
easily identify the strict dominate relationship between any two common sub-
string pairs. When the summation of labels in a path is greater than τ , we do
not need to concatenate common substrings along the path.

Algorithm 2 shows a pruning algorithm based on depth-first-search (DFS).
For every search step, it adjusts the permitted penalty score so that we could
avoid traversing those paths that could not generate LCSp.

Algorithm 2. Prune(L, τ)
Input: A lattice L for common substrings of X and Y , penalty threshold τ ;
Output: A pruned lattice;

// start from the root of L and traverse L using DFS

1 if L is a single node then
2 return L;

3 foreach node v pointed by the root r of L do
4 if edge(r, v) > τ then
5 remove the edge from r to v in L;

6 Prune(L, τ − edge(r, v));

Choosing a Good Calculation Order. In fact, we are only interested in the
longest common subsequences whose penalty is not greater than τ , therefore, it
is no need to calculate those common subsequences with shorter lengths.

Aiming at this target, we reorganize children of each node in the lattice by
ranking their lengths in descending order. Then by using the DFS, the path
with longest untraversed common strings will take precedence. When the first
lcsp(X,Y, τ) is found, we are safe to early terminate all calculations since the
later calculations can only generate a common subsequence with shorter length.

6 Efficiently Constructing Common Substrings

We can use dynamic programming to get all common substrings of X and Y in
O(mn) time. In order to accelerate this process, we can also use the suffix tree [20]
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Fig. 3. An example of SA array.

or suffix array [5]. Compared with the suffix tree, suffix array can be configured
in linear time [9] and small space cost [7], so we consider the establishment of
suffix array index structure.

Given a string X, its suffix array SA records the start positions of all the
suffixes of one string. Since the suffixes are sorted lexicographically, SA[i] is the
start position of the i-th suffix based on the lexicographical order. The suffix
array of string T , denoted as SA, is actually an array with integer from 1 to
n, revealing the dictionary order of n suffixes. TSA[i] denotes the SA[i]th suffix
T [i . . . n]. The inverse SA−1 of suffix array is also an integer array, satisfying
SA−1[SA[i]] = i (1 ≤ i ≤ n). Obviously, the inverse of suffix array can also be
constructed in linear time.

LCP array is used for maintaining the length of the longest common prefix
of two adjacent suffix in SA. Suppose we use lcp(u, v) to denote the length
of the longest common prefix of u and v, then LCP [1] = 0 and LCP [i] =
lcp(TSA[i−1], TSA[i]) where 2 ≤ i ≤ n. Based on the suffix array and its inverse,
this LCP array can be constructed in linear time [6].

Given two strings X and Y , we add #1 and #2 to their ends, respectively,
forming a new string T = X#1Y #2. Suppose #1 < #2, and all characters in the
string collection are larger than these separators according to dictionary order.
We define the suffix array of the new string T and the related LCP array as the
generalized augmented suffix array [1], which is consistent with the suffix arrays
of X and Y . This approach can be done in O(m + n) time.

For example, let X = abfab and Y = abeab, then T = abfab#1abeab#2, with
their index starting from 0 as shown in Fig. 3(a). The SA array, SA−1 array and
LCP array of T are all shown in Fig. 3. The position and length of the common
substring in the outer matrix can be figured out according to the LCP array,
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which reduce the computation of mismatch in outer matrix. We can compute four
common substrings ab with (X0, Y 6, 2), (X0, Y 9, 2), (X3, Y 6, 2), and (X3, Y 9, 2)
in linear time, with the help of LCP array and the dynamic programming pro-
gramming for common substrings of X and Y .

7 Experiments

In this section, we evaluated the effect of the different factors on the performance
and used the following three data sets in the experiments.

– Genome data set. This data set contains human’s first genome data, from
which we randomly selected 1000 strings of various lengths as data strings. The
query strings were generated similarly from mice genome data. We generated
a query workload with 50 query strings.

– DBLP data set. We generated this data set from DBLP. It includes 1,632,442
papers, and each paper contains some of the properties of paper, such as
title, author, abstract, and etc. We randomly selected 1000 strings of various
lengths as data strings and randomly picked up 50 strings to construct a query
workload.

– AOL query log data set. It contains the web pages from a large number
of users Query records sorted by anonymous user IDs. Each record includes
anonymous user ID, the contents of the query, and query time. The length of
the records are from 20 and 100. We randomly chose 50 contents of queries to
construct its query workload.

Our experimental results were run on Ubuntu (Linux) 13.10 with Interl (R)
Core (TM) i7 CPU 870@2.93 GHZ 8 GB RAM. All the algorithms were imple-
mented using GNU C++.

7.1 Evaluation of Effectiveness

We define Locality Degree LD to evaluate the effectiveness of LCSp as follows.

LD =
avg(

∑
l(lcsp))

avg(
∑

l(lcs) − ∑
l(lcsp))

,

where l(lcsp) represents the length of matching substrings generated by using
LCSp, l(lcs) represents the length of matching substrings generated by using
LCS, and avg(·) is the average value. Notice that, we require that both LCSp
and LCS generate the same longest common subsequences under the given
penalty threshold.

Figure 4 shows the Locality Degree when increasing the penalty threshold
ratio, which is the percentage of average data string length. We can see when
getting the same longest common subsequence, LCSp prefers to find meaningful
matching substrings with shorter lengths. Figure 4(a) shows the locality degree
LD was very low, only less than 0.1 on DNA data set, which means that LCS



Locating Longest Common Subsequences with Limited Penalty 197

 0

 0.05

 0.1

 0.15

 0.2

1 2 3 4 5

Lo
ca

lit
y 

D
eg

re
e

Penalty Threshold Ratio(%)

n=100
n=200
n=250

(a) DNA.

 0

 0.2

 0.4

 0.6

1 2 3 4 5

Lo
ca

lit
y 

D
eg

re
e

Penalty Threshold Ratio(%)

n=40
n=120
n=200

(b) DBLP.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 3 4 5

Lo
ca

lit
y 

D
eg

re
e

Penalty Threshold Ratio(%)

n=100
n=200
n=250

(c) AOL query log.

Fig. 4. Effectiveness of LCSp.

generates much more meaningless results compared with LCSp. The locality
degree on DBLP data set was less than 0.5, which was higher than it on DNA
data set, since the selectivity of DBLP data was much less than the selectivity of
DNA data. As the penalty threshold ratio increased, the locality degree on three
data sets decreased since the smaller penalty threshold was, the more locality
was required.

7.2 Comparison with Other Algorithms

We chose two state-of-the-art LCS algorithms DPA [2] and LIS [1], and modified
them to support LCSp as discussed in Sect. 4. We call these modified LCS-based
algorithms DPALCSp and LISLCSp. We compared the running time of our two
algorithms (i.e. BasicLCSp and ImprovedLCSp) with these two LCS-based
algorithms.
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Fig. 5. Comparison of different algorithms.

Figure 5 shows the comparison results of the four algorithms. We can see
that the algorithm DPALCSp was the slowest algorithm. Both BasicLCSp
and ImprovedLCSp algorithms ran much faster than LCS-based algorithms.
When increasing the penalty threshold ratio, the running time increased. This
is consistent with our expectation since more concatenated common substrings
would be generated when the penalty threshold increases, incurring larger time
cost for calculation. The running time of our algorithms kept more stable than
both DPALCSp and LISLCSp since our algorithms can generate the longest
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common subsequences directly based on common substrings, whereas the LCS-
based algorithms had to back chasing all possible alignments to calculate results,
which were costly.

7.3 Evaluation of LCSP

In order to compare the effects of the query filtering among different algorithms,
we define Filtered Ratio (FR) and Early Terminate Ratio (ETR) as follows.
Filtered Ratio (FR) is the proportion that a number of pruned concatenated
common substrings to the whole number of concatenated common substrings.
Early Terminate Ratio (ETR) is the proportion that traversed nodes to the
nodes in the lattice.

To measure the performance of algorithms, we take filtered ratio, early ter-
minate ratio, and running time as the three metrics to evaluate pruning power,
effect of early termination, and efficiency of our algorithms, respectively. It is
obvious that a favored algorithm with high efficiency should have large filtered
area ratio, larger early terminate ratio, and small running time. We use the
scoring scheme α = 1 and β = 1. We got similar results when varying α and β.

Pruning Power. We conducted experiments on strings with different lengths.
The lengths of query string and data string were comparable. The detailed fil-
tering ratios for three data sets are shown in Fig. 6. In Fig. 6(a), when the length
of one string is fixed to 20× 106, and the length of another string increases from
5 × 106 to 25 × 106, the filtering ratio is significant, increasing from 36.9% to
42.7%. Also, by comparing results on three different data sets in Fig. 6, we can
see that the filtering ratios raise when increasing the lengths of strings.
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Fig. 6. Pruning power.

Effect of Early Termination. The effect of early termination is related to
string length, as well as the penalty threshold. Therefore we evaluated the impact
of these two factors in this section.

Figure 7 shows how early terminate ratio would be affected with increasing
string lengths. From Fig. 7, we can see that when the lengths of strings are gen-
erally comparable, the early terminate ratio increases with the increase of string
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length. The reason is that, for both strings, longer strings generally indicate
larger probabilities of more common substrings.

Figure 8 shows the impact of the variance of penalty threshold ratios on the
early termination. To be more specific, seen from Fig. 8, when string length is
fixed, the larger the penalty threshold, the greater the early terminate ratio,
especially for DBLP and ALO query log data sets (see Fig. 8(b) and (c)). It is
because the larger the penalty threshold, the more the candidate starting from
the same common substring, leading to a large number concatenated substrings,
thus a larger early terminate ratio. Notice that, the early terminate ratio did not
increase significantly when increasing the penalty threshold ratio since the distri-
bution of frequencies for different substrings were similar, therefore, the number
of concatenated substrings kept stable when increasing the penalty threshold
ratio.
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Fig. 7. Effect of early termination with different string lengths.
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Fig. 8. Effect of early termination with different penalty threshold.

Running Time. We also test the efficiency of our algorithms when varying
the lengths of strings. Figure 9 reports the running time of ImprovedLCSp
for different lengths of strings on DNA sequences when the penalty threshold
τ = 2,6,10, respectively. The results on DBLP and AOL query log data sets are
similar.
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Fig. 9. The performance of ImprovedLCSp on DNA data set.

Figure 9(a) shows when τ = 2% of string length, with the increase of the
lengths of strings, the running time also increased from 259 s to 676 s. As can be
seen in Fig. 9(b), when τ = 6% of string length, with the increase of the lengths
of strings, the running time increased from 380 s to 814 s. In Fig. 9(c), it can
be seen that when τ = 10% of string length, the running time increased from
722 s to 1,183 s. In a word, when τ is fixed, the running time of the algorithm
ImprovedLCSp is linear to the lengths of strings.

8 Conclusion

In this paper, we propose a new problem, the longest common subsequence
with limited penalty to get LCSs with good locality. We show that the existing
LCS-based algorithms are not efficient since they have to back chasing align-
ments to do verifications. In order to avoid checking each generated LCS using
the penalty threshold, we propose an approach based on common substrings.
By improving the basic algorithm, we propose a filter-refine approach that can
reduce the number of concatenated common substrings. It can efficiently prune
useless concatenations of common substrings and early terminate calculations.
Our experimental study demonstrate its effectiveness and efficiency.
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