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Abstract—Hidden Markov Models (HMMs) are powerful tools for multiple sequence alignment (MSA), which is known to be an NP-

complete and important problem in bioinformatics. Learning HMMs is a difficult task, and many meta-heuristic methods, including

particle swarm optimization (PSO), have been used for that. In this paper, a new variant of PSO, called the random drift particle swarm

optimization (RDPSO) algorithm, is proposed to be used for HMM learning tasks in MSA problems. The proposed RDPSO algorithm,

inspired by the free electron model in metal conductors in an external electric field, employs a novel set of evolution equations that can

enhance the global search ability of the algorithm. Moreover, in order to further enhance the algorithmic performance of the RDPSO,

we incorporate a diversity control method into the algorithm and, thus, propose an RDPSO with diversity-guided search (RDPSO-

DGS). The performances of the RDPSO, RDPSO-DGS and other algorithms are tested and compared by learning HMMs for MSA on

two well-known benchmark data sets. The experimental results show that the HMMs learned by the RDPSO and RDPSO-DGS are

able to generate better alignments for the benchmark data sets than other most commonly used HMM learning methods, such as the

Baum-Welch and other PSO algorithms. The performance comparison with well-known MSA programs, such as ClustalW and MAFFT,

also shows that the proposed methods have advantages in multiple sequence alignment.

Index Terms—Hidden Markov Models, multiple sequence alignment, parameter learning, particle swarm optimization

Ç

1 INTRODUCTION

MULTIPLE sequence alignment (MSA) of nucleotides, or
amino acids, is one of the most important and chal-

lenging problems in bioinformatics. It is an extension of a
pairwise alignment to incorporate more than two sequences
at a time. Multiple alignment methods try to align all of the
sequences in a given query set, and the resulting aligned
sequences are often used to construct phylogenetic trees, to
find protein families, to predict secondary and tertiary
structures of new sequences, and to demonstrate the homol-
ogy between new sequences and existing families [1]. MSAs
require more sophisticated methodologies than pairwise
alignments since they are more computationally complex,
and most formulations of the problem lead to NP-complete
combinatorial optimization problems [2].

The dynamic programming method is theoretically
applicable to any number of sequences. However, since it is
computationally expensive in both time and memory, it is
rarely used for more than three or four sequences in its
most basic form [1]. One way to tackle this problem is to use
a heuristic search, known as the “progressive alignment”
technique, that builds up a final alignment by combining

pairwise alignments, beginning with the most similar pair
and progressing to the most distantly related ones [3], [4].
The most popular MSA program using progressive align-
ments is ClustalW, which is suitable for alignments of
sequence sets with medium lengths [3]. T-Coffee is another
common progressive alignment program, which is slower
than ClustalW, but generally produces more accurate align-
ments for distantly related sequence sets [5]. ProbCons is a
program for progressive alignment of protein sequences,
i.e., a progressive protein MSA tool [6]. It incorporates the
so-called probabilistic consistency technique, a novel scor-
ing function for comparing multiple sequences.

Another set of approaches for MSA, known as the itera-
tive methods, work similarly to progressive methods, but
repeatedly align the initial sequences as well as adding new
sequences to the growing MSA set. They produce multiple
sequence alignments while reducing the errors inherent in
progressive methods. MUSCLE is a popular iterative
method and it improves on the progressive methods by
using a more accurate distance measure to assess the relat-
edness of two sequences [7]. MAFFT is another popular
MSA program, which incorporates different strategies
including progressive methods (PartTree, FFT-NS-1, and L-
INS-1), iterative methods (FFT-NS-i, L-INS-I, and G-INS-i)
and structural alignment methods (Q-INS-I and X-INS-i) [8].

An alternative to progressive and iterative alignment
methods is to employ stochastic optimization methods,
such as the simulated annealing (SA) [9], [10] or evolution-
ary algorithms (EAs) [11], [12]. These approaches optimize
an objective function, which measures the quality of multi-
ple sequence alignment by updating the candidate align-
ments until an optimal alignment is found.
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Other efficient approaches are based on probabilistic
models, such as the Hidden Markov Models (HMMs), which
currently represent one of the most popular techniques for
multiple sequence alignment [13], [14], [15], [16]. There are
several alignment programs in which variants of HMM-
based methods have been implemented. These programs are
noted for their scalability and efficiency, although using an
HMM method is more complex than using more common
progressive methods. The most well-known HMM-based
software packages for MSA are sequence alignment and
modeling system (SAM) [17] and HMMER [18].

In order to use an HMM method for MSA, one has to per-
form the parameter learning, or the training task first; that
is, to find the best set of state transition and output probabil-
ities for an HMM with a given set of output sequences. The
resulting HMM is then employed to create a sequence of
gap insertions and deletion instructions to align the sequen-
ces. Generally, an HMM topology used for the MSA prob-
lem requires roughly as many states as the average length
of the sequences in the problem. As such, one issue of the
parameter learning in HMMs is that there is no known
deterministic algorithm that can guarantee to yield an opti-
mally learned HMM within reasonable computational time.
The most common way to deal with this problem is to
employ an approximation algorithm based on statistics and
re-estimation. The Baum-Welch (BW) algorithm, known as
the forward-backward algorithm, is the most widely used
example of such algorithms [16]. The gradient methods [13]
were also used to estimate the parameters of an HMM, but
these methods are local search techniques that usually result
in sub-optimally trained HMMs. Another possibility is to
estimate the parameters of an HMM by random optimiza-
tion algorithms, such as the SA [19] and EAs [20]. For exam-
ple, the well-known alignment software HMMER employs
SA for HMM training. However, there always are complains
that the SA and EAs encounter some problems, such as lack
of local search ability, premature convergence and slow con-
vergence speed. Particle swarm optimization (PSO) algo-
rithm, a relatively recent population-based random search
technique, has demonstrated its better performance than
EAs and SA in HMM training for MSA [21], [22].

This study focuses on HMM-based methods for MSA
due to their scalability and efficiency. However, the number
of states and parameters of an HMM increases with the
average length of the sequences to be aligned, so that the
dimensionality and complexity of the training problem of
the HMM also increase with the average length. Although
the HMM can easily be scaled to align large sequences effi-
ciently, its training task is essentially a high-dimensional
and multimodal optimization problem challenging to solve.
Thus, our goal in this study is to develop an efficient global
optimization method to train the HMM for MSA.

After extensive and in-depth study, we selected the PSO
algorithm as a candidate to be modified to achieve our goal
of training HMMs for MSA. The reason why PSO was so
attractive to us was that it has many advantages, such as
faster convergence speed, lower computational require-
ments, and it can be easily parallelized and has fewer
parameters to adjust. However, PSO has the following
shortcomings. First of all, it has been theoretically proved
that the PSO algorithm is not a global search algorithm,

even not a local one, according to the convergence criteria
[23]. Practically, the algorithm is more prone to encounter
premature convergence for high-dimensional problems,
due to the weakening of its global search ability during the
middle and later stages of the search process. Additionally,
PSO is widely known to be sensitive to its search parame-
ters, and even to the so called “swarm topology”, so that
users may feel awkward when selecting the parameters and
the topology when using the algorithm [24]. Finally, the per-
formance of PSO appears to be very sensitive to the setting
of up-bound and lower-bound of the search scope [24]. If
the global solution is located near the boundary of the
search scope, the algorithm may have little chance to catch
it. We have found that these shortcomings are mainly attrib-
uted to the update equation of the particle’s velocity, which
is the essence of the algorithm, and there seems to be much
room for improvement on this, in order to enhance the
global search ability of the PSO algorithm.

In this study, inspired by the free electron model in metal
conductors placed in an external electric field [25], we pro-
pose a novel variant of the PSO algorithm, called the ran-
dom drift particle swarm optimization (RDPSO), and apply
it to HMM training for MSA. The motivation of the RDPSO
algorithm is to improve the search ability of the PSO by fun-
damentally modifying the update equation of the particle’s
velocity, instead of by merely adding some other operations
into the algorithm so as to probably increase the complexity
of the algorithm and its computational cost. Furthermore, in
order to enhance the global search ability of the RDPSO for
hard MSA problems, we incorporate a diversity control
strategy into the RDPSO and propose a RDPSO with diver-
sity-guided search (RDPSO-DGS), in which the diversity
measure of the particle swarm is controlled to maintain it at
a certain level, in order to prevent the premature conver-
gence at a later stage of the search process. The performance
of the RDPSO and RDPSO-DGS in learning HMMs for
MSAs is tested on three benchmark data sets and compared
to the performance of other learning algorithms and several
well-known multiple sequence alignment programs.

In [22], we proposed the so-called diversity-maintained
quantum-behaved particle swarm optimization (DMQPSO)
algorithm and applied it to MSA problems. This method is
based on controlling the diversity of particles’ current posi-
tions by selecting different values for the constriction-
expansion coefficient in the different stages of the QPSO
algorithm. The diversity control method proposed in this
paper is based on the diversity of the particles’ personal
best positions, which affects the diversity of the particles’
current positions and plays a more important role in the
global search of the algorithm. Another major difference
between the work in this paper and in [22] is that the
method in this paper is based on the newly proposed
RDPSO algorithm, inspired by the free electron model, as
explained above.

The remainder of the paper is organized as follows. Some
preliminary knowledge on the topology and parameter
learning of HMMs for MSA is described in Section 2. Sec-
tion 3 presents the methods of scoring multiple sequence
alignments. Section 4 describes the principles of the pro-
posed RDPSO and RDPSO-DGS algorithms and their appli-
cation to HMM learning for MSA. The experimental results
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on the benchmark data sets are provided and discussed in
Section 5. Some concluding remarks are offered in Section 6.

2 HIDDEN MARKOV MODELS FOR MSA

2.1 Topology of HMMs for MSA
For multiple sequence alignment, a Hidden Markov model
denoted by ! consists of a set of q states ðS1; S2; . . . ; SqÞ that
are divided into three groups: match (M), insert (I) and
delete (D) [15]. In addition, there are two special states,
namely, the begin state and the end state. States are con-
nected to each other by transition probabilities aij where
0 $ aij $ 1 ð1 $ i; j $ qÞ and

Pq
j¼1 aij ¼ 1ð1 $ i $ qÞ. A

match or insert state, Sj, emits an observable symbol, vk,
from an output alphabet S with a probability bjðkÞ where
0 $ bjðkÞ $ 1 ð1 $ j $ q; 1 $ k $ mÞ and

Pm
k¼1 bjðkÞ ¼ 1

ð1 $ j $ qÞ. Here m is the number of observable symbols.
The delete states, the begin state and the end state do not
emit observable symbols, so they are called silent states.

Starting from the begin state and until the end state,
the HMM generates sequences, namely, strings of observ-
able symbols, by making nondeterministic walks that ran-
domly go from one state to another according to the
transition probabilities. Each walk yields a path of visited
states p ¼ ðp1;p2; . . . ;ppÞ and a sequence consisting of
emitted observable symbols on the path. When the HMM
is applied to MSA, the sequence of observable symbols is
given in the form of an unaligned sequence. The goal of
multiple sequence alignment is thus to find a path p
which generates the best alignment. It is possible to use
the forward and Viterbi algorithms to determine, P ðo j!Þ,
the probability of a given sequence o generated by the
HMM !, and derive the path p with maximal probability
of generating the sequence o [26].

2.2 Learning HMMs for MSA
For a given sequence o and a Hidden Markov Model !,
the goal of the learning task is to estimate the parame-
ters, i.e., the transition and emission probabilities, of the
HMM ! such that P ðo j!Þ is maximized. The learning
task is usually performed by either the Baum-Welch
technique that is based on statistical re-estimation formu-
las [26], or by random search methods such as the simu-
lated annealing (SA) [19] or evolutionary algorithms
(EAs) [20]. Before parameter estimation, the length of the
HMM should be determined. A commonly used estimate
is the average length of the sequences to be aligned.
After parameter estimation, a better length of the HMM
can be chosen by using a heuristic method known as the
model surgery [15].

The quality of the HMM needs to be evaluated in the pro-
cess of parameter estimation. Generally, a log-odds (LO)
score is used for this purpose, which is based on a log-likeli-
hood score [26] given by

Log& odds ðO;!Þ ¼ 1

N

XN

i¼1

log2
P ðOi j!Þ
P ðOi j!nullÞ

; (1)

where O ¼ ðO1; O2; . . . ; ONÞ is the set of unaligned
sequences, ! is the learned HMM, and !null is a null-
hypothesis model. Here, a random model is chosen as the

null-hypothesis model. The random model or the null-
hypothesis model is the same for all the tested training
algorithms for a given sequence set. However, different
sequence sets use different null-hypothesis models since
the numbers of states of the models vary with the lengths
of sequences. The HMM obtained from the learning phase
is considered to be a profile for the set of sequences.
Thus, the unaligned sequences can be aligned by such a
profile HMM !. After the learning phase of the HMM,
the final step is to interpret the learned sequences as a
multiple sequence alignment.

3 SCORING THE MULTIPLE SEQUENCE

ALIGNMENTS

There are two different methods for scoring the alignment
obtained by the experiments. For the experiments without
prior knowledge regarding the structure of the resulting
alignments, the standard sum-of-pairs score (SOP) given
below may be used:

Sum-of-Pairs (SOP) ¼
XN&1

i¼1

XN

j¼iþ1

disðli; ljÞ; (2)

where li and lj is are aligned sequences, dis is a distance
metric, and N is the number of the sequences to be
aligned. In this work, the widely accepted BLOSUM62
replacement matrix in [27] is used as the similarity met-
ric, since it is widely accepted as a good general substi-
tution matrix for MSA. To prevent the accumulation of
many gaps in an alignment, an affine gap cost given in
equation (3) is deducted from the sum-of-pairs function:

Gap Cost ðGCÞ ¼ GOPþ n(GEP; (3)

where GOP is a fixed penalty for opening a gap, GEP is the
penalty for extending the gap, and n is the number of gap
symbols in the gap. With the gap cost calculated for each gap
in each of the aligned sequences, the sum of these costs is
then subtracted from the sum-of-pairs score as a penalty,
and the resulting score is the one presented in the section of
experimental results.

For the experiments where the reference alignment is
available, a modified sum-of-pairs score (MSOP), is
employed to evaluate the alignment as proposed in [28].
The reference alignment is a manually refined alignment
that is believed to be of high quality. Given the test align-
ment of N sequences consisting of M columns, the ith
column of the alignment can be denoted by Ai1; Ai2; . . . ;
AiN . For each pair of residues Aij and Aik; pijk is defined
as follows: pijk ¼ 1 if the residues Aij and Aik from the
test alignment are aligned with each other in the refer-
ence alignment; otherwise pijk ¼ 0. The column score is
defined by

Si ¼
XN

j¼1;j6¼k

XN

k¼1

pijk: (4)

The MSOP for the test alignment is then given by

MSOP ¼
XM

i¼1

SiPMr
r¼1 Sri

 !

; (5)
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where Mr is the number of columns in the reference
alignment and Sri is the score Si for the rth column in
the reference alignment.

It should be noted here that both of the two sum-of-
pairs scores, i.e., SOP and MSOP, can be used for scoring
a constructed MSA as well as for parameter learning,
depending on what sort of information is available. If
the prior knowledge of the resulting alignment is avail-
able, the MSOP function should be employed; otherwise,
the SOP should be employed.

4 THE PROPOSED RDPSO AND RDPSO-DGS

4.1 A Brief Introduction to the PSO Algorithm
Particle swarm optimization is a population-based optimi-
zation technique inspired by the collective behavior of social
organisms [29], [30], [31], [32], [33], [34], [35], [36]. In the
PSO with L particles, each particle i ð1 $ i $ LÞ represents a
potential solution of the given problem in an D-dimensional
space, and has three vectors at the kth iteration: its current
position Xi;k ¼ ðX1

i;k; X
2
i;k; . . . ; XD

i;kÞ, its velocity Vi;n ¼ ðV 1
i;k;

V 2
i;k; . . . ; V D

i;kÞ and its personal best (pbest) position (the posi-
tion giving the best objective function value or fitness value
obtained so far) Pi;k ¼ ðP 1

i;k; P
2
i;k; . . . ; PD

i;kÞ. There is a vector
Gk ¼ ðG1

k; G
2
k; . . . ; GD

k Þ, called the global best (gbest) position
which is defined as the position of the best particle among
all the particles in the population. For the HMM learning in
MSA problems, the position of a particle is composed by the
parameters of the HMM, that is, each component of the
position vector is a parameter of the HMM; each component
of the velocity vector represents the variation of the corre-
sponding parameter during HMM training. The particle
updates its velocity and position according to the following
discrete equation:

V j
i;kþ1 ¼ w ) V

j
i;k þ c1r

j
i;k

!
Pj
i;k &X

j
i;k

"
þ c2R

j
i;k

!
Gj
k &X

j
i;k

"
; (6)

Xj
i;kþ1 ¼ X

j
i;k þ V

j
i;kþ1; (7)

for 1 $ i $ L and 1 $ i $ D. Without loss of generality, if
we are to solve the following minimization problem:

Minimize fðXÞ; s:t:; X 2 S * RD; (8)

where fðXÞ is an objective function (or fitness function) con-
tinuous almost everywhere on S (the feasible space), then
Pi;k and Gk can be updated by equations

Pi;k ¼
Xi;k if fðXi;kÞ < fðPi;k&1Þ
Pi;k&1 if fðXi;kÞ + fðPi;k&1Þ;

#
(9)

Gk ¼ Pg;k; (10)

where

g ¼ arg min
1$i$L

½fðPi;kÞ-: (11)

In equation (6), c1 and c2 are called acceleration coeffi-
cients and the parameter w is known as the inertia
weight, which can be adjusted to balance the exploration

and the exploitation of the algorithm [30]. The parame-
ters rji;k and Rj

i;k are the sequences of two different ran-
dom numbers distributed uniformly on (0, 1), which are
denoted by rji;k; R

j
i;k . Uð0; 1Þ. Generally, the value of V j

i;k
is restricted within the interval ½&Vmax; Vmax-.

4.2 Random Drift Particle Swarm Optimization
It was demonstrated by a trajectory analysis [36] that the
convergence of the PSO algorithm may be achieved if each
particle converges to its local focus, pi;k ¼ ðp1

i;k; p
2
i;k; . . . ; pDi;kÞ

defined at the coordinates

pji;k ¼ fji;kP
j
i;k þ

!
1& fji;k

"
Gj
k; (12)

where fji;k ¼ c1r
j
i;k=ðc1r

j
i;k þ c2R

j
i;kÞ with regard to the ran-

dom numbers rji;k and Rj
i;k in equations (6) and (7). Since the

acceleration coefficients c1 and c2 are generally set to be

equal, i.e., c1 ¼ c2;f
j
i;k is a sequence of uniformly distributed

random numbers on (0,1), varying with k for each i and j.
Consequently, equation (12) can be restated as

pji;k ¼ fji;kP
j
i;k þ

!
1& fji;k

"
Gj
k;f

j
i;k . Uð0; 1Þ; (13)

which implies that pi;k is located randomly within the hyper-
rectangle with Pi;k andGk being the two ends of its diagonal,
and it moves following the pi;k andGk. In practice, as the par-
ticles are converging to their own local focuses, their current
positions, personal best positions, local focuses and the global
best position are all converging to one point, which leads the
PSO algorithm to converge. It can be found that the particle’s
directional movement towardpi;k is similar to the drift motion
of an electron in metal conductors in an external electric field.

However, according to the free electron model [25],
besides the directional motion caused by the electric field,
the electron is also in a thermal motion, which appears to be
a random movement. Therefore, the movement of the elec-
tron’s movement is the superimposition of a random
motion and a drift motion, and its velocity V ¼ V Rþ VD,
where VR and VD represent the velocities of the random
motion and the drift motion, respectively. The random
motion is essentially a thermal motion, which exists even
without the external electric field as long as the temperature
is greater than absolute zero, whereas the drift motion is a
directional movement in the opposite direction of the exter-
nal electric field. The overall effect of the electron’s move-
ment is that the electron careens towards the location of the
minimum potential energy. Therefore, it is obvious that the
movement of the electron is very similar to the process of
finding the minimum solution of a minimization problem,
with the position of the electron being analogous to a candi-
date solution and the potential energy function to the objec-
tive function of the problem.

Inspired by the above facts, we assume that the particle in
PSO behaves like an electron moving in a metal conductor in
an external electric field, and the movement of the particle is
the superposition of the thermal motion and the drift motion
towards pi;k. Accordingly, the jth component of the particle’s
velocity can be expressed by V j

i;k ¼ VR
j
i;k þ VD

j
i;k, where

VRj
i;k and VDj

i;k denotes the jth components of the velocities
of the random motion and drift motion, respectively.
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At the ðkþ 1Þth iteration, the velocity of random motion
V Rj

i;kþ1 is assumed to follow the Maxwell velocity distribu-
tion law. Consequently, VRj

i;kþ1 essentially follows a normal
distribution (i.e., Gaussian distribution) whose probability
density function is given by

f
VRj

i;kþ1
ðvÞ ¼ 1ffiffiffiffiffiffi

2p
p

sji;kþ1

e
&v2

2ðsj
i;kþ1

Þ2 ; (14)

where sji;kþ1 is the standard deviation of the distribution.
Thus, a stochastic simulation can lead to the following
expression for VRj

i;kþ1:

VRj
i;kþ1 ¼ sji;kþ1f

j
i;kþ1; (15)

where ’ji;kþ1 is a random number with a standard normal
distribution, i.e., fji;kþ1 . Nð0; 1Þ. sji;kþ1 must be determined
in order to calculate VRj

i;kþ1. An adaptive strategy is
adopted for sji;kþ1:

sji;kþ1 ¼ 2a jCj
k &X

j
i;k j ; (16)

where Ck ¼ ðC1
k ; C

2
k ; . . . ; CD

k Þ is known as the mean best
(mbest) position, defined by the mean of the personal best
positions of all the particles, namely:

Cj
k ¼ ð1=LÞ

PL

i¼1
Pj
i;k; ð1 $ j $ DÞ : (17)

Thus, equation (15) can be restated as

V Rj
i;kþ1 ¼ a j Cj

k &X
j
i;k j fji;kþ1; (18)

where a > 0 is an algorithmic parameter called the thermal
coefficient.

The velocity of the drift motion VDj
i;kþ1 can be expressed

in many forms. However, in this work, a simple linear
expression is adopted for VDj

i;kþ1:

VDj
i;kþ1 ¼ b

!
pji;k &X

j
i;k

"
; (19)

where b > 0 is another algorithmic parameter. If there is
only drift motion, that is, V j

i;kþ1 ¼ VD
j
i;kþ1, the above discrete

equation can ensure the particle moves towards pji;k in the
jth dimension at the ðkþ 1Þth iteration.

With the above specifications, a novel set of update equa-
tions for the particle can be obtained as

V j
i;kþ1 ¼ a j Cj

k &X
j
i;k j fji;kþ1 þ b

!
pji;k &X

j
i;k

"
; (20)

Xj
i;kþ1 ¼ X

j
i;k þ V

j
i;kþ1; (21)

where a and b are called thermal coefficient and drift coeffi-
cient, respectively, and pji;k is given by equation (13). The
PSO with equations (20) and (21) is named the random drift
particle swarm optimization, the procedure of which is out-
lined in Algorithm 1.

In the RDPSO algorithm, besides the population size,
a and b are two important user-specified parameters,
which can be adjusted to balance the global and local

search of the particles. Moreover, the value of V j
i;k is gen-

erally restricted in the interval ½&Vmax; Vmax- when the
algorithm is running.

4.3 RDPSO with Diversity-Guided Search
The major issue with PSO and other evolutionary algo-
rithms in multi-modal optimization is their premature con-
vergence, which results in significant performance loss and
sub-optimal solutions. The main reason for this is that the
collectiveness of particles leads to fast information flow
between particles and, in turn, rapid decline of the diversity
of the particle swarm. At the beginning of the search, after
initialization, the diversity of the population is high. With
the progress of evolution, the convergence of the particle
makes the diversity decline, which, accordingly, enhances
the local search ability (exploitation) but weakens the global
search ability (exploration) of the algorithm. At early or
middle stage of the evolution, the decline of the diversity is
desirable for the particle swarm to search effectively. How-
ever, after middle or at later stage, the particles may con-
verge into such a small region that the diversity of the
swarm is very low and further search is difficult. At that
moment, if the particle with the global best position is at a
local optima or sub-optima, stagnation or premature con-
vergence occurs. Although the RDPSO algorithm may have
stronger global search ability than the canonical PSO, the
diversity loss of the particle swarm is also inevitable due to
the collectiveness of the particle swarm.

One way to circumvent the above shortcoming is to
employ a diversity control strategy to prevent the prema-
ture convergence, as in [37] and [38]. Here, a diversity-
guided search is incorporated into the RDPSO algorithm, in
order to enhance the global search ability of the algorithm
even further.

In the RDPSO with diversity-guided search, the diversity
measure at the kth iteration, denoted as dk, is given by the
average euclidean distance from the particle’s current
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position to the centroid of the swarm, as in [35]. That is,

dk ¼
1

L )A
XL

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

j¼1

!
Xj
i;k &X

j
k

"2

vuut ; (22)

where X
j
k is given byX

j
k ¼ ð1=LÞ

PL
i¼1 X

j
i;k. In (22), A

denotes the length of the longest diagonal in the search
space, and D is the dimensionality of the problem. A lower
bound dlow is set for dk to prevent the diversity from con-
stantly decreasing on the course of the search. If the diver-
sity measure dk drops below dlow, it will be controlled in
such a way to increase it until it is larger than dlow. A muta-
tion operation exerted on the global best particle Pg;k plays
such a role of diversity increasing. Once dk is smaller than
dlow; Pg;k is mutated as

P 0jg;k ¼ P
j
g;k þ dA"; (23)

for 1 $ j $ D. P 0g;k ¼ ðP 01g;k; . . . ; P 0jg;k; . . . ; P 0Dg;kÞ is the new posi-
tion of the global best particle after mutation, which repla-
ces the original Pg;k. Then the gbest position is also set to
Gk ¼ P 0g;k, but its fitness value remains unchanged. In equa-

tion (23), " is a random number with standard normal distri-
bution varying with k and j; d is called the mutation scaling
coefficient, which is a user-specified algorithmic parameter.
It should be noted that, when the mutation operation is
implemented, the displacement of the global best particle

will generally increase the value of jPj
g;k & P

j
i;kj and pull the

mean best position Ck away from its original location, con-
sequently making the particles more volatile and increasing
the diversity measure dk. Besides, the mutation helps the
global best position Gk jump out of sub-optimal or local
optimal solutions, which in turn could guide the whole par-
ticle swarm to search more promising areas. Algorithm 1
outlines the procedure of the RDPSO-DGS algorithm.

It can be seen that the RDPSO-DGS runs in convergence
mode, with the diversity measure declining during most of
the iterations. Only when the diversity declines below the
lower bound dlow, do the particles explode, due to the muta-
tion operation. This explosion process is transitory, and
once the diversity is over the threshold dlow, the whole parti-
cle swarm returns to convergence mode again. As for dlow,
our preliminary experimental results for several widely
used benchmark functions showed that setting dlow / 10&4

may lead to good algorithmic performance in general. The
scaling coefficient of the mutation in RDPSO is another
important parameter whose value selection will be dis-
cussed in the next section.

4.4 Learning HMMs for MSA with RDPSO or
RDPSO-DGS

For a given sequence set, when the RDPSO or RDPSO-DGS
is used to perform HMM learning for multiple sequence
alignment, the length of the HMM is kept constant during
the learning process and only the parameters of the HMM
are optimized. As indicated in Section 2, the length of the
HMM is set to the average length of the sequences in the
given sequence set. After the learning process, a better
length of the HMM can be chosen by the model surgery. That
means the length of HMM varies with the different

sequence sets, but it would be fixed for a given sequence
set. The parameters to be estimated include the transition
and emission probabilities. Thus, a candidate solution rep-
resented by the position of a particle is a real-valued vector
containing l transitions and m emission probabilities, which
means that the dimension of the search space for the HMM
training is D ¼ lþm.

On the course of the learning process, a copy of the cur-
rent positions of all the particles is created at each iteration
of the RDPSO or RDPSO-DGS. The position of each particle
in this copy is normalized so that the constraints on the tran-
sition and emission probabilities described in Section 2 can
be satisfied. We denote the normalized copy of the particle
swarm at the kth iteration by X0k ¼ ½X01;k; X02;k; . . . ; X0L;k-. X0i;k
ð1 $ i $ LÞ in X0k is the normalized position of particle i and
is evaluated either by the log-odds in equation (1) or by the
sum-of-pairs score in equation (2) or (5), which are
employed as the fitness value function for the evaluation of
the HMM particle. The procedure of HMM learning with
RDPSO or RDPSO-DGM is described in Algorithm 2.

4.5 MSA with the Trained HMM
After the learning process, the output gbest position of
the particle swarm represents a set of optimized parame-
ters of the HMM, including the transition and emission
probabilities. The learned HMM can be considered as a
profile for the set of given sequences, and can be used to
align multiple sequences, in conjunction with the Viterbi
algorithm [25]. The resulting alignment of multiple
sequences is then evaluated according to the sum-of-
pairs scores described in Section 3.

5 EXPERIMENTAL RESULTS AND DISCUSSIONS

5.1 Benchmark Data Sets
In order to evaluate the performance of the proposed algo-
rithms, the RDPSO, RDPSO-DGS, PSO and BW algorithm
were used to learn HMMs for MSA problems. Two bench-
mark data sets, including (a) a simulated nucleotide data
set, (b) an amino-acid data set from the benchmark
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alignment database (BaliBASE) were used in the test. The
performance of the above four methods were also compared
with the ClustalW program and the more recently devel-
oped MAFFT (L-iNS-I method) program.

5.1.1 The Simulated Nucleotide Data Set

Nucleotide sequences (20 sequences with each having
approximately 300 characters) generated by using the pro-
gram Rose [39] (using the model proposed by Juke and Can-
tor [40] and taking the mean substitution rate ¼ 0.013 and
the insert/delete probability ¼ 0.03) are obtained as follows.
A randomly generated root sequence (of length 500) was
evolved on a random tree to yield sequences of ‘low’ or
‘high’ mean divergences, i.e., with an average number of
substitutions per site of 0.5 or 1.0, respectively. Further-
more, the insertion/deletion length distribution was set to
‘short’ (frequencies of gaps of length 1-3 ¼ 0.8, 0.1, 0.1) or
‘long’ (frequencies of gaps of length 1-7 ¼ 0.3, 0.2, 0.1, 0.1,
0.1, 0.1, 0.1). Hence the four ‘mean divergence-mean gap
length’ combination of conditions tested here are ‘low-short’
‘low-long’, ‘high-short’, and ‘high-long’. Fifty random
sequences were generated under each of the four combina-
tions of settings, and the average performance was
recorded. For this data set, the sum-of-pairs given by equa-
tion (2) was employed to score the resulting alignments.

5.1.2 The Amino-Acid Data Sets

The second benchmark data set was extracted from
the BAliBASE (benchmark alignment database) database
at http://www.cs.nmsu.edu/.jinghe/CS516BIOINFO/
Fall05/Bali BASE/align_index.htmlUTH. It contains sev-
eral manually refined multiple sequence alignments, spe-
cifically designed for the evaluation and comparison of
multiple sequence alignment methods. Twelve sequence
sets were selected from the first reference set from the
BALIBASE database. Table 1 lists the names of selected
sequence sets, the number of sequences in each set, the
minimum and maximum lengths of the sequences
(denoted as LSEQ) in each set, and the identity of the
sequences, represented by the percent of identical residues
between the sequences. These sequence sets were selected
in order to cover different length scopes (according to the
minimum and maximum lengths of the sequences and dif-
ferent identities. Four sequence sets were selected from

the short sequence sets in the database, four were from the
medium ones in the database, and four were from the long
ones in the database. Each group of sequence sets consist
of sequence sets with low, medium and high identities
respectively. In short sequence sets, laboA and lidy have
low identities, 451c has medium identity and lkrn has high
one. In medium sequence sets, 1bbt3 and kinase has low
identities, 1pii has medium identity and 5ptp has high
identity. In the long sequence sets, gal4 and ljasA have low
identities, glg has medium identity and ltag has high one.
These sequence sets with a variety of lengths and identities
can provide a comprehensive evaluation to the proposed
methods. Since the reference alignments for these data sets
are available, the modified sum-of-pairs (MSOP) score in
equation (5) was used to train the HMM and evaluate the
quality of the resulting test alignments.

5.2 Experimental Settings

5.2.1 Algorithmic Parameter Setting

For PSO, RDPSO, and RDPSO-DGS, the population size can
be set from 20 to 80, as most of the literature on PSO recom-
mend. In the experiments of this study, each of the RDPSO,
RDPSO-DGS and PSO used 20 particles (i.e., population
size was 20) which were initialized randomly with a uni-
form distribution within the search scope ½0; 1-D. The upper
limit of the velocity Vmax for each PSO variants, as recom-
mended by most of the literature, is generally set to be
a ) ðXmax &XminÞ, where 0 < a $ 1 is a scaling coefficient
and ðXmax &XminÞ is the width of search scope in each
dimension. In our experiments for multiple sequence align-
ment, a was set to 1 and, thus, Vmax ¼ 1 since Xmax &Xmin ¼
1& 0 ¼ 1.

For the PSO algorithm, we employed a version of the
standard PSO (SPSO), defined as a combination of the PSO
with constriction factor and the ring neighborhood topology
[32]. The SPSO has been shown to outperform many
recently proposed PSO variants [33]. In our experiments,
the parameters of the standard PSO were determined
according to published recommendations [32], that is, the
constriction factor x was set to 0.729, and both acceleration
coefficients were set as c1 ¼ c2 ¼ 2:05.

For the RDPSO and RDPSO-DGS, the thermal and drift
coefficients are two important algorithmic parameters corre-
sponding to the inertia weight and acceleration coefficients
in PSO. These two parameters can be tuned to balance the
local and global search of the particle. Larger thermal and
drift coefficients mean stronger global search ability of the
particle, while smaller ones imply stronger local search abil-
ity. A theoretical analysis of the two coefficients’ influence
on the convergence behavior of the particle and the algo-
rithm is out of the scope of this paper and will be our future
task. However, our preliminary experiments on several
benchmark functions showed that decreasing the thermal
coefficient linearly from a large value to a small one, and
setting the drift coefficient at a fixed value during the search
process, can lead to a stable performance of the algorithm.
Furthermore, it was also found, through preliminary experi-
ments, that it can result in generally good algorithmic per-
formance if we decrease the thermal coefficient a linearly
from 1.0 to 0.5 and fix the drift coefficient b at 1, during the

TABLE 1
The 12 Benchmark Data Sets from BAliBASE
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search process. These parameter configurations were used
for the RDPSO and RDPSO-DGS in our experiments for
multiple sequence alignment.

For the RDPSO-DGS, dlow is an important parameter that
determines the level at which the diversity is maintained in
order to balance the exploration and the exploitation of the
swarm at the later stage of search. If the value of dlow is set to
be too large, the RDPSO-DGS can have stronger global
search ability, but its local search ability is weakened. On the
contrary, if it is too small, the algorithm may have better local
convergence but its global search ability will not be
improved significantly compared to the RDPSO algorithm.
Our preliminary experiments suggested that a value of dlow
within the interval ½10&3; 10&6- could lead to satisfactory
algorithmic performance of the algorithm. In the current
study, dlow was set to be 10&4 which appeared to generate
good performance of the RDPSO-DGS on average, although
better results may be obtained by using other values of dlow
as shown in the experiments. Another important parameter
in the RDPSO-DGS is the mutation scaling coefficient d. Since
the multiplication of d and A gives the standard deviation of
the mutation, a larger value of d results in a greater displace-
ment of the global best particle and, thus, a larger diversity
gain after mutation, while a smaller d means a smaller
increase of the diversity measure. In order to balance the
global and local search of the algorithm, the value of d should
be selected properly. From our preliminary experiments, we
recommend that d should take value within ½10&2; 10&8-, and
varying with the dimensionality of the problems. In the
experiments of the current study, d was set to be 10&5. In
addition, since the search scope in each dimension for each
instance is ½0; 1-; A is numerically equal to

ffiffiffiffi
D
p

according to
its definition, where is D the dimension of the search space,
i.e., the number of HMM parameters. For ease of reference,
we list the algorithmic parameter settings in detail for the
SPSO, RDPSO and RDPSO-DSG, as follows:

SPSO: population size L ¼ 20; constriction factor x ¼
0:729; c1 ¼ c2 ¼ 2:05; ring neighborhood topology was used;
Vmax ¼ 1:0.

RDPSO: population size L ¼ 20; a decreased linearly
from 1.0 to 0.5; b ¼ 1; Vmax ¼ 1:0.

RDPSO-DGS: population size L ¼ 20; a decreased line-
arly from 1.0 to 0.5; b ¼ 1; dlow ¼ 0:0001; d ¼ 10&5;
Vmax ¼ 1:0.

5.2.2 Other Experimental Configurations

For nucleic acid sequences, the ‘swap’ substitution score
table from ClustalW 1.81 version was used as the distance

metric in the sum-of-pairs score function, and a GOP of 15
and a GEP of 7 were used as penalties. For the amino-acid
data set, the BLOSUM62 replacement matrix in [27] was
used as the distance metric in the sum-of-pairs score func-
tion and GOP and GEP were set to be 11 and 2, respectively.
These parameter values were configured as in [21].

For each set of sequences in the three data sets, the
experiments for HMM learning with the four algorithms
were performed using log-odds score and sum-of-pairs
score as the objective function. For each learning experi-
ment, the BW is a deterministic algorithm, to which a fixed
initial HMM was input, and from which a fixed final HMM
was output. The other three learning algorithms, namely
the SPSO, RDPSO and RDPSO-DGS, are random search
methods, each of which performed 20 runs for each learning
task with each run executing 1,000 iterations.

5.3 Experimental Results
After the RDPSO-DGS, RDPSO, SPSO and BW algorithms
performed the HMM learning tasks on each data set, the
average final fitness values (i.e., log-odds scores or sum-of-
pairs scores) and their standard deviations over 20 runs of
each algorithm were recorded and compared.

To investigate the convergence property of the algorithm,
the fitness value at each iteration of the learning process
averaged over 20 runs of each algorithm were also recorded
and visualized. The average execution time over 20 runs of
parameter learning for each algorithm was also recorded
for the purpose of comparing the computational costs
among the tested algorithms.

In order to evaluate the algorithmic performance on a
uniform scale, we normalized the average scores of each
algorithm on each sequence set. The normalized score is
defined by

Normalized Score ðNSÞ ¼ ðSi & SÞ=sS; (24)

where Si is the score, S is the mean of the scores and sS is
the standard deviation of the scores. The normalized scores
can be summed or averaged across different data sets for an
overall performance comparison.

5.3.1 Results for the Simulated Nucleotide Data Set

The experimental results, including average scores, stan-
dard deviation, normalized scores, and average execution
time, for the HMM learning on the simulated nucleotide
data set are provided in Tables 2 and 3. Table 2 lists the sta-
tistical results with the log-odds score used as the quality

TABLE 2
HMM Log-Odds for the Nucleotide Data Set and the Execution Time of Each Algorithm
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measure, namely the fitness value, for HMM learning. The
results for each method (and for each sequence set) include
the average log-odds (LO) score of the resulting alignments
obtained by the final HMMs over 20 runs of training, the
standard deviation (in brackets) of the LO scores over 20
runs of training, the normalized average LO score and the
average execution over 20 runs of training. Here, each nor-
malized average LO score was obtained by equation (24) for
a certain sequence set, where Si is the average LO score of
each method for that sequence set, S is the mean of the aver-
age LO scores of all the methods for that sequence set, and
sS is the standard deviation of the average LO scores of all
the methods for the sequence set. The BW is a deterministic
algorithm so that it was tested once and has no standard
deviation for the LO scores. Among all the learning algo-
rithms, the RDPSO-DGS was shown to obtain the learned
HMMs that had the best average LO score (or normalized
average LO score) over 20 runs on each nucleotide sequence
set. It is also shown that the RDPSO had the second best per-
formance in HMM learning for each sequence set. The SPSO
obtained the average and normalized average scores better
than the BW algorithm, which had the worst performance
in HMM training for each nucleotide sequence set among
all tested learning algorithms. It is shown in Table 3 that the
BW took much less time than the SPSO, RDPSO and
RDPSO-DGS to train HMMs. However, the BW is a local
optimization technique and is not efficient in HMM train-
ing, particularly when the number of states of the HMM is
large and the training problem is very difficult to solve.
Therefore, global search techniques, such as the RDPSO and
RDPSO-DGS, are promising tools for that purpose although
they need more execution time.

Table 3 lists the average and the standard deviation (in
brackets) of the sum-of-pairs scores of the resulting align-
ments obtained by the final HMMs over 20 runs of training
of each algorithm, the normalized average SOP score, and
the execution time when the sum-of-pairs score was
employed as the fitness value for HMM learning. The table
also gives the SOP scores of alignments produced by the
ClustalW and MAFFT (L-iNS-I method) programs, for com-
parison reasons. Since the ClustalW and MAFFT programs
are progressive alignment methods that do not involve
HMM learning and can achieve multiple sequence align-
ment within 1 minute, we only recorded and compared the
computational consumptions of the tested optimization

algorithms in HMM learning for MSAs. The normalized
average SOP score of each method was obtained by equa-
tion (24) for a certain sequence set, where Si is the average
SOP score of each method for that sequence set, S is the
mean of the average SOP scores of all the methods for that
sequence set, and sS is the standard deviation of the aver-
age SOP scores of all the methods for the sequence set. It is
clear that the RDPSO-DGS obtained better average SOP
scores and normalized average SOP scores than other meth-
ods, including ClustalW and MAFFT, for Low-short, Low-
long, High-long sequence sets. For the Low-short sequence
set, the MAFFT program obtained the alignment with the
second best SOP score (or normalized SOP score). The SOP
score of the alignment obtained by MAFFT is the second
best for this sequence set, and the SOP score of the align-
ment generated by the HMM trained with the RDPSO is the
third best. For Low-long sequence set, the alignment with
the second best SOP score was obtained by the HMM
learned by the RDPSO. The alignment yielded by ClustalW
has the next best SOP score and normalized SOP score. For
this sequence set, the MAFFT program is showed to align
with the worst SOP score. For the High-short sequence set,
MAFFT produced the alignment with the best SOP score,
and the HMM trained by the RDPSO-DGS generated the
final alignment with the second best SOP score. For the
High-long sequence set, the HMMs trained by the RDPSO-
DGS and RDPSO obtained the best and the second best
alignment in terms of SOP scores. ClustalW yielded the
alignment with the third best SOP score (or normalized SOP
score). Among the training algorithms for HMMs, the BW
took less computational time for HMM training than the
other algorithms. However, it is worth using the RDPSO-
DGS, RDPSO and SPSO, even if it takes more time, as the
obtained HMM can align the sequences more accurately.

Fig. 1 illustrates the convergence process over 20 runs of
each algorithm in learning the HMMs for Low-Short nucleo-
tide sequence set, with the log-odds scores and SOP scores
being the objective function values, respectively. As shown
by the figure, the BW algorithm converged at the fastest
speed to the local optimal solution. The convergence of the
SPSO was more rapid than that of the RDPSO and RDPSO-
DGS, but it was prone to encounter premature convergence.
In contrast, the RDPSO and its improved version had slower
convergence speed at the early stage of the learning process,
which implies that the algorithms searched globally. At the

TABLE 3
SOP Scores for the Nucleotide Data Set and the Execution Time of Each Algorithm
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Aaron
BW is a local optimization technique and is not efficient in HMM train- ing

Aaron
ClustalW and MAFFT programs are progressive alignment methods

Aaron
within 1 minute

Aaron
consumptions of the tested optimization



later stage of the search, the RDPSO-DGS maintained its
diversity at a certain level to prevent the particles from stag-
nation so that it can find better solutions than its competitors.

5.3.2 Results for Amino-Acid Data Sets

The experimental results for the amino-acid data sets from
the BaliBASE database are presented in Tables 4 and 5.
Table 4 lists the results when the log-odds score was used as
the objective function. The results include the average and
the standard deviation of the LO scores of the resulting align-
ments obtained by the final HMMs over 20 runs of each train-
ing algorithm for each sequence set, the normalized average
LO score of each method for a sequence set, and the average
execution time for each training run. Here, the normalized
average LO score of each method for each sequence set was

calculated in a similar way as in Tables 2 and 3. It can be
observed in the table that the HMMs trained by the RDPSO-
DGS obtained the alignments with the best average LO
scores and, consequently, best normalized average LO scores
for all of the 12 sequence sets. The RDPSO algorithm, as can
be seen from the results, had the second best performance in
the HMM learning for all the sequence sets. The BW algo-
rithm, just as in the experiments for the nucleotide data sets,
performed the worst in the HMM training for most of the
sequence sets, but consumed the least computational time.
Although the RDPSO-DGS, RDPSO and SPSO consumed
more computational time, they are far more efficient in
HMM training for MSA than the BW.

Table 5 provides the average of the modified sum-of-
pairs (MSOP) scores of the resulting alignments obtained by
the HMMs from the 20 runs of training of each algorithm

TABLE 4
HMM Log-Odds Scores for the BAliBASE Test Sets and the Execution Time of Each Algorithm

Fig. 1. Average fitness values found by the algorithms during the HMM learning process for low-short nucleotide sequences, with the fitness values
being the log-odds scores and the sum-of-pairs scores.
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for each sequence set, and the normalized average MSOP
scores of each method for each sequence set. The MSOP
score in equation (5) was used for HMM training in this
case since the reference alignments, i.e., the prior knowl-
edge of the resulting alignments, is available. The standard
deviations of the MSOP scores are very small, so they are
not listed in the table. The average execution time of each
training method over 20 runs for each sequence set is also
given in the table. Additionally, the MSOP scores of the
alignments obtained by the ClustalW and MAFFT programs
are also listed in the table. The normalized average MSOP
score of each method for each sequence set was obtained in
a similar way as in Tables 2, 3, and 4. For the laboA
sequence set, the HMMs trained by the RDPSO-DGS and
RDPSO yielded the alignments that had the best and the
second best average MSOP scores and normalized average
MSOP scores. The next best alignments were produced by
the MAFFT and ClustalW programs, respectively. The same
goes for the lidy sequence set. For the 451c sequence set,
ClustalW and the HMM trained by the RDPSO-DGS yielded
the best and second best alignment, respectively. The
MFATT program performed the third best in the alignment
of this sequence set. The next best-performing in MSA for
this sequence data set is the RDPSO-trained HMM. For the
lkrn sequence set, the MSOP scores of the alignments that
were produced by ClustalW, MAFFT and the RDPSO-
learned HMM were tied for the best MSOP scores. The next

best MSOP score was that of the alignment generated by the
RDPSO-trained HMM. For the lbbt3 sequence set, the
RDPSO-DGS-trained HMM and MAFFT program aligned
the sequence set with the best and second best MSOP scores,
respectively. The alignment yielded by the RDPSO-learned
HMM had the next best MSOP score. For the kinase
sequence set, the MAFFT and ClustalW programs per-
formed the best and the second best in MSA, as can be seen
from the MSOP score or normalized MSOP scores of the
obtained alignments. The MSOP score of the alignment
resulted from the RDPSO-DGS-trained HMM was the next
best one. For the 1pii sequence set, ClustalW aligned the
sequences with the best MSOP score. The alignments with
the second best and the third best MSOP scores were
obtained by the RDPSO-DGS-learned HMM and MAFFT
program. For the 5ptp sequence set, ClustalW, the RDPSO-
DGS-trained HMM and RDPSO-trained HMM got the best,
the second best and the third best alignments, respectively,
in terms of MSOP scores. The HMM trained by the RDPSO-
DGS produced the best alignment for the ga14 sequence set,
and the MAFFT program generated the second best align-
ment for this sequence set, according to the MSOP scores or
the normalized MSOP scores. For the 1ajsA sequence set,
the alignment produced by the RDPSO-DGS-trained HMM
had the best MSOP score. The second and third best align-
ments were those found by the MAFFT program and the
RDPSO-learned HMM. The best alignment for the glg

TABLE 5
MSOP Scores for the BAliBASE Test Sets and the Execution Time of Each Experiment
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sequence set was obtained by the ClustalW program. The
alignments produced by the RDPSO-DGS-trained HMM
and MAFFT program were almost tied for the second best,
since their MSOP scores are very similar. For the ltag
sequence set, the first three best MSOP scores are those of
the alignment produced by ClustalW, the RDPSO-DGS-
learned HMM and RDPSO-learned HMM. The alignment
yielded by the MAFFT program had the next best MSOP
score. Among the training algorithms for HMMs, i.e., the
RDPSO-DGS, RDPSO, SPSO, and BW, the HMMs trained
by the RDPSO-DGS and RDPSO had the best and second
best overall performance in the multiple sequence align-
ment for these sequence sets. As for the execution time of
the HMM training, although the RDPSO-DGS, RDPSO and
SPSO were more computationally consuming, the align-
ment accuracies obtained by the HMMs trained by them are
much higher than the BW. As mentioned in the previous
section, it is worth using these global search techniques and
spending longer time to train HMMs for a more accurate
multiple sequence alignment.

Fig. 2 shows the convergence process averaged over 20
runs of each learning algorithm on the course of the
HMM learning process. It can be seen that the RDPSO-
DGS had the best convergence properties among all the
learning algorithms. In order to show the good perfor-
mance of the RDPSO and RDPSO-DGS, we present in
Fig. 3 the reference alignments of the lidy sequences and
the alignments provided by the ClustalW program, the
MAFFT program, and the HMMs learned by the BW,
SPSO, RDPSO and RDPSO-DGS.

5.4 Discussion
In order to make an overall performance comparison
among all the methods, we averaged the normalized
average log-odds scores and the normalized average
sum-of-pairs scores that are listed in Tables 2, 3, 4, and 5
for each method. Also, for the same purpose of overall
performance comparison, all of the two types of normal-
ized average scores for each method over all the tested

Fig. 3. (a) The reference alignment, and the resulting alignments for the lidy sequences generated by (b) ClustalW; (c) MAFFT; (d) HMM-BW;
(e) HMM-SPSO; (f) HMM-RDPSO; (g) HMM-RDSPO-DGS.

Fig. 2. Average log-odds scores found by the algorithms during training of the HMMs for lidy and lajsA sequences from the BAliBase database.
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sequence sets were also averaged. This averaged normal-
ized score is named total average normalized score. The
results are presented in Table 6. Among all the training
algorithms, including the RDPSO-DGS, RDPSO, SPSO
and BW, both the average normalized log-odds score
and sum-of-pairs score produced by the RDPSO-DGS-
learned HMMs were better than those of any other com-
petitor. This indicates that the RDPSO-DGS had the best
overall performance in the HMM parameter learning for
the MSA on the two benchmark data sets. Among all the
training algorithms, the RDPSO algorithm showed to
have the second best overall performance in HMM train-
ing, as its average normalized log-odds score, average
normalized sum-of-pairs scores and total average nor-
malized score were ranked the second among all the
methods. The BW algorithm performed worst, among all
the training algorithms, in HMM parameter learning
tasks for the considered MSA problems.

Comparing all the tested multiple alignment methods,
including ClustalW, MAFFT, the HMMs learned by the four
training algorithms, the RDPSO-DGS-learned HMM had
the best overall performance in MSA on the two data sets.
The MAFFT program had the second best overall perfor-
mance, as indicated by the averaged normalized sum-of-
pairs score and the total average normalized score. The
ClustalW program, the next best-performing method,
slightly outperformed the RDPSO-trained HMMs in MSA
for the given benchmark data sets. The comparison between
these methods implies that an efficient learning algorithm is
crucial for HMMs in order to show advantages in solving
MSA problems.

It is well known that the parameter learning for a HMM
is a time consuming task, particularly when meta-heuristic
methods are used. As can be seen from Tables 2 3, 4, and 5
5, the BW consumed the least computational time since it is
a local deterministic search technique. The RDPSO-DGS
algorithm was slightly more time-consuming in learning
the parameters of the HMMs for MSA than the RDPSO and
SPSO, due to the computation of the diversity measure at
each iteration during the learning process. However, it was
worthwhile to consume tolerably more computational time
in order to obtain the significant performance advantages of
the RDPSO-DGS over its competitors.

In [21], the amino-acid data sets from the BAliBASE were
tested. For each corresponding sequence set, it can be seen
that the results of the RDPSO-DGS and RDPSO are better
than those of the PSO variant in [21]. In [22], we tested the
sequence sets from three data sets, two of which were the
simulated nucleotide data sets and the amino-acid data sets
from the BAliBASE we tested in this work. By comparing

the results in this work and in [22], it can be concluded that
the RDPSO-DGS outperformed all the methods proposed in
[22]. Due to the space limitation in this paper, we have not
listed the results of the methods in [21] and [22].

6 CONCLUSION

This paper focused on the HMM-based method for multiple
sequence alignment. A novel PSO variant, the RDPSO algo-
rithm along its improved version, named as the RDPSO-
DGS, was proposed as a new optimization method and
applied to train HMMs for MSA. The proposed RDPSO and
RDPSO-DGS were used for the training of HMMs for MSA
problems on two benchmark data sets, and compared with
the popular ClustalW and MAFFT programs.

The proposed RDPSO algorithm and its variant were
inspired by the free electron model in metal conductors
placed in an external electric field. Analogous to the
movement of electrons toward the location with mini-
mum potential energy in the conductor, the particle in
the RDPSO algorithm has both random (thermal) motion
and drift motion, which implement the global search and
the local search ability of the particle, respectively, in
order to find the global minimum in the search space.
Therefore, the velocity of the particle is the superposition
of the random velocity and the drift velocity, which leads
to a very different update equation for the particle’s
velocity. In order to improve the RDPSO even further, a
diversity control strategy was incorporated into the algo-
rithm and, thus, the RDPSO-DGS was proposed. With the
diversity measure being controlled and maintained at a
certain level, the stagnation of the particle swarm can be
prevented effectively, and, consequently, the global
search ability of the algorithm is enhanced considerably.

The experimental results showed that, with either the
log-odds score or the sum-of-pairs score being the fitness
value for the learning tasks, the RDPSO and RDPSO-DGS
were able to produce the HMMs that had better scores than
other learning algorithms, i.e., the SPSO and BW, for the
simulated nucleotide data set and the amino-acid data set
from the BaliBASE. Comparing with two popular MSA pro-
grams, ClustalW and MAFFT, the RDPSO-DGS-learned
HMMs also showed a better overall performance than the
two programs, as indicated by the total average normalized
scores. In addition, the comparison of the average execution
time among all the learning algorithms indicated that, in
each experiment, the RDPSO-DGS and RDPSO algorithms
consumed more CPU time for training the HMMs than the
BW algorithm. However, considering its significant perfor-
mance advantages over its competitors, we can conclude
that the RDPSO-DGS and RDPSO is a very efficient
approach for HMM parameter learning for MSA problems.
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