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Abstract. We introduce new data structures for compressed suffix trees whose
size are linear in the text size. The size is measured in bits; thus they occupy only
O(n log|A|) bits for a text of length n on an alphabet A. This is a remarkable im-
provement on current suffix trees which require O(n log n) bits. Though some com-
ponents of suffix trees have been compressed, there is no linear-size data structure
for suffix trees with full functionality such as computing suffix links, string-depths
and lowest common ancestors.

The data structure proposed in this paper is the first one that has linear size and
supports all operations efficiently. Any algorithm running on a suffix tree can also
be executed on our compressed suffix trees with a slight slowdown of a factor of
polylog(n).

1. Introduction

Suffix trees are basic data structures for string algorithms [13]. A pattern can be found in
time proportional to the pattern length from a text by constructing the suffix tree of the text
in advance. The suffix tree can also be used for more complicated problems, for example
finding the longest repeated substring in linear time. Many efficient string algorithms
are based on the use of suffix trees because this does not increase the asymptotic time
complexity. A suffix tree of a string can be constructed in linear time in the string length
[28], [21], [27], [5]. Therefore it is natural to use the suffix tree.

∗ This work was supported in part by the Grant-in-Aid of the Ministry of Education, Science, Sports,
and Culture of Japan.
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However, concerning the space complexity, the suffix tree is worse than the string.
Let A be the alphabet and let T be a string of length n on A. Then the suffix tree is
represented by O(n) number of pointers together with the string itself. Because we need
lg n bits1 to encode a pointer, the suffix tree occupies O(n lg n) bits. On the other hand,
the string occupies n lg|A| bits. The alphabet size |A| is usually much smaller than n, for
example, for the whole human genome sequence, |A| = 4 (A = {a, c, g, t}) and n > 231

(2.8 giga). Even with a space-efficient implementation, the suffix tree is 40 gigabytes in
size [18], whereas the string is only 700 megabytes. Therefore it is better to represent
the suffix tree in size proportional in the string size, that is, in O(n lg|A|) bits.

In this paper, we consider the following computation model. We assume a word-
RAM [1], [14] with word size O(lg U ) bits, where n ≤ U , in which standard arith-
metic and bitwise Boolean operations on word-sized operands can be performed in
constant time. We also have O(U ) memory cells, each of which has O(lg U ) bits and
is read/written in constant time. Therefore, by using pointers of O(lg n) bits, the suffix
tree is represented in O(n) cells and can be constructed in O(n) time.

We measure the space complexity not by the number of cells but the number of bits.
Then the current suffix trees occupy O(n lg n) bits. This is not practical because in most
computers the memory size is measured not by words but bytes. For example, a 32-bit
computer can handle not 232 = 4G words, but 4G bytes. For a 64-bit computer a word
consists of 8 bytes. We can assume that each byte consists of a constant number of bits.
Then, in general, a lg U -bit computer will have U bytes, or U/lg U words. Then we
can construct suffix trees only for strings of length O(U/lg U ). On the other hand, we
can store the string of length O(U/lg |A|) because each character occupies lg|A| bits.
Therefore our aim is to construct suffix trees whose size are linear in the string, that is,
of O(n lg|A|) bits. This is important both theoretically and practically.

We propose O(n lg|A|)-bit data structures for suffix trees that have the full func-
tionality of the current suffix trees. Though some data structures for suffix trees have
been proposed [3], [24], the following are missed: (1) the suffix link of an internal node,
(2) the depth of an internal node, and (3) the lowest common ancestor (lca) between any
two nodes. The suffix link is necessary to use the suffix tree as an automaton recognizing
all substrings of the text, which can be used to compute the longest common substring of
two strings, matching statistics, etc. The node depth is necessary to implicitly enumerate
all maximal repeated substrings of the text in linear time, which can be used for text data
mining [26]. The lca is necessary to compute the longest common extension of two suf-
fixes in constant time, which can be used in approximate string matching problems. The
above elements are also frequently used to solve other problems. In this paper we propose
linear-size data structures for them. The data structures have size |CSA|+ 6n+ o(n) bits
where |CSA| denotes the size of the compressed suffix array [11] of the text, which is
also linear. As for the time complexity, our data structures support efficient operations
on suffix trees. Any operation on a suffix tree is supported with a slowdown of a factor
of polylog(n) in the time complexity.

The rest of the paper is organized as follows. Section 2 reviews the suffix trees, and
Section 3 describes space-efficient data structures which are used in our compressed

1 Let lg n denote log2 n.
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suffix trees. Section 4 proposes new compact data structures for storing longest common
prefix information and range mininum queries. Section 5 states the main results: new
data structures for compressed suffix trees. Section 6 gives some concluding remarks.

2. Suffix Trees

In this section we review suffix trees. Let T [1..n] = T [1]T [2] · · · T [n] be a text of length
n on an alphabetAwith |A| ≤ n. We assume that T [n] = $ is a unique terminator which
alphabetically precedes all other symbols. The j th suffix of T is defined as T [ j..n] =
T [ j]T [ j + 1] · · · T [n] and expressed by Tj . A substring T [1.. j] is called a prefix of T .

2.1. Definitions

The suffix tree of a text T [1..n] is a compressed trie built on all suffixes of T . It has
n leaves, each of which corresponds to a suffix of T . Each label is labeled by a string,
called edge-label. The concatenation of labels on a path from the root to a node is called
the path-label of the node. The path-label of each leaf coincides with a suffix. For each
internal node, its children are sorted in the alphabetic order of the first characters of
edge-labels. The leaves are then sorted in the lexicographic order of suffixes. We store
the indices j of suffixes Tj in this order in an integer array S A[1..n]. This is called the
suffix array [20]. Figure 1 shows the suffix tree for a text “ababac$.” Leaf nodes are
shown by boxes, and numbers in the boxes represent the elements of the suffix array.
Internal nodes are shown by circles, and the numbers in them represent their inorder
ranks, which are defined later.

2

3

5

$ a b
a

c

b
a

c

b c

b c

7

1 3

5

2 4

6

1 4 6

Hgt 0 3 1   0    2   0 ���0

(()((()())())(()())())
7 1 3 5 2 4 621 3 5

Fig. 1. The suffix tree for “ababac$” and its balanced parentheses representation. Suffix links are represented
by dotted lines.
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The string-depth of a node is the length of the string represented by the node, while
the node-depth of a node is the number of nodes on the path from the root node to the
node, including itself and excluding the root node.

Suffix links are defined for all internal nodes, except the root node, of a suffix tree
as follows:

Definition 1. The suffix link sl(v) of an internal node v with path-label xα, where x
denotes a single character and α denotes a possibly empty substring, is the node with
path-label α.

Suffix links are not only necessary to construct a suffix tree in linear time but also solve
problems efficiently, for example finding the longest common substring of two strings
in linear time.

We consider the following operations on suffix trees, where v and w denote nodes
in the suffix tree and where c denotes a character in A:

Definition 2. A suffix tree for a text supports the following operations:

1. root(): returns the root node.
2. isleaf (v): returns Yes if v is a leaf, and No otherwise.
3. child(v, c): returns the node w that is a child of v and the edge (v,w) begins

with character c, or returns 0 if no such child.
4. firstchild(v): returns the first child of node v.
5. sibling(v): returns the next sibling of node v.
6. parent(v): returns the parent node of v.
7. edge(v, d): returns the dth character of the edge-label of an edge pointing to v.
8. depth(v): returns the string-depth of node v.
9. lca(v,w): returns the lowest common ancestor between nodes v and w.

10. sl(v): returns the node w that is pointed to by the suffix link from v.

2.2. Data Structures

A suffix tree is decomposed into five components: text, tree topology, node-depths, edge-
labels, and suffix links. A basic representation is the following: Text is the string T , which
is encoded in n lg|A| bits. Tree topology represents parent-child relationships of nodes
and consists of O(n) pointers, which occupies O(n lg n) bits. Node-depths store the
string-depth for each internal node in n lg n bits. An edge-label between internal nodes
is represented by a pointer to the text in n lg n bits. Note that the length of the edge is
computed from node-depths of both endpoints of the edge. An edge-label between an
internal node and a leaf is represented by the suffix array of T , which occupies n lg n
bits. Suffix links are pointers between internal nodes and are represented in n lg n bits.

3. Succinct Data Structures

In this section we review succinct data structures which are used in our compressed
suffix trees.
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3.1. Compressed Suffix Arrays

Compressed suffix arrays, proposed by Grossi and Vitter [11], are data structures that
reduce the size of suffix arrays from n lg n bits to O(n lg|A|) bits at the cost of increasing
access time from constant time to O(lgε n) time where ε is any constant with 0 < ε ≤ 1.

Many variations of the compressed suffix array have been proposed [6], [7], [10],
[8], [25]. Ferragina and Manzini [6], [7] proposed the FM-index, a kind of compressed
suffix array of size 5nHk+O((n/lg n)(|A|+ lg lg n)+nε|A|2|A| lg|A|)) bits where Hk is
the order-k entropy of the text. This holds for any integer k > 0. They also proposed an
algorithm to search for a pattern of length m in O(m + lg1+ε n) time without using the
text T . We call it a self-indexing data structure. Ferragina and Manzini [8] also proposed
another type of compressed suffix array in O(nHk lgε n) + o(n) bits which supports
O(m + occ)-time enumerating query where occ is the number of occurrences of the
pattern.

Sadakane [25] modified the original compressed suffix array so that it acts as a self-
indexing data structure. He also reduced the size from O(n lg|A|) bits to O(n lg H0)

bits. Grossi et al. [10] further reduced its size to nHh + o(n) bits for any h ≤ α lg|A| n
with 0 < α < 1. A pattern can be found in O(m lg|A| + polylog(n)) time.

For our compressed suffix trees, compressed suffix arrays should support the fol-
lowing operations:

Definition 3. A compressed suffix array for a text T is a data structure supporting the
following operations:

• lookup(i): returns S A[i] in time tSA,
• inverse(i): returns j = S A−1[i], defined such that S A[ j] = i , in time tSA,
• �[i]: returns S A−1[S A[i]+ 1] in time t� , and
• substring(i, l): returns T [S A[i]..S A[i]+ l − 1] in O(l · t�) time.

The function �[i] in the compressed suffix array is defined as follows:

Definition 4.

�[i] ≡
{

i ′ such that S A[i ′] = S A[i]+ 1 (if S A[i] < n),

0 (if S A[i] = n).

Table 1 summarizes variations of compressed suffix arrays. We do not include the FM-
index because it does not have �.

Table 1. The size and query time of compressed suffix arrays.

Size (bits) tSA t� References

O(n lg|A|) O(lgε n) O(1) [11], [12]
O(nH0 + n lg lg |A|) O(lgε n) O(1) [25] (|A| = polylog(n))

nHh + O(n lg lg n/lg|A| n) O(lg2 n/lg lg n) O(lg |A|) [10, Theorem 4.2]
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Any character T [ j] in a text can be extracted in constant time by substring(i, 1) if
the lexicographic order i of the suffix Tj = T [ j..n] is given. Furthermore, even if we do
not know the lexicographic order we can compute it by using inverse( j). Therefore we
need not to store the text T explicitly.

The � function is basically used in the other three operations in Definition 3.
Therefore it seems that we can remove it from the definition of the compressed suffix
array. However, it is very impotant for compressed suffix trees because it is used to
compute a suffix link in constant time. Though the� function can be computed by using
lookup and inverse as in the definition, it cannot be done in constant time.

3.2. Balanced Parentheses Representations of Trees

We use a balanced parentheses encoding of a tree [23], [24]. An m-node-rooted ordered
tree can be encoded in 2m+o(m) bits with various constant-time navigational operations.
The tree is encoded into m nested open and close parentheses as follows: During a
preorder traversal of the tree, write an open parenthesis when a node is visited, then
traverse all subtrees of the node, and write a close parenthesis. An example is shown in
Figure 1. Any node in the tree is represented by a pair of open and close parentheses
“( . . . ).” However, because we can compute the position of the close parenthesis from
that of the open parenthesis in constant time (see [23]), we represent a node by the
position of the open parenthesis in the sequence. Since there are 2n− 1 nodes in a suffix
tree for a text of length n, exactly n leaves and at most n − 1 internal nodes, the suffix
tree of the text can be encoded in at most 4n + o(n) bits.

Navigational operations on the tree are defined by rankp, selectp, findclose, enclose,
etc., on the parentheses sequence P . The function rankp(P, i) returns the number of
occurrences of pattern p up to the position i , where p is for example “().” The
function selectp(P, i) returns the position of i th occurrence of pattern p. The func-
tion findclose(P, i) returns the position of the close parenthesis that matches the open
parenthesis in position i of P . The function enclose(P, i) finds the closest enclosing
matching parenthesis pair of a parenthesis pair whose open parenthesis is in position
i , which corresponds to compute the parent of a node. All functions take constant
time.

By using the above functions, we can perform various operations on a tree. Among
them, the following are important for compressed suffix trees:

• leftrank(v): returns the number of leaves to the left of node v in preorder,
• leftmost(v): returns the leftmost leaf in the subtree rooted at node v, and
• rightmost(v): returns the rightmost leaf in the subtree rooted at node v.

These are computed in constant time [24]. Actually they have proposed a compressed
suffix tree using the suffix array and the parentheses encoding of Pat tree [9] in n lg n +
4n + o(n) bits. Our compressed suffix tree is similar to this; however, we also support
depth(v), lca(v,w), and sl(v).

3.3. Simulating Suffix Tree Traversal by Suffix Array and Height Array

Kasai et al. [17] showed that a bottom-up traversal of a suffix tree can be simulated
by using only the suffix array and an array storing a set of the lengths of the longest
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common prefixes between two suffixes, called Hgt array. The array Hgt[1..n] is defined
as follows:

Definition 5.

Hgt[i] ≡
{

lcp(TS A[i], TS A[i+1]) (1 ≤ i ≤ n − 1),

0 (i = n).

Though the Hgt array stores the lengths of the longest common prefixes only between
adjacent suffixes in a suffix array, it is enough for bottom-up traversal of the suffix tree.
Many problems are solved by a bottom-up traversal of the tree.

3.4. Related Works

Though space-efficient suffix trees have been proposed [3], [24], their sizes are still not
linear in n even for a constant size alphabet, and these are focused on only finding the
number of occurrences and positions of a pattern. They do not store suffix links and node
depths. Therefore they do not have the full functionality of suffix trees.

For node depths, Clark and Munro [3] used a lg lg lg n-bits field to store the length of
an edge instead of storing the depth of the corresponding node although the size was still
not linear. Moreover the method cannot be used to answer the depth of a node quickly.
Munro et al. [24] proposed an algorithm for searching for patterns without storing edge
lengths. The algorithm calculates them online whenever needed. Though their algorithm
has the same time complexity to find a pattern as the algorithm that requires edge lengths,
it may not be suitable for traversing the nodes of the suffix tree. In this case their algorithm
takes O(n2) time because the sum of all edge-lengths in the suffix tree is O(n2).

4. New Data Structures for lcp Information

In this section we propose space-efficient data structures for storing lcp (longest common
prefix) information between suffixes. First we show a data structure to represent the Hgt
array, which is also used to encode string-depths in a suffix tree. Then we show a data
structure for Range Minimum Query, which is used to compute lowest common ancestors
in a suffix tree.

We first propose succinct representations of the Hgt array. Though values of the Hgt
array for a text T are usually small, they may reach n−1. Therefore it is necessary to use
an array of integers each with lg n-bits width if we use fixed-width integers. However
we can efficiently store the values by using the properties of Hgt array, which can be
efficiently extracted by using the information of the suffix array:

Theorem 1. Given i and S A[i], the value Hgt[i] can be computed in constant time
using a data structure of size 2n + o(n) bits.

Proof. See Section 4.1.
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From this theorem we can store data structures that can be used to simulate an in-
order or a bottom-up traversal of a suffix tree in |SA| + 2n + o(n) bits where |SA| is
the size of the suffix array or the compressed suffix array. The time complexity for the
traversal is O(n · tSA) where tSA is the time to compute an element of the suffix array,
that is, O(1) time for suffix array, or O(lgε n) time for the compressed suffix array.

This result can be extended to compute lcp between two arbitrary suffixes:

Theorem 2. Given i and j , the length of the longest common prefix between suffixes
TS A[i] and TS A[ j] can be computed in O(tSA) time using a data structure of size |SA| +
6n + o(n) bits.

Proof. See Sections 4.2 and 4.3.

4.1. Data Structures for Hgt Array

Here we show the data structure of Theorem 1. To achieve the space complexity, we use
a space-efficient data structure for storing sorted integers [4] and the select function [22]
as it is used in the compressed suffix array [11].

Lemma 1 [12]. Given s integers in sorted order, each containingw bits, where s < 2w,
we can store them in at most s(2+w−
lg s�)+ O(s/lg lg s) bits, so that retrieving the
hth integer takes constant time.

To encode the Hgt array, the above data structure cannot be directly used because
the numbers are not sorted. However, we can convert them into sorted ones by using the
following lemma.

Lemma 2. Hgt[�[i]] ≥ Hgt[i]− 1.

Proof. Let p = S A[i], q = S A[i + 1], and l = Hgt[i] = lcp(Tp, Tq). If T [p] �= T [q],
then Hgt[i] = 0 and the inequality holds because Hgt[�[i]] ≥ 0. If T [p] = T [q],
consider suffixes Tp+1 and Tq+1. From the definition of �, S A[�[i]] = p + 1 and
S A[�[i + 1]] = q + 1. The suffix Tq+1 is lexicographically larger than the suffix Tp+1

from the definition of lexicographic order. That is,�[i] < �[i+1]. Therefore an integer
i ′ such that �[i] + 1 = i ′ ≤ �[i + 1] exists. The suffix TS A[i ′] has a prefix of length
l − 1 that matches with both prefixes of Tp+1 and Tq+1 because of the definition of
lexicographic order. This completes the proof.

Note that this lemma is identical to that in [17]. From this lemma, we have the
following relation for p = S A−1[1]:

Hgt[p] ≤ Hgt[�[p]]+ 1

≤ Hgt[�k[p]]+ k

≤ Hgt[�n−1[p]]+ n − 1

= n − 1,
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i 1 2 3 4 5 6 7
Hgt 0 3 1 0 2 0 0
S A 7 1 3 5 2 4 6

S A + Hgt 7 4 4 5 4 4 6

Fig. 2. How to create a sorted sequence from Hgt.

where the equality comes from the fact that S A[�n−1[p]] = n and the Hgt value for the
suffix Tn is 0 because T [n] = $ is a unique terminator.

Now we have a sequence of n sorted numbers Hgt[�k[p]]+k for k = 0, 1, . . . , n−1
in the range [0, n − 1] which can be stored using 2n + o(n) bits and can be accessed in
constant time. To obtain Hgt[i], the remaining task is to compute k such that i = �k[p],
which is easily done as follows. From the definition of �,

S A[�k[i]] = S A[i]+ k

for any i . Therefore

S A[i] = S A[�k[p]] = S A[p]+ k = k + 1,

that is, k = S A[i]− 1.
Figure 2 shows an example of creating a sorted sequence of numbers. The last row

shows S A[i] + Hgt[i] for i = 1, 2, . . . , n, which is the summation of the second and
third rows. If we sort the numbers in order of S A[i] values, we obtain a sorted sequence
“4 4 4 4 5 6 7.” Then these are encoded in a 0,1 sequence “00001 1 1 1 01 01 01” whose
length is at most 2n bits. The blanks in the sequence are only for explanation. We can
uniquely decode the numbers from the sequence.

The algorithm to calculate Hgt[i] becomes as follows:

1. Extract the kth entry v (k ≥ 0) of the sorted numbers where k = S A[i]− 1.
2. Subtract k from v.

This proves Theorem 1.
A problem with our encodings of the Hgt array is that a value Hgt[i] is stored in the

bit-vector H in the order of not i but S A[i]. Therefore access to H becomes random if
we retrieve the suffix array lexicographically. Another problem is that both i and S A[i]
are necessary to compute Hgt[i]. If we use the compressed suffix array, retrieving S A[i]
takes O(tSA) time.

4.2. Computing lcp between Arbitrary Suffixes

We describe the data structure of Theorem 2. It consists of two components: one to store
the Hgt array of Theorem 1, and one to perform RMQ (range minimum query) in Hgt
array. The former occupies 2n + o(n) bits and the latter 4n + o(n) bits.

Because the suffixes are lexicographically sorted in the suffix array, computing lcp
between two suffixes TS A[l] and TS A[r ] (l < r ) is equivalent to computing the minimum
of Hgt[l],Hgt[l + 1], . . . ,Hgt[r − 1]. Let Hgt[m] be the minimum value among them.
If there are two or more minimum values, we can choose one arbitrarily. To compute
the minimum value, we use the algorithm for computing lca nodes [2] because of the
following property:
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Proposition 1. Let v be the node lca(leaf (l), leaf (r)) in the suffix tree and let m be
the index defined above. Then v = lca(leaf (m), leaf (m + 1)) and v has string-depth
Hgt[m].

Proof. Because of the construction of the suffix tree, the node v′ ≡ lca(leaf (m),
leaf (m + 1)) has string-depth lcp(TS A[m], TS A[m+1]) = Hgt[m]. The node v also has
string-depth Hgt[m]. Because TS A[m] locates lexicographically between TS A[r ] and TS A[r ]

and these three suffixes have a common prefix of length Hgt[m], the nodes v and v′

represent the same string. This means v = v′.

Therefore we first compute the node v, next compute the index m, then compute
Hgt[m] by using the data structure in Section 4.1.

We define the following Range Minimum Query (RMQ) problem:

Problem 1 (Range Minimum Query). For indices l and r , between 1 and n, of an array
A, the range minimum query RMQA(l, r) returns the index of the smallest element in
the subarray A[l..r ]. If there is a tie-breaking, we choose an arbitrary one.

The algorithm of Bender and Farach-Colton [2] reduces the problem of computing
lca to the RMQ problem as follows. We traverse the nodes of the tree (in our case, the
suffix tree) in depth-first manner and store their node-depths in an array L . The node-
depth of a node is the number of nodes on the path from the root to the node and is
usually different from its string-depth. We also store the position in L for each node of
the tree that corresponds to the first visit to the node in the depth-first traversal. Then the
lca between two nodes can be represented as the minimum value in the subarray of L ,
where the boundaries of the subarray correspond to the nodes.

In the original algorithm, they store L as an integer array of size 2n − 1 for an
n-node tree. Therefore L occupies O(n lg n) bits. They also store the positions of L
representing nodes in another integer array, which occupies O(n lg n) bits. On the other
hand, we store these information in 4n + o(n) bits as follows. Because the difference
between two adjacent elements of L is 1 or−1, we encode the differences by a sequence
P of open and close parentheses (see Figure 1). Actually, the parentheses sequence P
is exactly the same as the encoding for a tree [23]. The tree is encoded into 2n nested
open and close parentheses as follows. During a pre-order traversal of the tree, write an
open parenthesis when a node is visited, then traverse all subtrees of the node and write
a close parenthesis.

We call L the depth-sequence of P . L is computed by L[i] = rank((P, i) −
rank)(P, i). Therefore it takes constant time using o(n) bit indices.

We need to compute the position in L corresponding to each leaf of the tree. It is
done in constant time as follows:

Lemma 3. The position x of a pair of parentheses “()” in P that represents leaf (i)
can be computed by

x = select()(P, i).
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Proof. Because any occurrence of “()” in P corresponds to a leaf of the tree and the
leaves appear in the lexicographic order of the suffixes, the lemma holds.

Because the data structure for select function occupies o(n) bits in addition to the
parentheses sequence P , the total size is 4n + o(n) bits. We can run the algorithm for
the RMQ problem on P instead of L .

We can compute the index m from the result of the RMQ problem for computing
lca(leaf (l), leaf (r)).

Lemma 4. Let x and y be the positions of “()” in P that represent leaves TS A[l] and
TS A[r ], respectively. Then the index m of Hgt[m] that attains the minimum value among
Hgt[l],Hgt[l + 1], . . . ,Hgt[r − 1] can be computed by

m = rank()(P,RMQL(x, y)).

Proof. RMQL(x, y) returns the position p of a close parenthesis “)” in the parentheses
sequence P corresponding to the node v = lca(leaf (l), leaf (r)). The node is equal
to lca(leaf (m), leaf (m + 1)). Because P represents a depth-first traversal of the tree,
especially in the lexicographic order of leaves, leaves leaf (i) for i = 1, 2, . . . ,m appear
to the left of p in P , and other leaves appear to the right of p. Therefore m is equal to
the number of leaves encoded to the left of p in P , that is, m = rank()(P, p).

Now we have the algorithm to compute lcp(TS A[l], TS A[r ]).

1. Compute x = leaf (l) and y = leaf (r).
2. Compute m = rank()(P,RMQL(x, y)).
3. Compute Hgt[m].

4.3. Data Structures for Range Minimum Query

The data structure of Bender and Farach-Colton [2] for the RMQ problem occupies O(n)
words, or, in other words, O(n lg n) bits. We propose a modified data structure which
occupies only 2n + o(n) bits.

The Original Data Structure. To compute the index of the minimum value in a subarray
in constant time, we use precomputed tables of size o(n) bits. We divide the whole array
L into blocks of size lg n/2, and we define an array L ′[0, . . . , 2n/lg n] such that L ′[i]
stores the minimum value in the i th block. To compute RMQL(x, y), we first compute
the indices x ′ and y′ of blocks containing x and y. Then the minimum value of L[x ..y]
is equal to the minimum of

1. the minimum of L[x ..e] where e is the last element in the same block as x ,
2. the minimum of L ′[(x ′ + 1)..(y′ − 1)], and
3. the minimum of L[s..y] where s is the first element in the same block as y.

The minimum value and its index for the first and third ones can be computed in con-
stant time using tables of size o(n) bits. For the second one, we construct another two-



600 K. Sadakane

dimensional table M[i, k]. For each i and k (i = 0, 1, . . . , 2n/lg n, k = 0, 1, . . . , 
lg n�),
M[i, k] stores the index of the minimum value in L ′[i..i + 2k − 1]. Then the index of
the minimum value between L ′[x ′] and L ′[y′] can be computed in constant time by
min{M[x ′, k],M[y′ − 2k + 1, k]} where k = 
lg(y′ − x ′)�. We also use a table of size
o(n) bits to compute 
lg x� in constant time. This data structure occupies O(n) words
because its size is (2n/lg n) · lg n.

Our Data Structure. We modify the original data structure in two points: (1) we change
the size of blocks, (2) we store the number of the smallest values in each interval L ′[i..i+
2k − 1] and the index of their median in addition to the leftmost index. The details are
as follows.

We divide the array L into blocks of size lg3 n. Then the array M[i, k] occupies only
O((n/lg3 n) · lg n · lg n) = O(n/lg n) = o(n) bits. To compute the minimum element
in the j th block ( j = 0, 1, . . . , n/lg3 n), we further divide the block into subblocks of
size lg n/2. We create a two-dimensional table Mj [i, k] where i = 0, 1, . . . , 2 lg2 n − 1
and k = 0, 1, . . . , lg(2 lg2 n) for each block. These tables occupy O((n/lg3 n) · 2 lg2 n ·
lg(2 lg2 n) · lg(2 lg2 n)) = o(n) bits in total. We also use a table for subblocks of length
lg n/2. It also occupies o(n) bits.

By using the above data structure, the position of the minimum value among
L[x], L[x+1], . . . , L[y] can be computed in constant time. Moreover, a pseudo-median
of the smallest values in the interval is also computed in constant time, which is stated
in the following lemma.

Lemma 5. For the array storing node-depths of any tree with n nodes, there exists a
data structure of size 2n+ o(n) bits computing in constant time the index of the smallest
value in any interval of the array. If there are m such values, the index is the one with
rank between 1

12 m and 11
12 m.

Proof. In the query algorithm the interval L[x ..y] is divided into three small intervals
L[x ..e], L[e + 1..s − 1], and L[s..y]. Each small interval consists of two overlapping
tiny intervals for which the minimum values are stored. There are six tiny intervals.
If the smallest values are in only one of them we obtain the exact median. Otherwise
we choose the median z of a tiny interval Z with maximum number m ′ of the smallest
value. Because other tiny intervals have smallest values of at most m ′, the number of the
smallest value in the query interval is at most m ≤ 6m ′. Because the median z has rank
m ′/2 in Z , its rank in the query interval is between 1

12 m and 11
12 m.

This data structure is crucial for efficient operation to find a child node. Details are
described in Section 5.4.

5. New Compressed Suffix Trees

In this section we show algorithms for navigating compressed suffix trees for small
alphabets using the data structures proposed in Section 4.
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Table 2. The size and query time of compressed suffix trees.

Size (bits) child(v, c) depth(v), edge(v, d) sl(v)

|CSA| + 6n + o(n) O(lg|A| · tSA) O(tSA) O(t�)

nHh + 6n + O(n lg lg n/lg|A| n) O(lg|A| lg2 n/lg lg n) O(lg2 n/lg lg n) O(lg |A|)
O((1/ε)n lg |A|) O(lgε n) O(lgε n) O(1)

The notation is as follows. Nodes of suffix trees are represented by integers u, v, w,
etc., instead of using pointers, and the corresponding nodes are denoted by ū, v̄, w̄, etc.
Nodes are also represented by their ranks: preorder or inorder ranks and denoted by i, j,
etc.

The main result of this paper is stated as follows:

Theorem 3. A compressed suffix tree for a text of length n, supporting the operations
child(v, c) in O(lg|A| · tSA) time, depth(v) and edge(v, d) in O(tSA) time, sl(v) in O(t�)
time, and other operations in constant time, can be represented in |CSA| + 6n + o(n)
bits where |CSA| denotes the size of the compressed suffix array.

Proof. As for the time complexity, please refer to Sections 5.1–5.6. Concerning the
space complexity, we use the compressed suffix array, the compressed representation
of the Hgt array in 2n + o(n) bits, and the parentheses encoding of the suffix tree in
4n + o(n) bits.

5.1. How to Represent a Node

It was shown by Munro and Raman [23] that a node of a tree can be represented by a pair
of parentheses “(. . .)” in a nested parentheses sequence. Therefore we represent a node
v̄ of a suffix tree by an integer v ∈ [1, 2n] which is the position of the open paranthesis
representing the node in the parentheses sequence P . To perform some operations on the
suffix tree, we also need to represent a node by its preorder and inorder. We first show
how to convert these values.

The parentheses sequence P is produced during a preorder traversal of the tree.
Therefore the preorder j of a node v̄ and the position v in P can be easily converted
from each other in constant time:

j = rank((P, v),

v = select((P, j).

We also need the inorder of an internal node. First we give its definition.

Definition 6. The inorder rank of an internal node v is defined as the number of visited
internal nodes, including v, in the alphabetic depth-first traversal, when v is visited from
a child of it and another child of it will be visited next.
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Note that only internal nodes have inorder ranks and an internal node may have two or
more ranks if it has more than two children. Figure 1 shows an example of inorder ranks.
Each number in a circle represents an inorder rank of an internal node. The root node
has three inorder ranks 1, 4, and 6.

The following lemma gives an algorithm to compute the inorder of an internal
node.

Lemma 6. Let v̄ be an internal node, and let i be the smallest inorder of the node.
Then v and i can be converted from each other in constant time by

i = rank()(P, findclose(P, v + 1)),

v = enclose(P, select)((P, i)+ 1).

Proof. Given an internal node v̄, v + 1 represents the position of an open parenthesis
representing the leftmost child w of v. Thus the position u = findclose(P, v + 1) is the
corresponding close parenthesis and the subtree rooted at w is expressed between v and
u in the balanced parentheses sequence.

Inorder ranks are put during a depth-first traversal, which is divided into upgoing
and downgoing paths. An inorder is put to an internal node v if the node is between
consecutive upgoing and downgoing paths, and each upgoing path starts from a leaf.
Therefore an inorder rank of v is defined by the number of leaves that have smaller
preorder ranks than v, and it is calculated by rank()(P, u).

From the definition of inorder, the inorder i of a node v is the number of times during
the preorder traversal from the root to v that we climb up an edge and immediately go
down another edge. This movement is represented by “)(” in the parentheses sequence.
Therefore we first compute the position x = select)((P, i). Then the open parenthesis
in position x + 1 represents a child of the node v. Because we want to know which
parenthesis corresponds to v, we compute enclose(P, x + 1), which returns the position
of open parenthesis of v.

Note that if a node has two or more inorders, the algorithm returns the smallest one;
the parent operation is described in Section 5.4.

The balanced parentheses representations of the example suffix tree are shown at
the bottom of Figure 1. An internal node is represented by an open parenthesis followed
by another open parenthesis and it is arranged in order of its preorder rank. Its inorder
rank becomes the number of “()” up to the position indicated by the arrow from the
open parenthesis.

5.2. How to Associate Information to Nodes

We can associate additional information with nodes of a suffix tree. This is necessary to
use a suffix tree as a tool to solve another problem. It is enough to assign consecutive
numbers to the nodes. Let m be the number of internal nodes in a suffix tree with n
leaves. If we want to store some information in each node, we store them in an array and
use the preorder of nodes as indices to the array. The preorders have values 1 to m + n,
that is, there is a one-to-one mapping from the preorders and [1,m + n].
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If we want to store information in only internal nodes, we can use the inorder of
nodes as indices. If a node has two or more inorders we use the smallest one. The inorders
have m values in [1, n]. Therefore this method is slightly redundant.

We can also use another order of internal nodes. Let v be an internal node. Then its
index is computed by rank((P, v) − rank()(P, v), that is, the preorder assigned only
internal nodes.

If we want to store information in leaves only, we can use the lexicographic or-
ders of nodes as indices. Obviously, there exists a one-to-one mapping between a leaf
representing a suffix and the lexicographic order of the suffix.

5.3. How to Represent Edge-Labels

The string-depth of an internal node v, and the edge-label between nodes v and parent(v)
is represented as follows. Let i = inorder(v) be the inorder of the node v. Then suffixes
TS A[i] and TS A[i+1] share the prefix of length Hgt[i]. That is, the string-depth of v is equal
to Hgt[i]. The edge-label between nodes v and parent(v) is represented by T [S A[i] +
d1..S A[i]+ d2 − 1] where

i = inorder(v),

d1 = Hgt[inorder(parent(v))],

d2 = Hgt[i].

Therefore edge(v, d) = T [S A[i]+ d1 + d − 1] is computed in O(tSA) time. Recall that
the label can be represented without using the text T . It can be extracted in O(tSA+(d2−
d1)t�) time.

5.4. Navigating the Suffix Tree

Finding the root node. The root node can be found easily because its preorder is 1 and
it is represented by the first open parenthesis in P . That is, root() ≡ 1.

A node of the suffix tree is a leaf if and only if its parentheses representation is ().
Therefore isleaf (v) is computed in constant time.

Finding a Child Node and a Sibling. Finding the first child and siblings of each node
is necessary to traverse all the nodes. In the parentheses sequence all children of an
internal node v are sequentially encoded. We can therefore compute the first child of v by
firstchild(v) = v+1, and the next sibling of a nodew by sibling(w) = findclose(P, w)+
1. Both operations take constant time.

Finding a child is necessary to pattern queries. We can enumerate all children of
each internal node by first computing firstchild, then iteratively using sibling. In each
step we recover the first character of the edge-label between v and w and compare with
c in O(tSA) time. Therefore the time for the operation child(v, c) is O(|A|tSA).

We can also use a binary search on the parentheses sequence. All children of node
v exist between positions l = v + 1 and r = findclose(P, v) − 1. Consider an interval
of the depth-sequence L[l..r ]. If v has k children, there are exactly k smallest values
in the interval. By using the data structure in Section 4.3, we can find in constant time
a pseudo-median of them, which corresponds to a child w of v. Then we can compute
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edge(w, 1) in O(tSA) time. From Lemma 5, the number of steps of a binary search is at
most log12/11 k = O(lg|A|). Therefore child(v, c) can be found in O(lg|A| · tSA) time.

Finding the Parent. Given a node v̄ in the suffix tree, finding the parent node w̄ is just
to compute w = enclose(v). It takes constant time.

5.5. How to Compute lca

We show an algorithm to compute lca between two nodes represented by a parentheses
sequence in constant time.

Lemma 7. The lowest common ancestor between two nodes in the compressed suffix
tree can be computed in constant time using an auxiliary data structure of size o(n) bits.

Proof. Let v,w be the positions in a parentheses sequence P representing nodes v̄ and
w̄, respectively. We can easily check whether v̄ is an ancestor of w̄ or vice versa as follows:
Assume that v < w. Then v̄ is an ancestor of w̄ if and only if findclose(v) > findclose(w).
In this case we return lca(v,w) = v.

Assume that v is not an ancestor of w and vice versa. Then the position u of open
parenthesis representing the node lca(v,w) is computed in constant time by

u = enclose(P,RMQL(v,w)+ 1),

where L is the depth-sequence for P . Recall that each element of it can be computed in
constant time using o(n) bit indices.

The range minimum query returns the index m of the minimum element in L[i.. j].
Then P[m] = “)” and P[m+1] = “(” always hold because of the minimality. Therefore
P[m + 1] is the open parenthesis of a child of lca(v,w). Therefore the position of open
parenthesis of the node lca(v,w) is computed by enclose(P,m + 1).

5.6. How to Compute Suffix Links

Lemma 8. Let v be the position in a parentheses sequence P representing a non-root
node v̄. Then the positionw of open parenthesis representing the node sl(v) is computed
in O(t�) time by

x = rank()(P, v − 1)+ 1,

y = rankP,()(findclose(P, v)),

x ′ = �[x],

y′ = �[y],

w = lca(leaf (x ′), leaf (y′)).

Proof. The algorithm first computes the leftmost and rightmost leaves that are descen-
dants of v. Because the leftmost leaf that is a descendant of v is the first leaf appearing in
the parentheses sequence after v, the lexicographic index of the leftmost leaf is computed
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by x = rankP,()(v − 1) + 1. Concerning the index of the rightmost leaf, because all
leaves below v are encoded in the parentheses sequence between the open and the close
parentheses representing v, the lexicographic order of the rightmost leaf is computed
by y = rank()(P, findclose(P, v)). The leaves represent suffixes TS A[x] and TS A[y].
From the definition of �, leaf (x ′) and leaf (y′) represent suffixes TS A[x ′] = TS A[x]+1

and TS A[y′] = TS A[y]+1, respectively. Let l = lcp(TS A[x], TS A[y]). Then l is equal to
the string-depth of node v because leaf (x) and leaf (y) are the leftmost and the right-
most descendants of v. Obviously l − 1 = lcp(TS A[x ′], TS A[y′]) holds. Then the node
lca(leaf (x ′), leaf (y′)) has string-depth l − 1, which means it is sl(v).

5.7. Variations of Compressed Suffix Trees

We can apply any compressed suffix arrays to our compressed suffix trees. We show two
examples. One is the most space-efficient one.

Corollary 1. A compressed suffix tree, supporting the operations child(v, c) in
O(lg|A| · lg n} lg2 n/lg lg n) time, edge(v, d) and depth(v) in O(lg2n/lg lg n) time,
sl(v) in O(lg|A|) time, and other operations in constant time, can be represented in
nHh + 6n + O(n lg lg n/lg|A|n) bits for any h ≤ α lg|A| n with 0 < α < 1.

Proof. Follows from Theorem 3 and [10, Theorem 4.2].

The other is the most time-efficient one.

Corollary 2. A compressed suffix tree, supporting the operations child(v, c), edge(v, d)
and depth(v) in O(lgε n) time, and other operations in constant time, can be represented
in O((1/ε)n lg |A|) bits for any 0 < ε ≤ n.

Proof. We use the compressed suffix tree of Grossi and Vitter [12, Theorem 3]. It uses
the Patricia trie and perfect hash functions to find a child node. The space complexity is
O((1/ε)n lg|A|). Given a pattern of length m, we can compute the lexicographic order
of a suffix whose prefix is the same as the pattern in O(m lg|A|/lg n+lgε) time. By using
this data structure, the operation child(v, c) takes O(lgε) time. The space complexity
does not change asymptotically.

6. Concluding Remarks

This paper has proposed linear-size data structures for compressed suffix trees which
also support efficient string-depth, lowest common ancestor, and suffix link queries. The
size of the data structure is only 6n + o(n) bits larger than that of the compressed suffix
array. Any unit operation on an ordinary suffix tree can be performed in polylog(n) time.
Actually we can implement a compressed suffix tree in nHh + 6n + o(n) bits, which
may be smaller than the text consisting of n lg|A| bits. Therefore we have solved the
problem of the necessary space for suffix trees.
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It is also important to mention the complexity of the working space to construct a
compressed suffix tree. There are many algorithms for constructing compressed suffix
arrays and trees using linear working space [19], [15], [16]. Therefore our compressed
suffix trees can also be constructed using linear working space.

An open question is the following: Can we reduce the linear term 6n to o(n)?
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