l‘)

Check for
updates

Solving the Double Dummy Bridge
Problem with Shallow Autoencoders

Jacek Maridziuk®™ and Jakub Suchan

Faculty of Mathematics and Information Science, Warsaw University of Technology,
Koszykowa 75, 00-662 Warsaw, Poland
j-mandziuk@mini.pw.edu.pl, kubasuchan@hotmail.com

Abstract. This paper presents a new approach to solving the Double
Dummy Bridge Problem (DDBP). The DDBP is a hard classification
task utilized by bridge playing programs which rely on Monte Carlo
simulations. The proposed method employs shallow autoencoders (AEs)
during an unsupervised pretraining phase and Multilayer Perceptron net-
works (MLPs) with three hidden layers, built on top of these trained AEs,
in the final fine-tuning training. The results are compared with our pre-
vious study in which MLPs with similar architectures, but with no use
of AEs and pretraining, were employed to solve this task. Several con-
clusions concerning efficient weight topologies and fine-tuning schemes
of the proposed model, as well as interesting weight patterns discovered
in the trained networks are presented and explained.

Keywords: Autoencoder + Double Dummy Bridge Problem
Classification

1 Introduction

Game Al is a popular and fast growing field of Artificial Intelligence (AI) research
which concerns various aspects of machine game playing. While historically this
research domain was mainly focused on perfect-information games such as chess
or checkers, in recent years games in which only partial game-related information
is available to each player (i.e. certain significant game aspects are concealed from
them) gained momentum. Imperfect-information games include, besides others,
most of card games - with the game of bridge being one of the most popular
examples.

Rules of Bridge. Bridge is a popular trick-taking card game played by four
contestants (referred to as North, East, South and West or N, E, S, W, for
short) in teams of two (N.S vs EW), using a standard 52 card deck. The teams
serve as adversaries during the whole game and firstly participate in a bidding
phase.

Afterwards the team which has proposed a higher contract is bound to attain
their prior declaration. Their competitors are expected to spare no efforts in
© Springer Nature Switzerland AG 2018

L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11304, pp. 268-280, 2018.
https://doi.org/10.1007/978-3-030-04212-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04212-7_23&domain=pdf
https://doi.org/10.1007/978-3-030-04212-7_23

Solving the Double Dummy Bridge Problem with Shallow Autoencoders 269

order to hinder their success. This constitutes a play phase. In this phase, the
teammate of the player who won the bidding puts their cards face-up down on
the table and ceases henceforth to actively participate in the game. The player
left to the bidding winner starts the play phase (makes the initial lead). The
participants try to match the suit of the card that was played in the current
trick. After everyone has done so the player with the highest-ranked card -
including trumps - claims ownership of the trick, furthermore he becomes the
one to play first in the next trick.

The goal of the game is to take as many tricks as possible, and certainly the
highest number of tricks x that can be collected by a pair equals 13, in which
case the opponent pair scores 13 — z tricks. Please consult [8] for a detailed
explanation of the game rules.

Double Dummy Bridge Problem. Various attempts were made in Al lit-
erature to mimic the strategy used by humans during the bidding phase, yet
typically a computer program remains inferior to its human counterpart [2,19]
in that matter. In Machine Learning (ML) framework, the problem of bidding the
appropriate contract can be transformed into a specific learning problem. Please
observe that, if, disregarding the rules of Bridge, we assume that all information
is available to the players (i.e. the game is a perfect-information one), the prob-
lem of bidding the contract becomes deterministic under the assumption that
all players follow the optimal strategy in the play phase. In other way, assuming
that all information is available to the players the number of tricks to be taken by
each of the two playing pairs can be unambiguously assessed for a specified game
(with the above-mentioned perfect rationality of the players). This situation is
an illustration of the Double Dummy Bridge Problem (DDBP). More precisely,
the DDBP consists in answering the question about the number of tricks that
will be taken in a given game by the pair N.S. The DDBP has been deemed a
real challenge by many Al researches, not only because of its complexity, but
also due to its high sensitivity to even minute changes in the distribution of
cards among the players. For instance, exchanging positions of just two cards in
a deal may significantly affect the expected results (i.e. the DDBP solution).

The practical value of fast DDBP solvers comes into play in simulation-based
bridge programs in which the outcome of the game is assessed based on massive
simulations of possible game scenarios, each of which requires solving a certain
DDBP instance related to assumed distribution of cards. Such an approach has
been utilized in partition search algorithm [3,9] or cost-sensitive classifiers and
upper-confidence-bound algorithms [11].

Related Work. In the literature, there have been several attempts to solve
the DDBP using example based learning. In particular, previous approach con-
sisted in applying various Multilayer Perceptron (MLP) architectures with sev-
eral coding schemes in the input layer and a Resilient Backpropagation (RProp)
learning algorithm [14-16]. The best one among the tested MLP architectures
(208 — 52 — 13 — 1) accomplished an accuracy of 53.11% for the so-called suit
contracts and 37.80% for the no trump contracts. In the case of suit contracts

270 J. Mandziuk and J. Suchan

these results appeared to be superior to those accomplished by the human bridge
grandmasters solving exactly the same sets of DDBP instances [13].

Our approach was researched further by others [5], this time with the focus
on optimization of the training method - confirming the superiority of the RProp
algorithm. Another related work [6] compared the impact of various activation
functions on the output error. Yet other neural network approaches to solve the
DDBP were proposed in [7] and [17], where respectively the Elman network and
the Cascade Correlation network are employed.

Motivation and Research Goals. Encouraged by the promising results, in
particular for suit contracts, in this paper we revisit the DDBP, but this time
with shallow autoencoders (AEs) as the neural network architecture. In order
to make the comparison fair the same best-performing input coding from our
previous experiment is used in the current approach. Also the architecture is
similar, i.e. shallow AEs with one hidden (intermediate) layer are utilized. This
way, we attempt to make a direct comparison of the efficacy of AE training
with an unsupervised pretraining phase and the MLP architecture trained in a
supervised manner.
In summary, the main contribution of this work is threefold:

— verification of the suitability of the AE-based approach to a very sensitive
classification problem, such as the DDBP;

— comparison of the AE’s efficacy in solving the DDBP with the classification
outcomes obtained previously using the MLP [16];

— shedding light on the intrinsic differences between supervised MLP training
and AE training in the considered classification task.

The remainder of the paper is structured as follows. The next section intro-
duces the proposed AE-based approach with a detailed presentation of the coding
scheme and several variants of AE network architectures tested in the experi-
mental evaluation of the method. Section 3 presents the experimental setup and
analysis of results. Conclusions and directions for further research are summa-
rized in the last section.

2 Autoencoder-Based Architectures

This section describes the AE architectures used in our attempts to solve the
DDBP. On a general note, training of an AE consists of two phases. In the
first one, the goal is to reconstruct the given input, i.e. to learn the identity
function on the training set of examples. Yet, due to the hidden layers being
less abundant in neurons this process leads to feature extraction. With every
layer being smaller the feature extraction becomes gradually more extensive. In
the process of extraction the data is compressed with every consecutive layer,
however at a certain depth the data compression may become increasingly lossy
and hamper the overall model performance in the recognition phase. This was
actually the case in our experiments, as our initial approaches involving deep

Solving the Double Dummy Bridge Problem with Shallow Autoencoders 271

autoencoders resulted in highly increasing training error in subsequent AFE layers.
For this reason we decided to restrict the AE architecture to one hidden layer,
which appeared to be most effective in the preliminary experiments.

After the above-described pretraining phase (consisting in unsupervised fea-
ture extraction) the encoding AE layers form the final classification network with
an additional output layer and are trained in a supervised manner in the same
way as MLP networks. The decoding AFE layers used for input reconstruction
have no application for solving this problem and are therefore discarded in the
final supervised training phase [18].

2.1 A Deal Representation in the Input Layer

In the input AE layer the deal representation (cards distribution) is fed to the
network in the form of 208 binary inputs. This input was divided into 4 sections,
each representing the cards of one player, provided in a fixed order, i.e. first W
(52 inputs) then N (52 inputs), followed by E and S. Each such section corre-
sponds to the whole deck of cards aligned in the following order: AW, ..., 2,
AQ, ..., 20, AD, ..., 20, A, ..., 2&. Consequently, each card in a deal is rep-
resented by 4 inputs (one per player): the input representing the player who
actually possesses the card is equal to 1 and the other 3 input neurons associ-
ated with that card, representing the three remaining players, are assigned input
values equal to 0. This way the player who possesses a given card in a deal is
pointed out. In other words, for each player there are exactly 13 inputs equal to
1 - on positions corresponding to the cards he/she possesses, and 39 inputs equal
to 0 - on the remaining positions. The above coding proved to be highly efficient
in our previous experiments [16] and in subsequent works by other authors [6].
Please consult [16] for a comprehensive discussion on the advantages of this deal
coding over the alternative, more concise representations.

In order to encode the remaining deal-related information, i.e. the leading
hand (the player who makes the opening lead) and the trump suit we initially
extended the input representation by 9 neurons, first 5 of which indicated the
game type (No trump, Spades, Hearts, Diamonds, Clubs) and the remaining 4
denoted the player making the opening lead. However, in a set of initial experi-
ments this method proved inefficient as the network could not fully conceive the
significance of these dedicated inputs. For this reason, in the final experimental
setup we followed the idea presented in [12,16] in which by default the fourth
player (S) makes the lead. If the play should start with a lead from N the cards
of N and S players are swapped as well as the cards of W and E. As a conse-
quence, the leading player (the fourth one in the input representation) becomes
N. As for the representation of the game type, separate networks are trained for
trump and no trump (NT) games. In the latter case it is always assumed that
the trump color is the first one in each player hand’s representation, i.e. Spades.
In order to make the another one (say Diamonds) the trump suit, the cards rep-
resenting Diamonds and Spades are swapped in each hand (please notice that
names of suits are just labels and can be exchanged with no consequences). So
effectively, the first suit remains the trump one.

272 J. Mandziuk and J. Suchan

2.2 Hidden (Feature) Layers

Hidden layers of the AE network serve as feature extractors that focus on the
most relevant aspects of the processed input data and pass it forward for further
processing and compression. The size of each subsequent hidden layer is reduced
compared to the preceding one, which leads to building gradually more general,
high-level feature-based representations in subsequent layers. At the same time,
this compression process is prone to certain degree of information loss which, to
a large extent, depends on the compression rate (CR) between the subsequent
layers.

Compression Rate. In order to find efficient AE architectures a bunch of pre-
liminary experiments were conducted, aimed at finding the most suitable C'R
between layers. First of all, it turned out that for the DDBP the information
loss is high already when the second hidden layer is added. For this rea-
son we decided to use shallow AE architectures with one hidden layer. Further-
more, in order to make a direct comparison with our previous MLP-based
approach [16] two more “standard” hidden layers of sizes 52 and 13, respectively
were added in the final architectures, which were not trained in AE manner.

In order to find the efficient CR value we applied a grid search procedure
within the interval CR € [1.1, 3.0]. As could be expected, the most efficient CRs
were found in the middle area of the tested ranges. Higher values of CR resulted
in too strong compression and information loss, while low CR values did not
offer a relevant advantage compared to the baseline input representation. Based
on the outcomes we decided to use two CRs in the final experiments: CR = 4/3
and CR = 2, which led to 156 and 104 neurons in the first hidden layer (AE
compression layer), respectively.

2.3 Output Layer

The above described AE architecture, i.e. 208 — 156,/104 — 208 was used in the
pretraining phase in order to build a meaningful feature-based representation
in the AE compression layer. Once this unsupervised training process was com-
pleted the decoding layer was discarded and replaced by two standard hidden
layers (with 52 and 13 units, resp.) and an output layer leading to the final
architecture used for the classification task: 208 — 156/104 — 52 — 13 — 14

Initially, two cases were considered for the output layer. Firstly, a classifying
softmazx layer composed of 14 output neurons - one per class (possible DDBP
outcomes are integers from [0, 13]). Secondly, a layer consisting of one sigmoid
neuron whose output corresponds to the number of tricks scaled into the range
[0,1]. In the latter case the [0, 1] range was divided into 14 segments of pairwise
equal lengths and the training (goal) signal for each class was set in the middle
of the respective subinterval. In the preliminary tests both approaches yielded
comparable results, so we arbitrarily decided to stick to the first option, i.e. one
output neuron per class.

Solving the Double Dummy Bridge Problem with Shallow Autoencoders 273

2.4 Topology of Connections

One of the main research goals of this paper is to experimentally compare the
MLP-based DDBP solution presented in our earlier works and an application
of AE architectures solving the same task. In order to make this comparison
straightforward we used the same input and output representations and similar
network architecture in terms of the number of layers as well as their sizes. In
our previous experiments [16] the topologies of the most effective architectures
were the ones where the connections between the input and the first hidden
layer were restricted to individual hand (player’s cards) representations. More
precisely each 52-neuron representation of a given hand in the input layer was
fully connected with 1/4 of the 1hl neurons (26 or 39 depending on the par-
ticular setup), without any connections to other 1hl units. This way the 1hl
served as a compression layer where the initial 52-neuron hand representation
was transformed to a 26 or 39 unit one, respectively.

For each of the fully connected AE architecture selected for the final experi-
ments a corresponding model with the above described connection topology.

2.5 Network Architectures

In summary of the above description the following network structures were
devised as the base models for experimental evaluation:

— Input layer composed of 208 units coding a deal as described in Sect.2.1.
Output layer composed of 14 sigmoid neuron denoting the number of tricks
to be taken by the NS pair (cf. Sect.2.3).

— First hidden layer composed of either 104 or 156 units.

Topology between input and 1hl being either full connection (F') or dedicated

connection (D) pattern (see Sect. 2.4).

2hl and 3hl composed of 52 and 13 neurons, respectively.

In all tested models sigmoid neurons are utilized. All together 4 AE models were
tested in experiments varying by size of the 1hl (2 options) and topology of
connections (2 options). Fully connected AE models are presented in Fig. 1a and
those with dedicated connections between input and 1hl in Fig. 1b.

3 Experimental Setup and Results

One of the main observations reported in our previous work was the very distinct
quality of the results for suit (trump) contracts and N'T ones. More interestingly
this observation is true not only with respect to our tests with the MLPs [16],
but also among professional human players solving DDBP instances [13]. This
property, whose nature is still to be fully discovered, has also been confirmed in
our preliminary tests. This is why separate AE networks (of the same architec-
ture) were used for training and testing on suit and NT contracts, respectively.
Hence, the number of experimental setups discussed in the previous section was

274 J. Mandziuk and J. Suchan

(a) AE network of type F (fully con-(b) AE network of type D
nected): 208-156/104-52-13-14. (with dedicated connections):
5224-39/26x4-52-13-14.

Fig. 1. Two types of considered network architectures. In each case, the size of the 1hl
is equal to 104 or 156, depending on the experimental setup.

doubled to 8 different scenarios. The source code and the experimental results
presented in this paper are available in our project’s Github repository [1].

Training and Testing Data. The data is taken from the Ginsberg’s GIB
Library [10] in the form of a text file. Each sample represents one deal, i.e. cards
assigned to each of the 4 hands/players. Each such deal is accompanied by 20
integers (from the set {0,1,...,13} denoting the number of tricks to be taken
by the N.S pair in 20 possible game configurations: 4 trump suits or NT game as
well as 4 possible leading (opening) hands. This way, for a given card distribution
among the players, any possible game contract can be considered.

The GIB Library consists of over 700000 deals represented in the above-
described way. Following our previous experiments with MLPs, for suit/trump
games we randomly selected 100000 deals for training and another 100000 for
testing. These 100000 training deals were used in 8 game scenarios related to
the choice of a trump suit and leading hand (N or S). In effect, the training
process in suit AE models was performed on a set of 800000 deals. In the case of
NT models, 400 000 deals was randomly selected (and multiplied by two possible
leading hands) for training and another 100000 for testing.

Training phase 1 - Training of an Autoencoder. Training is performed in
two phases. In the first one a shallow AE with one compression layer (of size 104
or 156 depending on the model) is trained using the data described above. Once
the training is completed the hidden layer provides a compressed representation
of the 208-dimensional input data.

Solving the Double Dummy Bridge Problem with Shallow Autoencoders 275

Since the input and output have the same cardinality and the input vectors
are binary and sparse, crossentropy is used as an error function:

d
Z xplogzi + (1 — zx) log (1 — zx)]. (1)
k=1

where x; denotes a desired output, z; is the actual output and d is the size of
a training sample. The Root Mean Square Propagation (RMSProp) algorithm
with a learning rate n; = 0.001 is used in this phase. The value of n; was
selected based on a set of preliminary experiments. Training is terminated when
the change in the error function values falls below 0.01.

Training phase 2 - Final Training of a Classifier. In the second training
phase, two new hidden layers and an output layer are added to the encoding
part of the shallow AE described in the above point comprising the following
architecture: 208 — 104/156 — 52 — 13 — 14, which is trained again based on the
whole set of examples in order to serve as a classifier for unknown DDBP deals.

This training phase is performed using the RMSProp algorithm, according
to one of the two possible scenarios. Either the whole network is trained or the
weights developed in the pretraining phase are frozen and only the remaining
part of the network (104/156 — 52 — 13 — 14) undergoes weight modification.
While the former is the standard approach, the motivation behind the latter is
the following: since the AE pretraining error was close to zero the trained com-
pression layer of the AE can actually serve as an alternative input representation
and therefore the weights incoming to this layer need not be modified at this
stage.

In either case training is performed with the learning rate 7, = 0.004 for
the trump deals and 7y = 0.002 for the no trump ones. These learning rates
were set based on preliminary experiments performed with various values of
72 € [0.001,0.1]. Training is considered completed when the error function on
the validation set increases 25 times. The state of the network corresponding to
the overall highest performance, i.e. the lowest error value is considered as the
training outcome.

3.1 Results

The results are presented for 16 experiment setups and divided into two tables.
Table 1 provides the outcomes for suit contracts and Table 2 for no trump ones.
In each case 8 network configurations which correspond to the above-described
design decisions are tested.

Conclusions. Several interesting observations can be made based on presented
results. (1): they confirm a crucial role of the selected compression rate on the
error value in the pretraining phase. On the other hand, quite surprisingly, this
initial pretraining error does not have much influence on the final system error,
after the fine-tuning phase. (2): in suit contracts the results are close to those

276 J. Mandziuk and J. Suchan

Table 1. Best results for trump (suit) deals in 8 possible system configurations.
The results in columns F' and D denote the full and dedicated connection topology
between the input and 1hl, resp. In either case there are two possible sizes of the 1hl
(104 and 156 units). In each of them the weights between the input and 1hl may or may
not be frozen during the fine tuning phase. Compression error and fine tuning error
report the cross-entropy errors after completion of the training procedure in phase 1
and phase 2, resp. The best reference results for the MLP presented in [16] are equal
to 53.11%, 96.48%, 99.88% for the exact, one trick off and two tricks off, resp.

Model topology F D

1hl size 104 156 104 156

Weights partly frozen | No Yes No Yes No Yes No Yes
Test set

Suit (M) - exact 43.66% | 39.75% | 47.93% | 29.06% | 51.28% | 23.93% | 48.97% | 32.19%

Suit (M) - off by 1 90.46% | 87.33% | 93.83% | 72.75% | 95.33% | 63.50% | 94.37% | 77.76%
Suit (M) - off by 2 99.07% | 98.45% | 99.63% | 92.41% | 99.72% | 86.40% | 99.69% | 95.07%
Compression error 0.400 |0.24 9.560 |9.599 |46.98 |45,90 14.23 | 13.21
Fine tuning error 0.048 |0.050 |0.043 |0.056 |0.043 |0.059 |0.044 |0.054

Table 2. Best results for no trump deals in 8 possible system configurations. See the
caption of Table 1 for a detailed specification of the table’s layout. The best reference
results for the MLP presented in [16] are equal to 37.80%, 84.31%, 97.34% for the exact,
one trick off and two tricks off, resp.

Model topology F D

1hl size 104 156 104 156
Weights partly frozen | No Yes No Yes No Yes No Yes
Test set

NT - exact 36.6% |35.13% | 37.30% | 28,40% | 41.73% | 22.46% | 39.04% | 29.48%
NT - off by 1 82.15% | 80.12% | 82.04% | 70.47% | 86.18% | 59.73% | 84.45% | 72.51%
NT - off by 2 95.96% | 95.29% | 95.61% | 90.17% | 96.63% | 82.90% | 96.43% | 91.66%

Compression error 0.293 10.325 |9.580 |9.597 |45.13 |44.56 |13.99 |14.49
Fine tuning error 0.052 |0.053 |0.051 |0.057 |0.049 |0.060 |0.051 |0.056

obtained in our previous study [16] in the case of perfect accuracy (i.e. 51.28%
vs 53.11%), and are on par in the two remaining cases (one/two tricks off).
At the same time we managed to slightly surpass the aforementioned results in
the case of NT contracts raising its value from 37.80% to 41.73% for perfect
classification case and from 84.31% to 86.07% with a one-trick error margin. In
both experiments the same deal representation and the same numbers of deals
were used for training and testing. Also the resulting architectures were very close
with the main difference being a two phase training procedure including an AE

Solving the Double Dummy Bridge Problem with Shallow Autoencoders 277

pretraining phase in the current studies. (3): our initial plans to employ deep
autoencoders turned out to be ineffective as any attempt of further compression,
extending beyond one hidden layer, resulted in significant raise of the cross-
entropy error function. We believe that these three above observations prove
that the DDBP is a hard classification task for both MLPs and AEs. (4): we
observed that networks with dedicated sets of weights between the input and
the first hidden layer are more effective than their counterparts with traditional,
fully connected topology of weights. (5): despite close-to-zero loss value in the
pretraining phase of 104 models the idea of freezing the weights between the
input and 1hl in the second (fine-tuning) phase was not successful. This came to
us as a bit of surprise since the 104 representation (due to the meaningless loss
values) seemed to be a good candidate for an alternative deal representation.
The reason of failure is subject of further investigation since at the moment
we do not possess a convincing explanation. (6): similarly to the results of our
previous study [16], NT contracts appeared to be much more demanding than
suit ones. The reason for that is attributed to different nature of both types of
deals: in trump ones the advantage stemming from possession of trump cards can
be easier translated to the number of taken tricks, while playing NT contracts
is generally more demanding and requires subtle maneuvers - more frequent use
of a finesse is a typical example.

Weight Patterns. Following our previous study with pure MLP networks
(without pretrained autoencoders) [16] we explored the weight spaces of the
trained networks in the quest for meaningful patterns, explainable by human
bridge players. Figure 2 visualizes the weights of a randomly selected player in
one of the randomly selected experiments (D/104/trump). Due to space limits
we are not able to delve more deeply into this topic, but two general conclu-
sions may be easily drawn. Firstly, after the pretraining phase there are some
number of strong (positive or negative) weights, most of which are not altered
in subsequent training (c.f. left and right subfigures). Secondly, after the final
training one can easily spot quite many neurons in the 1hl which are dedicated
to particular suits, i.e. are “focused” on 13 consecutive inputs representing a
given suit. This specific attention is visible in the form of “stripes” in the right
subfigure covering the weights from A to 2 of a given suit. Both of the above
observations are in line with the MLP-related study [16]. Furthermore, the per-
tinence of suit lengths (which is the crux of the second observation) is critical in
human assessment of hand strength in trump deals.

278 J. Mandziuk and J. Suchan

15 10 5 0 -5 -10 -15 20 15 10 5 0 -5 -10 -15 -20
14 W L 14 w

- W == = o n u n L o
5 - " = - _ L] = mmE mw

- (|] 51 m

" it I n] n = e]
10 4 (TH L 10 E— |

a " n .] . - T —,
15'. u L] - — .15-: [] - 1 i I

r= "
201 4 .l..l O ..I 20 1y :

] *l

26 e e e 26 L SR

AKQ)1098765432AKQJ1098765432AKQJ1098765432AKQ 1098765432 AKQJ1098765432AKQJ1098765432AKQ)1098765432AKQ 1098765432
T 1

¢ VvV ¢ & 6 vV 4 &

(a) Weights after pretraining phase (b) Weights after fine-tuning phase

Fig. 2. Visualization of weights representing one player’s cards for D/104 network and
trump suits data. Each point refers to the respective weight between one of the 52
inputs assigned to that player’s cards and one of the dedicated 26 neurons in the 1hl.
For instance the weight between Q& and 14th 1hl neuron is strongly positive (red
color) while the one between Q& and the 4th 1h neuron is strongly negative (orange
color). (Color figure online)

4 Summary and Future Work

The main goal of this paper is verification of suitability of AEs for solving the
DDBP - a hard classification task with sensitive input-output relation. To this
end, several configurations of different network architectures and detailed differ-
ences in the training algorithm are proposed and experimentally evaluated. The
detailed conclusions are presented and discussed in the previous section.

‘ Comparator

&1

208 ‘ 208

Fig. 3. Schematic presentation of a comparator-based approach to solving the DDBP
planned as our next research step.

On a general note, the results of applying shallow AEs in the unsupervised
pretraining phase and MLPs in the final fine-tuning phase turned out to be
comparable to those of training MLPs directly in a supervised manner. Specific
weight patterns observed in weight spaces of the trained MLPs are also visible
in the current setup of the system, albeit their detection is not as evident.

Solving the Double Dummy Bridge Problem with Shallow Autoencoders 279

Currently we plan to adopt an approach utilized in the DeepChess project [4]:

instead of directly answering the question about the number of NS tricks, the
system will be trained to compare two deals and answer an easier, qualitative
question: which of the two deals promises higher number of tricks for NS? (see
Fig.3 for a possible implementation). With the ability of efficient qualitative
prediction one could compare the unknown deal with a few reference deals with
known numbers of NS tricks to answer the initial, quantitative question.

Acknowledgments. This work was supported by the Polish National Science Centre
grant 2017/25/B/ST6/02061.

References

11.

12.

13.

14.

DDBP Github repository. https://github.com/holgus103/DDBP/

Amit, A., Markovitch, S.: Learning to bid in bridge. Mach. Learn. 63(3), 287-327
(2006)

Beling, P.: Partition search revisited. IEEE Trans. Comput. Intell. AT Games 9(1),
76-87 (2017)

David, O.E., Netanyahu, N.S., Wolf, L.: DeepChess: end-to-end deep neural net-
work for automatic learning in chess. In: Villa, A.E.P.; Masulli, P., Pons Rivero,
A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 88-96. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44781-0-11

Dharmalingam, M., Amalraj, R.: Articifial neural network architecture for solving
the double dummy bridge problem in contract bridge. Int. J. Adv. Res. Comput.
Commun. Eng. 2(12), 4683-4691 (2013)

Dharmalingam, M., Amalraj, R.: A solution to the double dummy contract bridge
problem influenced by supervised learning module adapted by artificial neural net-
work. ICTACT J. Soft Comput. 5, 836-843 (2014)

Dharmalingam, M., Amalraj, R.: Supervised Elman neural network architecture for
solving double dummy bridge problem in contract bridge. Int. J. Sci. Res. (IJSR)
3(6), 27452750 (2014)

Francis, H., Truscott, A., Francis, D. (eds.): The Official Encyclopedia of Bridge,
5th edn. American Contract Bridge League Inc., Memphis (1994)

Ginsberg, M.L.: http://www.gibware.com

. Ginsberg, M.L.: Library of double-dummy results. http://www.cirl.uoregon.edu/

ginsberg/gibresearch.html

Ho, C.Y., Lin, H.T.: Contract bridge bidding by learning. In: AAAI Workshop:
Computer Poker and Imperfect Information (2015)

Mandziuk, J., Mossakowski, K.: Example-based estimation of hand’s strength in
the game of bridge with or without using explicit human knowledge. In: IEEE Sym-
posium on Computational Intelligence in Data Mining, Honolulu, Hawaii, USA, pp.
413-420 (2007)

Mandziuk, J., Mossakowski, K.: Neural networks compete with expert human play-
ers in solving the double dummy bridge problem. In: 2009 IEEE Symposium on
Computational Intelligence and Games, pp. 117-124, September 2009
Mossakowski, K., Mandziuk, J.: Artificial neural networks for solving double
dummy bridge problems. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R.,
Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 915-921. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_142

https://github.com/holgus103/DDBP/
https://doi.org/10.1007/978-3-319-44781-0_11
http://www.gibware.com
http://www.cirl.uoregon.edu/ginsberg/gibresearch.html
http://www.cirl.uoregon.edu/ginsberg/gibresearch.html
https://doi.org/10.1007/978-3-540-24844-6_142

280

15.

16.

17.

18.

19.

J. Mandziuk and J. Suchan

Mossakowski, K., Mandziuk, J.: Neural networks and the estimation of hands’
strength in contract bridge. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1189-1198.
Springer, Heidelberg (2006). https://doi.org/10.1007/11785231_124

Mossakowski, K., Mandziuk, J.: Learning without human expertise: a case study
of the double dummy bridge problem. IEEE Trans. Neural Netw. 20(2), 278-299
(2009)

Muthusamy, D.: Double dummy bridge problem in contract bridge: an overview.
Artif. Intell. Syst. Mach. Learn. 10(1), 1-7 (2018)

Ng, A., Ngiam, J., Foo, C.Y., Mai, Y., Suen, C.: UFLDL tutorial. http://ufldl.
stanford.edu/wiki/index.php/UFLDL_Tutorial

Yegnanarayana, B., Khemani, D., Sarkar, M.: Neural networks for contract bridge
bidding. Sadhana 21(3), 395-413 (1996)

https://doi.org/10.1007/11785231_124
http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial
http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

	Solving the Double Dummy Bridge Problem with Shallow Autoencoders
	1 Introduction
	2 Autoencoder-Based Architectures
	2.1 A Deal Representation in the Input Layer
	2.2 Hidden (Feature) Layers
	2.3 Output Layer
	2.4 Topology of Connections
	2.5 Network Architectures

	3 Experimental Setup and Results
	3.1 Results

	4 Summary and Future Work
	References

