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ABe;TRACT. We consider a set of static files or inventories, each consisting of the same number of 
entries, each entry a binary word of the same fixed length selected (with replacement) from the set 
of all binary sequences of tha t  length, and the entries in each file sorted into lexical order. We also 
consider several retrieval questions of interest for each such file. One is to find the value of the j t h  
entry, another to find the number of entries of value less than k. 

When a binary representation of such a file is stored in computer memory and an algorithm or 
machine which knows only the file parameters (i.e. number of entries, number of possible values per 
entry) accesses some of the stored bits to answer a retrieval question, the number of bits stored and 
the number of bits accessed per retrieval question are two cost measures for the storage and retrieval 
task which have been used by Minsky and Papert. Bits stored depends on the representation chosen : 
bits accessed also depends on the retrieval question asked and on the algorithm used. 

We give firm lower bounds to minimax measures of bits stored and bits accessed for each of four 
retrieval questions, and construct representations and algorithms for a bit-addressable machine 
which come within factors of two or three of at taining all four bounds at  once for files of.any size. 
All four factors approach one for large enough files. 
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1 Tables, Files, and Inventories 

C o n s i d e r  a col lect ion of N words,  each  of l e n g t h  w b i n a r y  digits.  I f  t h e  j t h  word  is in te r -  
p r e t e d  as t he  w-bi t  b i n a r y  r e p r e s e n t a t i o n  of a n  in tege r  xj a n d  t he  words  are g iven  in  a 
specified order  t he  col lect ion m a y  be  t a k e n  to r e p r e s e n t  a table, as in  t h e  t a b l e  of va lues  
of a n  a r b i t r a r y  f u n c t i o n  f rom t he  in tegers  [1, N] to  t h e  in tegers  [0, W], whe re  W = 2 ~ - 1. 
D e n o t e  b y  T (N, W )  t h e  se t  [0, W] N of all possible  N - e n t r y ,  w-bi t  tables .  

x = ( X l , X 2 , . . . , x ~ )  E T ( N , W )  iff x j E  [0, W], j E  [1, N].  (1)  

I f  t he  or ig inal  col lect ion of N words  is no t  o rde red  i t  is c o m m o n  prac t ice  to  sor t  t h e  
words  in to  lexical o rder  before  s to r ing  t h e m  in  m e m o r y  so as to  m a k e  access easier.  T h e  
re su l t  m a y  be  t a k e n  to r ep re sen t  t h e  sequence  of va lues  of a (pe rhaps  w e a k l y )  m o n o t o n e  
inc reas ing  func t i on  f rom [l ,  N] to  [0, W]. A n  example  is t h e  o rde red  se t  of w-bi t  s tock-  
n u m b e r s  on N i t ems  in an  i n v e n t o r y .  L e t  I (N, W )  d e n o t e  t he  se t  of such  inventories: 

x E I ( N , W )  iff x E T ( N , W )  a n d  1 < i  < j  < N ~ x i _ ~  x i .  (2)  

I f  t he  col lect ion has  no dup l ica tes  i t  m a y  be  t a k e n  to r e p r e s e n t  afile. T h e  c/ass F (N ,  W )  
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of files is the subset of I (N, W) which is strictly increasing: x E F(N, W)  iff it satistiies 
(2) with xi < x~ replaced by xl <~ x~. We do not deal with files per se here, but  ~-ith the 
more general class of inventories (see, however, [2] ). 

Given a representation of x E I (N ,  W)  as a string of bits stored in a binary bit- 
addressab]e memory (for example the canonical representation of x as the Nw-bit con- 
catenation of the N original entries of w bits each, concatenated in order of increasing 
value), it requires a certain amount of effort for an algorithm which only knows the 
parameters N and ~' to answer a question about x by accessing some of the bits of the 
stored representation. The effort required depends both on what representation is chosen 
and on what retrieval question is asked~ 

Given an inventory (or file) x E I (N, W), Minsky and Pappert  [7] use two measures 
of performance for a binary representation of x and an associated retrieval algorithm. 
One is the total nun~ber of bits of memory needed to store the representation. The other is 
the average number of those bits which must be accessed by the algorithm in order to 
answer a retrieval question. They consider two kinds of retrieval questions, the exact 
match question "Is there a j  E [1, N] with xs = k?" and the approximate match question 
"For whichj  does the w-bit binary representation of xj differ from the w-bit binary repre- 
sentation of k in fewest bit positions?", both k E [0, W]. They explore the trading rela- 
tions between their two cost measures for these two questions using a variety of repre- 
sentations. They find a representation and an algorithm which have both storage and 
access costs of only a few times the minimum possible values for the exact match question. 
Approximate match seems to take either very large storage or a great deal of access. 

1.'ano [3] gives a representation and an algorithm for an exact-match-and-address 
question "Is there a j  E [1, N] such that xj = k and if so, what is it?" His representation 
is essentially equivalent to the one derived independently by the author, presented in 
[2] and in Section 3. He does not consider the number of bits accessed per question. 

We use the same kinds of costs as Minsky and l 'apert  and get results from four ele- 
mentary retrieval questions, one of which is closely related to Fano's. 

The first question "What  is x ?" is the identity or archival question. Its answer is a 
printout of the inventory x in canonical form, i.e. the Nw-bit sequence of the w-bit repre- 
sentations of the N entries of x, printed in increasing order. 

The second question "What is xj?" for j ~ [1, N] is the direct or table-lookup question. 
Its answer is the integer x j ,  or its w-bit binary representation. I t  is the natural question 
to ask of a table. For an inventory, the direct question asks for the stocknumber on the 
item in the j th  of N bins, or the file of a customer whose file number is j, and is less 
natural. 

The questions of greatest interest for inventories and files are of an inverse character. 
"Do we have any items in stock with stocknumber k? If so, how many? And in which. 
bins?" for j E [0, W]. Our third question is "For how many j E [1, N] is x~ < k?", 
k E [1, W], the i~werse question. We denote its integer answer by :~k E [0, N]. 

A nondecreasing function from [1, N] to [0, W] does not usually have an inverse which 
is a function. The inverse image of a value k E [0, W] is an interval (often empty when 
W >> N ) of adjacent integers in [1, N], where the entries of value k are located. In terms 
of answers to the inverse question, 2k+~ is the largest integer in that interval and 2k ~ 1 
is the smallest. If  2k = 2k+~ the interval is empty, and the number to the exact match 
question of Minsky and Papert is "no." 

Given any set S, let the magnitude I S ] denote the number of its members. Then 
formally 

~ = I{J E [1, N l l x  j < k} I, x~-~ = x~ = I{J E [1, N l l k  < xs < k + 1} I 
= I{J E [1, N l l x ~  = k} {. (3 )  

Since ~k is the magnitude of a set which grows with k, the N-tuple ~ = ( ~ ,  :~,  • • • , ~w ) 
E [0, N] ~ i smonotone :  1 ~ i  < j  < W ~ 0  < 2~ <~2~ ~ N ,  so (2 ) is satisfied and 

E I (W, N ) is an inventory called the complen~ent of x E I (N, W). 
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Complementation is self-inverse. Let y = ~ E I (W, N).  Then .~ is the size of the set 
S j ,  where 

Sj := {k E [1, W]lyk < j} = {k E [1, W]l~k < j} = {k E [1, W]I xj > k}, 
# j =  [S~l = xj ,  (4) 

by the definition (3) of complementation. Thus complementation provides a 1-1 map 
from I (N, W) onto I (W, N) .  

Direct and inverse questions for x E I (N, W) are respectively inverse and direct 
questions for i E I (W, N).  A binary representation of x and its associated algorithms 
for direct and inverse questions can therefore be used as a representation of i by inter- 
changing the nhmes of the algorithms. Because of this duality it is necessary to construct 
representations and algorithms only for W > N. 

To permit symmetric treatment of x and ii requires a canonical representation of i as 
an ordered set of W strings, each containing the same number n of bits. This in turn 
requires that  there be an integer n with 

N = 2 ~ -  1, W = 2 ~ -  1, w > n > 1, (5) 

which we assume henceforth (except for the proof of Theorem 1). Our fourth retrieval 
question asks "What  is ~ ?" and its answer is the nW-bit canonical representation of i :  
it is introduced by the symmetry of the analysis. 

2. Measures of Pe~iformance and Results 

Let each inventory x E I (N, W) be represented by a distinct finite b inary  string whose 
length L (x) may vary with x. The integer L (x) is called the storage cost of the represen- 
tation of x, and the resulting map from I (N, W) into the finite binary strings {0, 1} * is 
called a representation of the set I (N, W). 

Let a binary bit-addressable memory m store the representation of x in its first L (x) 
bits, leaving its later bits free to take values set by other users or programs. Associated 
with the representation of I (N, W) is a set of four retrieval algorithms or machines which 
have available the parameters N and W and can access the bits of m to answer the direct 
and archival questions about both x and ~. Each algorithm has an access cost per use 
given by the number of bits it must access in m to find the answer to its questions. 
A~t(x, j )  and Ai(x, k) are the access costs of the direct and inverse algorithms when 
finding xj and ~k, respectively, for x E I(N, W), j E [1, N], k E [1, W]: A¢a(x) and 
and A~a (x) are the access costs of the archival algorithms finding x and ii. 

The storage cost and the four access costs may each differ for different x E I(N, W), 
and A~ (x, j )  and Ai (x, k) may also vary with j and k. Since the analysis deals with static 
files, it applies to a user who keeps the same m (representing the same x E [ (N, W))  a 
long time and uses it to answer many questions. Such a user can average over questions 
but not over inventories. Thus let 

N W 

Ad(x) = ( l / N )  ~ A d ( x , j ) ,  A~(x) = ( l / N )  ~ A ~ ( x ,  k). (6) 
j ~ l  k ~ l  

We measure the performance of a representation and its associated algorithms by the 
five numbers L, Ad, Ai ,  Aj~, Aia, each of which is the maximum over x E I(N, W) of 
the corresponding function: 

L = m a x L ( x ) ,  A~ = maxA~(x) ,  A~ = maxAi (x ) ,  
xE~" x ~ I  x E I  

(7) 
Ae~ = maxAe(x) ,  Ai~ = max At(x).  

xEI tEE 

These maximum measures can be guaranteed to any customer given his values of N and 
W but not the contents of his file. 
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We find lower bounds to each of these five cost measures, which hold for all represen- 
tations and algorithms, and summarize the results in Theorem 1. 

We first bound below the storage L, which is the length of the longest string in the 
representation of I (N, W). For any x whose representation takes L (x) < L bits, the 
algorithms must all work when the L - L (x) bits in m following the first L (x) bits are 
padded out with O's (which might belong to some other data base). The padded-out 
strings of uniform length L must include at least one distinct string for each x E I (N, W) 
since no two inventories give the same answer to all questions. Thus 2 L must be at least 
as great as the number I I (N, W)I of possible inventories. 

Next we use an information-theoretic argument to lower bound the number of accesses 
required to answer a retrieval question. Suppose (for the sake of this lower bounding 
argument only) that a probability P (x )  has been assigned to each x E I (N ,  W).  A 
retrieval algorithm accesses m and for each x E I (N, W) receives some sequence of 
values of the accessed bits. If it prints the correct answer to the retrieval question and 
halts no matter which x has its representation stored in m,  then by the converse to the 
coding theorem of information theory the average number of bits it receives cannot be 
less than the entropy (in bits) of the set of answers to the question, ff for a given retrieval 
question it is possible to choose P (x) so as to make all of the possible answers to that  
question equiprobable, then the entropy of the set of answers for that  P (x )  is just the 
logarithm (base 2) of the number of different possible answers. (See, e.g., l"ano [4, p. 63] 
and Gallager [5, p. 51].) 

For each of the four retrieval questions it is possible to find a probability assignment 
which makes all answers equiprobable. The assignment P,, will do for the two archival 
questions, where P , (x )  = 1/I I (N ,  W)I for all x E I (N, W). The assignment Pd gives 
equal probability to the W -l- 1 possible answers 0, 1, • • • , W to the direct question, and 
P~ gives equal probability to the N --/- 1 possible answers 0, 1, . . .  , N to the inverse 
question, where 

= J 1 / ( W  + 1) if x is constant, x~ = c, j ~ [1, N], 
P,/(x ) ~0 otherwise; 

= ~ I / ( N  + 1) i f  ~ is constant, xk = c, k E [1, W], 
(0  otherwise. Pi (x) 

Thus for the archival questions 

)"~P,(x)A~,(x) > log l I ( N  , W)I ,  
x E l  

And for the direct and inverse questions 

P~(x)A,,(x) >_ l o g [ / ( N ,  W) I. (8) 
x E l  

~'-~ P.(x)Aa(x, . / )  _> log (W + I )  for a l l j  E [1, N], 
• E' (9)  
~,P, . (x )A, (x ,  k) >_ log (N + 1 ) fo r  all k E (1, W). 
zEI  

Averaging (9) further ove r j  E [1, N] and k E [l, W] with equal weights gives 

Y~.P,t(x)A,(x) > log (W q- 1), ~'-~P,(x)A,(x) >_ log (N .4- 1). (10) 
x E l  x E 1  

Using for (8) and (10) the fact that  the largest number in a set is no smaller than the 
average, and for (S) the fact that  the largest number in a set of integers is an integer, 
completes the proof of 

THEO~E.~I 1. Let I (N, W)  be the weakly increasing subset of N-tuples in [0, W] ~v. Let p 
be a binary relation fl'om I (N, W)  onto [0, 1} ~ whose converse p-~ is a function from {0, 1} L 
onto I. Let the measures of performance of a set of four algorithms which find the right answers 
to the direct, inverse, direct archival, and i~werse archival questions about x by accessin 9 bits of 



2 5 0  PETER ELIAS 

TABLE I 

Total 
Type of Representation Bits 

Stored, L 

Average Bits Accessed Per Question 

Ad Ai Ada Ai~, 

Canonical for x Nw w nw Nw Nw 
Canonical for ~ nW nw n nW nW 
Enumeration of I Lo Lo Lo Lo Lo 

the image of x under p be defined by (7). Then 

L >_ Lo = flog I I ( N ,  W )  I ~, Ad ~_ log(W + 1) = w, As ~_ log(N + 1) = n, 

Ada _> Lo, Ai~ >_ Lo. 

Each of the five bounds in Theorem 1 is a t ta ined for some algori thm and some repre- 
sentation, as shown in boldface in Table I. The canonical representat ion of x as the  con- 
catenation of w-bit representations of i ts N entries in order of increasing value permits  
finding xj by accessing just  the minimal w bits a t  addresses ( j  - 1) w + t, t E [1, w]. A 
similar table lookup gives 2k in the minimal n accesses to memory if the nW-bi t  canonical 
representat ion of ~ is stored. Any enumeration of I by  a 1-1 map from I (N, W )  onto the 
(Lo.-bit binary representations of the)  integers in [0, I I ( N ,  W )  I - 1 ]  takes minimum 
storage. An algorithm which reads all L0 bits into working memory and computes or has 
stored the inverse of the map can answer all four kinds of questions with L0 accesses to 
memory, which is minimal for the archival questions. 

~ o n e  of the representations in Table I can a t ta in  or approximate  all five minima a t  
once, using any set of retrieval algorithms. One might in fact anticipate tha t  a represen- 
ta t ion which uses near to minimal storage will necessarily have an algori thm which must  
make much more than the minimal number of accesses to answer a direct or inverse ques- 
tion. The bulk of this paper  is devoted to the construction of representations and al- 
gorithms which show tha t  such an anticipation is not correct, by  approximating all five 
minima using a single representation and set of retrieval algorithms. We summarize the 
results below in Theorems 2 and 3. Theorem 3 gives the general results for a rb i t ra ry  n and 
w with N = 2 ~ - 1, W = 2 w - 1. Theorem 2 deals with the special case n = w, which is 
proved first and then used in the proof of Theorem 3. 

THEOREMS2. Let w = n > 1. Then 

( i)  Lo = r 2 N -  ( n +  1) /2  7, 

and for each n there is a binary representation of I (N, N ), four associated algorithms, and an 
e~ :, 2 ~ > e~ > O, with 

(it)  L _< Lo(l  + e~), Ad = A ,  < n ( l  + ~ ) ,  A ~  = A ~  = 2N_< Lo(I + e,). 

Forinteger k > Oandn = 2 ~, e~ _< 1.And 

( i i i )  lira e~ = O. 
n~o~ 

There is also a representation and two algorithms, for answering the two archival questions 
only, with 

(iv) L = A ~  = A,~ = 2 N _ < L o ( 1  + n / 2 N ) .  

THEORE~t 3. Let n > I, w -- n = s ~ O. Then 

(i)  Lo > N ( s  + (1 + 2 ' )  log(1 + 2 - ' ) )  - 1 - n /2  > N ( s  + log e) -- 1 -- n/2, 

and there is a binary representation of I (N, W ) ,  four associated algorithms and an e , ,  
2 ½ > e, > O, with 

(it) L < N ( s + 2 ( l + e , ) ) - 2 ( n - ~ ) ,  A d ~ = A , , _ < N ( s + 2 ) ,  A a < w ( 1 - + e , ) ,  
As _~ n(1 -}- e,)  -}- 2(1 - 2 -° ) < n(1 + e.)  + 2. 
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For integer k > 0 and n = 2 ~, e~ ~ 1. And 

(iii) lim en = 0 .  

There is also a representation and two algorithms, for answering the two archival questions 
only, withL = Ads = A~  = N(s  + 2). 

Theorems 1 and 3 together provide very tight bounds on five measures of the computa- 
tional complexity of a specific storage and retrieval task, and show that  there are systems 
whose performance has nearly minimal cost by all five measures. However these five 
measures are not a complete set. In  addition to the bits stored and the bits accessed per 
retrieval question, the bits of state information required by the algorithms or machines 
which access the representation and answer the question are also a cost. So is the amount 
of combinational logic or read-only memory which the algorithms or machines require. 

We do not compute such additional measures here, but  note that  the algorithms and 
representations constructed below are nearly minimal in such respects also. A number of 
state bits sufficient to store an argument or two (n bits each), a value or two (w bits each) 
and an address or two (log L bits each) will do, together with a few n-bit or w-bit param- 
eters stored in read-only memory. And the number of operations required (additions and 
subtractions of 1, shifts of I bit-position, bit-compares, etc. ) is only a few per accessed bit. 

For the canonical representations of x and i ,  the associated table lookup and logarithmic 
search algorithms which give the first two lines of Table I also have such minimal com- 
plexity. (So does the improved bit-by-bit logarithmic search suggested by Minsky and 
Papert [7]. ) However, the enumeration representation seems to require more complex 
algorithms, which perform arithmetic with L0-bit numbers (see Lehmer [6], Schalkwijk 
[8], Cover [1]. ) 

The algorithms and representations developed below to prove Theorems 2 and 3 re- 
quire a bit-addressable memory. A machine which is constrained to access a word of 
many bits can do no better, as measured in bit-accesses to memory, and may do worse, so 
Theorem 1 still applies but not the guarantees in Theorems 2 and 3. 

3. Quotients, Remainders, and Unary Representations 

To develop the representations needed to prove Theorems 2 and 3, it is convenient to 
shift at this point from the N-tuples x C I(N,  W)  to the bit strings of length Nw which 
are their canonical representations. This section introduces notation for such strings, gives 
a 1-1 map from I (N ,  W)  into I (N ,  N )  X T(N,  (W + 1 ) / ( N  + 1) - 1) and an eco- 
nomical unary representation of I (N, N)  equivalent to Fano's [3], and finds tight bounds 
on L0. Section 4 gives retrieval algorithms for the representation of I (N, N) ,  Section 5 
constructs directories for use by the algorithms and proves Theorem 2, and Section 6 re- 
turns to the general case and proves Theorem 3. 

L e t f  be a finite binary string in {0, 1} *. Let I f I denote the length off,  f ( i )  the value of 
its i th bit, and [I f [l the integer of whichf  is the I f  I -bit binary representation: 

tt l  

tl f II = ~f(J) 2ffl-j" (II) 
j--I 

The magnitude I l l  and the norm ]l f II are both many-one functions from {0, 1}* onto the 
nonnegative integers, since there are 2 c:l strings of length ] f  ] and II 0kf II = ]1 f II for all 
k > 0. However, f is uniquely specified by the pair of integers m = I f  I and k = II f II, 
m > 0, 0 < k < M = 2 ~ -- 1. (We retain the use of I S I as the number of members in 
the set S: the context will make clear whether the argument of I " I is a string or a set. ) 

I f  f is a concatenation f = f~2" • "f~ of N shorter strings, then 
- 

Ifl = ~If~.I, fj(k) =f If, ITk, kE [I, ILI ]. (12) 
j~l 

For integer n and w, the set T (n, w) of N-entry, w-bit (canonical representations of) 
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table~: is the set of binary-valued strings satisfying (12) with 

N = 2 ~ - 1, W = 2 ~ - 1; If3[ = w, IIf~ IIE [0, W] for a l l j  E [1, N]; [ f l  = Nw. (13) 

(The notation T (n, w) is used to distinguish the set of bitstrings f E T from the corre- 
sponding set of N-tuples of integers (lIfl [], I] f2 [[, -" ", ][ fu [[) denoted by T(N ,  W) .  
Since canonical representation is a 1-1 map, IT (n ,  u') I = I T ( N ,  W ) [ . )  

I t  takes Nw bits to store a string f E T (n, w). No alternate 1-1 encoding of T (n, w) 
into {0, 11L can take less, since T(n, w) = {0, 1/uw and there are not enough binary 
sequences to go around unless L > Nw. 

Let i (n ,  w) ~ T(n, w) be the subset of tables whose entries increase weakly in norm: 

1 < j  < k < N - - , 0  < I}L[[ < IIAII _< w = 2 ~ -  1. (14) 

An f E i (n ,  w) is ( the canonical representation of) an inventory, and I i ( n ,  w) I = 
I / ( iV,  W) ]. I t  takes the same Nw bits to store a string f E i as to store any f E T. 
Since not all strings of length Nw are in [ the representation is redundant. Fano [3] has 
given one which is more concise: we give a closely related one. 

Let w > n > 0 and let b be an integer, 0 < b < w. Define the b-bit quotient string qj 
to be the first b bits o f f j ,  the remainder string r~ to be the last w - b bits of f j ,  and q 
and r as the resulting concatenations: 

q¢(i) = r e ( i ) ,  i E [1, b]; ry(i) = f~ (b  + i ) ,  i E  [1, w -  b]; f j  = qj~'~.; 

q = q a q 2 " " q ~ E  i ( n , b ) ,  r = r l r 2 ' ' ' r u E  ~ ' ( n , w - - b ) .  (15) 

Let  uj be the unary encoding of the difference 11 q~ 1] - 11 qj-1 I] into a string of O's 
terminated by a 1, and let u be the concatenation of the resulting strings including a ter- 
minal string of O's: 

U l  = 0[qtill; U i : ol{q~'[{--[[q]-lN1, j ~ [2, N]; UN+l = 0 B-IIqNII, B = 2 b -- 1; 

u = uju2 . ' .  U~v+l = u(1 )u (2 )  . . .  u ( N  + B) ,  (16) 

since u contains just B O's and N l 's.  
']?he encoding (16) maps _!(n, b) 1-1 onto binary sequences of uniform length N q- B 

containing just B O's and N l 's.  Since each 1 in any such sequence can be interpreted as 
ending a sequence of O's (whose length may be zero), the inverse map is straightforward: 

]J qj ]] = number of O's lying to the left of j t h  1 in u, (17) 

which follows from (16). Then the 1-1 map shows tha t  

and complementing the sequence u by setting 

a ( j ) =  1 - u ( j ) , j E  [1, N + B ] ;  a = a ( 1 ) a ( 2 ) . . . ~ ( N + B ) ,  (19) 

maps i (n, b) 1-1 onto i (b, ~ ). The inventory which is decoded from the complement z~ of 
the unary encoding u of q is the complement q of q. Thus 

][ qk I] = number  of l ' s  lying to left of kth 0 in u. (20) 

Combining (19) and (20) gives the direct definition of the complement ~ of an inventory 
q without reference to u: 

I[ qk [I = I{./E [1, N][  II qj[I <k} , [] qi]l = I {kE  [1,e]l l lq~l] <j} I, (21) 

which is just the pair  of definitions (3) and (4) rewritten for strings qi ,  ~k rather than 
integers x¢, ~k by using the norm notation defined in (11 ). The relation between u, a and 
q, ~ is shown in Figure 1. 
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W'2W-I'? f4! 6! I[[ ~---I 

f iT' 2 ~ ~'~1-- I~--~ 
oII 

0 4 7.N= 2r'-i 

Fro. 1. The k-coordinates of points labeled by l 's are values of q(j). There is one for each argument 
j = 1, 2, . . .  , N = 2 ~ - 1. The j-coordinates of points labeled with O's are values of ~(k). There is 
one for each argument k = 1, 2, • .. , W = 2 w - 1. Reading the labels from lower left to upper right 
gives the unary encoding u = 00110101100011. Complementing u gives ~,'the unary encoding of ~. 

Given N and B, the string v consisting of the first N + B - 1 bits of u is also a 1-1 en- 
coding of q E i ( n ,  b), since the value of the last bit  of u is determined by the fact tha t  
u has B O's and N l ' s :  

N+B-- I  N+B- - I  

u(B + N)  = N - ~ u(t) = N - ~ v(t). (22) 

Since either v or u determines q and by (15) q and r determine f, either of the concatena- 
tions vr, ur represent f 1-1 for any b C [0, w]. I t  is easy to show tha t  the storage required 
is minimized when b = n, so B = N:  then q E I(n, n) is called a square inventory,  and 

JurJ = l u l  + I r l  = 2 N  + N ( w  - n )  = N ( w  - n + 2) ,  
(23) 

[vr I = N(w - n +  2 ) -  1. 

We next show tha t  no other 1-1 mapping of I (n, w) into binary sequences can do much 
better.  Let  H (p, q) be the binary entropy function (q + p = 1, 0 < p < 1 ): 

H(p, q) = p log ( l / p )  + q log ( l /q ) .  (24) 

Wozencraft  and Reiffen [9] show tha t  

( N + ) ( N B ) 3 1 NB 
log N B > (N + B)H N + B ' N  + B 2 2 1 ° g N + B  

(25) 
_ ~ log (4/7r). 

Since log 4/7r = 2 --  log 7r ~ 0.348 < ½, (25) often determines the  value of 

rlog ( N  ; B)T exactly. For example setting B = N in (25 ) gives, from (13 ), 

( 2 N )  1 l ( n _ l o g N )  > l o g  N 2 N -  1 - n/2 +~log(4/~-)  + ~  

1 > 2 N -  1 - - ~ l o g N  > 2 N -  1 - n/2. (26) 

] , ' o r n >  3, n - l o g N  < I o g ~ a n d ½ 1 o g  (4/~-) + ½  ( n - l o g N )  < ½. Since for in- 
teger b and e < ½, 

b/2 + e _~ x > 5/2 ~ rx~ = r(b + 1) /2  ~, (27) 

checking the cases n = 1 and n = 2 proves par t  (i)  of Theorem 2: 

Lo = flog l I ( n ,  n)  ] '  = r 2 N -  ( n +  1) /2 ' ,  (28) 

which compares to I v I = 2N - 1 from (23). 
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For general i (n ,  w) w i thn  > 1, s = w - n > 0, 

I i ( n , w ) [ = I I ( N , W ) I =  N ~ r W  = 2~-t-2~ 

(2-+2 ~) 2 "+" 
= 2" " (2" "4- 2w)(2" + 2 w -- 1) 

= (2w(12-b 2 - ' ) ,  " I k  --  ,] 2-" 2" -4-2  ~° 
( 1 + 2 - , )  2 2 - . 4 - 2 ~ - -  1 " 

Taking logarithms and using (25) gives 

- -  O n " log J i (n ,  w) I > - (s -4- (1 + 2") log (1 -4- 2 - ' ) )  ~ - n/2 -4- ½ log (1 + 2 - ' )  
- s - -  2 l o g  (1 -b  2 - ' ) - b l o g  ((2 ~ -b  2 ~ ) /  (2 ~ ' b  2 ~ -  1 ) )  

> ( 2 " -  1)(s-4- ( 1 +  2 ' ) l o g  ( 1 +  2 - ' ) )  
- ~ - n / 2  "4" (2" - ½) log (1 -k 2-"), (29) 

where the second line drops the last term of the first. Using log (1 -b x) > x for 0 < x < 1, 
and the fact that  (1 -b x) log (i A- 1) /x)  is monotone decreasing and so greater than 
log e which is its limit at x = ~¢, 

log I J~(n, w) > N(s  + (1 --k 2 ' )  log (1 -k 2 - ' ) )  -- 1 - n/2 
> N(s  q- loge)  - 1 -- n/2, (30) 

proving part (i) of Theorem 3. The error in the bottom line of (29) is less than 1 bit and 
the error in the top line of (30) is less than 2 bits for all w > n > 1. 

4. Retrieval Algorithms for Square Inventories 

Givenf  E i (n,  w), w > n, let q E l(n,  n) be its square n-bit quotient as in (15) and let u, 
the unary encoding of the differences of q as in (16), be stored in a memory m = u: 
re(t) = u(t), t E [1,'2N]. 

The algorithm F I N D  Q 2f finds qj given j E [1, N] by accessing m and counting its 
O's, l's, and bits in three counters, 

J =.~__,m(t), K = (1 -- re(t)),  T = J +  K. (31) 
t e l  t e l  

F I N D  Q ~Zf needs a pair of.initial values J = Jo, K = Ko which satisfy (31), and works 
when the values are such (say J0 = K0 = 0) that  J0 < j. 

FIND Q 

Enter 
Set T = J - -bK 
Set U = m(T -b 1) 
Add U to J (32) 
Add 1 - U to K 
If J < j return to Enter 
Exit. 

When the count J in the l 's  counter first reaches j, re(T) is t h e j t h  1 in u and ends 
the j th  codeword u j ,  so that  the count in the O's counter is 

J 

K = K ( m i n T I J  = j )  = I Iq~l l4"~ (llq, l l - I Iq~- , l l )  = IlqJ]l, (33) 

and the rightmost n bits of K are qj. At that  point the algorithm has accessed just 

j - -  Jo + ]l q, l) - Ko (34) 
bits of u in m. 
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F I N D  Q 1 accesses the same m = u, but  counts down rather  than up, and works when 
its initial values (say J1 = K1 = N ) satisfy (31) and are such tha t  J1 _~ j - 1. 

FIND Q 1 

Enter 
If J < j,  add 1 to J and go to Exit 
Set T = J + K 
Set g = re(T) (35) 
Subtract U from J 
Subtract 1 - U from K 
Return to Enter 
Exit. 

When it exits, F I N D  Q 1 has set J = j and the n r ightmost bits of K are again q j .  The 
number  of bits accessed in m by F I N D  Q 1 is just  

51 -- ( j  -- 1 ) + K~ -- I/qJ/I. (36) 

The complementary algorithms F I N D  (~ ~ and F I N D  (~ 1 are obtained by replacing 
m ( T  + 1) b y l  - r e ( T +  1) in F I N D  Q , ~  and re (T)  by 1 - re (T)  in F I N D  Q 1. 
Given j and suitable s tar t ing values these algorithms exit with J = j and K = II t~j II, 
accessing m a number of times given by (34) and (36) with IIqJ II replaced by II qJ I/- 

To answer the identity question about q (or ~), append to F I N D  Q ~ (or F I N D  Q ~ ) 
the  commands 

Print rightmost n bits of K 
If J = N, halt (37) 
Add 1 to J 
Return to Enter. 

The result ingarchival  algorithm F I N D  Q A (or F I N D  Q A ), given j = 1 and Jo = Ko = 
0, prints the N values of qj (or qj), j E [1, N], in order, using the values J = j ,  K = 
II qj [I (or II qJ II ) found on the J t h  loop to s tar t  the (J  -k 1 )-st, and accessing at  most the 
2 N b i t s o f u f r o m m .  F o r n  _> 2, 2N _< nN and it is cheaper to pr int  q by  accessing u than 
by  accessing q, both in bits stored and in bits accessed. 

For  storage and archival access u and its associated algorithms F I N D  Q A, F I N D  Q A 
comes very close to the lower bound L0 for L, A d, ,  A,~ of Theorem 1. F I N D  Q and F I N D  

don' t  do as well at  finding single values of qi or qi .  Using J0 = K0 = 0 for F I N D  Q ~ and 
J1 = Ki  = N for F I N D  Q 1 and averaging (34) and (36) gives an average of 

Ad = A,  = N + ½  (38) 

bits accessed in m per direct (or inverse) question, independent of j and q, compared to 
the lower bound of n in Theorem 1. 

To do much bet ter  than (38) requires the use of a directory to give bet ter  s tar t ing 
values for the algorithms. I t  is easy to enter the algorithms with a value qi obtained from 
a directory because of a self-addressing proper ty  of u. Given j C [1, N], s tar t ing values 
Jo = i, Ko = II q~ II will work for F I N D  Q ~ if i < j ,  and 51 = i - 1, K1 = II q~ [I will 
work for F I N D  Q 1 if i > j .  

5. Directories 

Let a memory m 1 store the canonical representations of an inventory ql C I (nl ,  nj ) and 
of its complement ~1 E I (n~, nl), and let table lookup algorithms S E E K  Q (1) evaluate 
qj~ and S E E K  (~ (1) evaluate ~jl,each wi th  an average of A 1 bi t  accesses to ~ ,  where 

[m 1 ] = [ql01 [ = 2nlN1, A 1 = n , .  (39) 

Let  n~ > nl and define 

8 ~ n 2  ~ ~ 1  ~ S ~ 2 ~. 
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Given an inventory q~ 6 ] @2, ~2), let the ql and ~ above be the nrb i t  quotients of 
every Sth entry of q* and .q*, and let r ~ and ~ be the corresponding s-bit remainders 

= = - , j ~ [1, N d .  ( 4 1 )  

Finally, let u 2 be the unary encoding of the differences of q2. Then in the memory m s = 
rn~r~/uS of size 

I msl =[m I ] "t- [r ' l  + I~ll "t- l uSl = I mll  + 2Nxs + 2N2, (42) 

the prefix m~r'~ ~ is a directory to u ~ for both direct and inverse questions. 
Given j 6 [1, Ns], an algorithm SEEK Q (2) ~ evaluates qT, in the following stclzs. 

(i) I f L j / S j  = 0, set Jo = K0 = 0 a n d  go to F I N D  Q ~ ,  which ex i t swi thK = II qj2 II. 
(ii) If  Lj /S j  ~ o, call SEEK Q (I)  which finds q~/s • Then call a table lookup algorithm 
to find ' r,i/s, • Set 

J St_j/Sz, g II * x s = = q , . , ~ ,~ ' . / ~ . ,  II = II qs~z.,,, II, ( 4 3 )  

(iii) I f j  = St.i/sJ, the answer was in the directory. Exit leaving K = [I q i  ~ N. 
(iv) I f j  ~ SLj/sj, go to F I N D  Q . ~  with starting values (43). F I N D  Q ~5 exits with 

K =: It qJ~ []. 
SEEK Q (2) 1 is the descending counterpart to SEEK Q (2) ~ .  If  rj/s~ = N~ it sets 

J ,  K1 N2 for H N D  Q 1. If  not, it calls SEE](  Q (1) and table lookup to find , =: = qrjlXl 
and * ru/s~ and sets 

J Sr j /S  ~ -  1 K II x = , = q , . ~ . ' , . ~ ,  II = II q~,..~, II. ( 4 4 )  

I f j  = S"j /S  ~, SEEK Q (2) 1 exitsleaving K = ]J q7 JJ. If  not it calls F I N D  Q 1 withstart-  
ing values (44), and F I N D  Q 1 exits with K = II qi s II. 

• SEEK Q (2) accesses A ~ bits in m ~ and s bits in r ~ except when L.]/Sj = 0 (or [ j /S  1 = 
N2). This gives an average over j  6 [1, N2] of 

A ' (1  - ( S -  1)/Ns),  s(1 - (S - I ) /N~)  (45) 

accesses to m' and r 1 respectively for either the ascending or descending algorithm.'It  then 
calls F I N D  Q. Using the starting values (43) and (44) in (34) and (36), F I N D  Q finds 
q7 with 

j SLj /Sj  + ]lq7 II U 2 -- - qstJ/s, II accesses to u s for F I N D  Q Z~, 
(46) 

S~JlS ~ J + lt ~ - - -  qsu/s ,  II II q S II accesses to u¢ ~ for F I N D  Q 1, 

where II 2 q~+~ Jl and Jl q0 ~ Jl are interpreted as Ns and 0 respectively. 
Summing the two expressions in (46), summing further over j  ~ [1, N2], and dividing by 

2N2 gives an average, over the two algorithms and the N2 questions, of 
w~ 

(1,/2N~)~ (S(r j /S  ~ cJlSz) + II ~ " 

(1/2N2)((S 1)(N2 + 1) -F II s = - q ~ + ,  II - II qo  s [I) 
= ( S  - -  1)(1 + 1/2N2) (47) 

bits accessed in u s. Adding (45) and using s = ~2 -- n, A, = n, gives an average of 

A ~ = (A I -~ s)(l -(S - I)/N~) + (S - I)(i +I/2N2) 

= ns-t- S -  1 -  ( S -  1 ) ( 2 n 2 -  1 ) / 2 N 2  
n~ + S - -  1 = n2(1  + S/n2) - 1 ( 4 8 )  

bits accessed in m s by SEEK Q (2) in finding qT. By the symmetry of m ~ and m 2, an al- 
gorithm SEEK Q (2) calling F I N D  (~ can find q~ with the same average number of ac- 
cesses to ms. At S = N2 + 1 (i.e. ns = n, n, = 0, no directory), A ~ reduces to the value 
N ~ +  ½of (38). 
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From (42) and (39) the required storage is 

] m~ l = 2Nlnl + 2N1S + 2N2 
= 2(N~ + 1)(1 + ,~(N1 + 1)/(N~ + 1 ) )  - 2(1 + n~) 
= 2N2(1 + n2/S)  - 2(n2 - n2/S)  (49) 

since S = (N2 + 1 ) / (N1  -k 1 ). 
To prove Theorem 2 let n2 = n, 6, = n /S .  Then for square inventories A~ = Ai = 

A s = n(1 + 1/6,)  - 1, L = Ira21 = 2N(1 + 6,) - 2 ( n -  6,). L c t h / 2 b e  the difference 
between I mS I and its upper bound (1 + 6)L0 in Theorem 2. Using (28) for L0, 

A = 2( (1  + 6.)50 -- ]m'  ]) 
= 2 ( 1 . +  ~ . ) r 2 N -  ( n +  1) /2  ~ -  4N(1  + ~.) + 4 ( n -  6.)  
> n(a - 6 . )  - (1 + 56. ) .  (50) 

Choose the integer s, = log S ,  so tha t  1/2 t < 6,, = n / S ,  < 2 t. 
],'or the (n, ~ , ) p a i r s  (3, ~), (4, 1), (5, ~ ) a n d  (n _> 6, ~ < 2t), the last line of (50) 

shows tha t  ,5 > 0. ]"or n = 2, ~2 = 1 the second line shows ~ = 0. For  n = 1, choose 
m = q q g i v i n g l m l  = 2  = 2 L 0 , A d = A o =  l = n = 2 n -  1 , A d ~ = A , . ~ =  l = L 0 , p r o v -  
ing (ii) in the theorem for n = 1. Setting ~,, = max {8,, 1/6,} completes the proof of (ii) 
for all but  the archival questions. 

For  the archival questions with n > 2, the algorithms F I N D  Q A, H N D  Q A access 
u s in m 2 without using the directory, giving 

(1 + n / 2 N ) L o  _> (1 + n / 2 N ) ( 2 N  - (n  + 1)/2) 
= 2N - ½ + (n /2 ) (1  - ( n +  1 ) / 2 N )  

2N = Ads = A ~ .  (51) 

Only the limit ~. ~ 0 remains to be proved. I t  needs more directories. Let  

s~ = n~+l -- he, S~ = 2"', zn TM = ~ntr~tu T M  (52) 

and construct S E E K  Q (t + 1) like S E E K  Q (2) except that  i t  calls S E E K  Q (t) to 
access the directory m t, table lookup to access r t, and F I N D  Q to access u ~+~. 

The derivations of (48) and (49) permit  s tar t ing with A t and m ~ for any t, not  only 
t = 1. Using ~n~rt'r t as a dircctory to m t+a gives 

A '+' = (A'  q- s , ) ( l  + (St - 1) /N,+, )  -b (S,  - 1)(1 + 2/N,+, )  
_<A' + s, + 2"' - 1, (53) 

l m'+' l  = [~n' I -{- 2N,s,  + 2N,+1. 

Two applications of (53), with A ~ = nx, { m ~ I = 2Nln, and st = s2 = s, gives na = 
nl + 2s, and 

A 3 = A a + s - t - 2 " -  1 + s + 2 " -  1 = n ~ +  2 ( 2 " -  1), 
I~n"[ = 2N3 + 2N2(s -b 1) + 2N~(s -b ha) (54) 

< 2N.(1 -b (s -b 1)2-" -b (na - s)2-2"). 

Setting s = e (2 /3)  log na ~ in (54) gives 

lira (a~/n . )  = 1, lira (I m3 [/2N,) = lim ([ ~,3 [/Lo) = 1 
n 3 ~  n3~av n3~ao  

and completes the proof of Theorem 2. 

6. Arbitrary Inventories 

To answer direct or inverse questions about an arbi t rary  inventory f E I (n, w), w _> n, 
let 

nt+l = n, N,+l = N = 2 " -  1, (55) 
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let q E I ( n ,  n )  be the n-bit square quotient o f f  and r E ~'(n, w - n) its (w - n)-bit 
remainder, with f¢ = qP'i, q = qt+l, r = /+l ,  and represent f in the memory m, where 
m := m'+l/+1 = mt+lr, [ m  I _< 2N(1 + e,~) + N ( w  - n )  = N ( w  - n + 2(1 + ~,,)) 
by Theorem 2. 

For direct questions, given.] E [1, N] the algorithm SEEK F (t + 1 ) first calls SEEK 
~+1 Q (t + 1 ) which finds qj , then reads the w - n bits of r~ +1 by table lookup in m, and 

finally prints the concatenation f~ = q~ +lr~ +1 with an average of 

A,~ _< A TM + w -- n _< n(1 + ~,~) -- 1 + w -- n < w(1 + e.) (56) 

accesses to m. 
For inverse questions, given k E [1, W] l c t j  be its n-bit quotient and h its (w - n)-bit  

remainder: 

j = t k / 2 w - " j ,  h = k --  2w-~j. (57) 

By the definition (3) of ], 

][ ]k [I = [{i E [1, N][ I[ f~ ][ < k}[ = I{i E [1, Nil 2 ~-" [] q, [] + l] r, [] < k}[ 
= 1[ qJ l[ + l{ i E [1, NIl [I q, I] = J, II r, [] < h}l. (58) 

To find I[]k I[, the algorithm SEEK f (l + 1) first finds the pair of values ]] 4i ]l, 
[] q3+1 II. If  []qi [[ = ][ qj+l [I then I[ h ]l = ]l qi [J and the job is done. If not, add i to I] q~ [] 
for each i E [[I qJ I / +  l, [I q~'+l Ill such that  II ri II < h. The resulting sum is [I £ If. 

To find the pair ]l qJ' ]1 and ][ 4i+1 [] takes only one more average access to u k+l than to 
find Jl q~ lJ alone. Modify SEEK O (t + 1) to store an extra value and use the ascending 
algorithm to find .~j+l when j is even and the descending algorithm to find qs when j is 
odd. Summing the two expressions in (46), then summing over the odd j E [1, N] and 
finally dividing by the/V + 1 possible pairs gives an average of 

S / 2  + S / 2 ( N / ( N  + 1)) = S(1 -- 1 /2 (N + 1)) < S (59) 

bits accessed per pair. (59) is less than 1 more accesses than the number (47) needed to 
find a single value, and adds less than 1 to the value of A 2 given by (48): thus for a pair, 

accesses < A 2 + 1 _< n(1 + e~). (60) 

(Note that  for a pair, at S - 1 = N ,  (59) like (48) reduces to N + ½: it costs no more 
acccsses to find a pair of adjacent cntrics than to find one entry, in thc unary encoding 
without directories. ) 

The remaining accesses made by SEEK ~ (t + 1 ) to m are used to compare the binary 
representation of h b i t by  bit to the remainders r~ with i Ill qJ JJ + 1, Jl ~+1 IJ], reaching 
the decision ]1 r~ II < h or ]] rl I] _> h at the first mismatch or at the (w - n) - th  bit if all 
bits match. To find the average accesses to r~ we keep i fixed and run SEEK Ff (t + 1 ) 
once for each of the W "4- 1 values k E [0, W]. 

An h will have its pth bit compared to the pth bit of r~ if the first n + p - 1 bits of 
k match the first n + p - 1 bits of f~. Such a match happens for a fraction 2 -(~+~-~) 
of the W + 1 = 2 w values of k E [0, W]. Thus the total accesses to r~ for all k will be 

w - - n  

2 w ~ 2-(~+~ -~) = 2~°-~.2(1 _ 2-(w-')). 
i--1 

Summing further over the N remainders r~, i E [1, N], gives the total accesses to all 
remainders for all W + 1 values of k. Dividing by the number W of questions k E [1, W] 
which actually get asked gives an average bounded by 

2(1-2-(w-~))2w(2 ~ - 1) / (2  w - 1) < 2(1-2 -(w-n)) (61) 

(since w _> n). Adding to (61) the n(1 + e~) or fewer accesses needed to find the pair 
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I/qJ/I, II qJ+~ II from (60) gives the bound A ~ < ~ (1 "4" e. ) + 2 (1 - 2 -( ' -n) ) of Theorem 
3 on average bits accessed in m by SEEK f (t -/- 1 ) to find ] , .  

The archival questions don' t  need the directory. Modifications of SEEK F (t + 1) 
and SEE](  f (t "4- l ) can find successive values of qj and qi by using F I N D  Q A of (36) 
and (37) accessing u t+z, and use each value or pair of values together with accesses to r 
to find f i  and ]k ,  with a total of I ue+l [ + [ r I = N(w - n + 2) or fewer accesses as 
given in (23). This completes the proof of Theorem 3. 

7. Summary 

The complexity of any algorithm is an upper bound to the complexity of the computation 
it carries out. l~ower bounds are harder to come by. Information theoretic techniques can 
provide lower bounds to bit counts. Relevant bit counts for problems of retrieval and 
computation are: (i) the number of bits which must be stored to store the representation 
of one of a set of possible data bases or arguments, (ii) the number of bits which must be 
accessed in finding one of a set of possiblc answers to a question about the object whose 
representation is stored, (iii) the number of bits of state information required by the 
machine or algorithm which accesses the representation to answer the question, (iv) 
the number of bits of read-only memory or program or wiring information needed to 
specify the machine or algorithm given the number of its states, and (v) the number of 
bits in the representation which must be changed to represent an update of the data base. 
In  this paper we have dealt quantitatively only with (i) and (ii), kecping an eye on (iii) 
and (iv) and ignoring (v) by dealing with static files. Quantitative treatment of (iii) is 
not difficult. Quantitative treatment of (iv) seems to be very hard because of the diffi- 
culty of finding a suitably technology-invariant measure of the complexity of combina- 
tional logic. Quantitative treatment of (v) is under exploration (see Flower [10]). 

Lower bounds may be used to rule out impossible schemes quickly. More important, 
they act as a spur to the invention of schemes whose performance approaches the bounds, 
like those above. Lower bounds to bits stored and to bits accessed can be computed for a 
variety of retrieval questions, and it is possible in a number of cases simultaneously to 
attain or approach both a storage bound and an access bound for a particular type of 
question. The example giw~n her(; is unusual in that  it permits several different types of 
questions to be answered efficiently at near minimal storage cost. One question for a more 
general theory is what data structures and sets of retrieval questions permit such an 
approximation to all lower bounds at once. Another is to find the trading relations in the 
more typical case when not all minima can simultaneously be attained. 
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