
Etticient Storage and Retrieval by Content and

Address of Static Files

P E T E R ELIAS

Massachusetts Institute of Technology, Cambridge, Massachusetts

ABe;TRACT. We consider a set of static files or inventories, each consisting of the same number of
entries, each entry a binary word of the same fixed length selected (with replacement) from the set
of all binary sequences of tha t length, and the entries in each file sorted into lexical order. We also
consider several retrieval questions of interest for each such file. One is to find the value of the j t h
entry, another to find the number of entries of value less than k.

When a binary representation of such a file is stored in computer memory and an algorithm or
machine which knows only the file parameters (i.e. number of entries, number of possible values per
entry) accesses some of the stored bits to answer a retrieval question, the number of bits stored and
the number of bits accessed per retrieval question are two cost measures for the storage and retrieval
task which have been used by Minsky and Papert. Bits stored depends on the representation chosen :
bits accessed also depends on the retrieval question asked and on the algorithm used.

We give firm lower bounds to minimax measures of bits stored and bits accessed for each of four
retrieval questions, and construct representations and algorithms for a bit-addressable machine
which come within factors of two or three of at taining all four bounds at once for files of.any size.
All four factors approach one for large enough files.

Kr:z WORDS AND PHRASES: file, storage, retrieval, access, inverted file, efficiency, computational
complexity

cR CATEGORIES: 3.70, 3.72, 3.74, 5.25, 5.6

1 Tables, Files, and Inventories

C o n s i d e r a col lect ion of N words, each of l e n g t h w b i n a r y digits. I f t h e j t h word is in te r -
p r e t e d as t he w-bi t b i n a r y r e p r e s e n t a t i o n of a n in tege r xj a n d t he words are g iven in a
specified order t he col lect ion m a y be t a k e n to r e p r e s e n t a table, as in t h e t a b l e of va lues
of a n a r b i t r a r y f u n c t i o n f rom t he in tegers [1, N] to t h e in tegers [0, W], whe re W = 2 ~ - 1.
D e n o t e b y T (N, W) t h e se t [0, W] N of all possible N - e n t r y , w-bi t tables .

x = (X l , X 2 , . . . , x ~) E T (N , W) iff x j E [0, W], j E [1, N]. (1)

I f t he or ig inal col lect ion of N words is no t o rde red i t is c o m m o n prac t ice to sor t t h e
words in to lexical o rder before s to r ing t h e m in m e m o r y so as to m a k e access easier. T h e
re su l t m a y be t a k e n to r ep re sen t t h e sequence of va lues of a (pe rhaps w e a k l y) m o n o t o n e
inc reas ing func t i on f rom [l , N] to [0, W]. A n example is t h e o rde red se t of w-bi t s tock-
n u m b e r s on N i t ems in an i n v e n t o r y . L e t I (N, W) d e n o t e t he se t of such inventories:

x E I (N , W) iff x E T (N , W) a n d 1 < i < j < N ~ x i _ ~ x i . (2)

I f t he col lect ion has no dup l ica tes i t m a y be t a k e n to r e p r e s e n t afile. T h e c/ass F (N , W)

Copyright © 1974, Association for Computing Machinery, Inc. General permission to republish'
but not for profit, all or par t of this material is granted provided tha t ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact tha t reprinting
privileges were granted by permission of the Association for Computing Machinery.
This research was partially supported by the Joint Services Electronics Program (Contract DA28-
043-AMC-02536 (El).
Author's address: Depar tment of Electrical Engineering, Massachusetts Inst i tute of Technology,
Cambridge, MA 02139.

Journal of the Association for Computing Machinery. Vol. 21, No. 2, April 1974, pp. 246~260.

E~cient Storage and Retrieval by Content and Address of Static Files 247

of files is the subset of I (N, W) which is strictly increasing: x E F(N, W) iff it satistiies
(2) with xi < x~ replaced by xl <~ x~. We do not deal with files per se here, but ~-ith the
more general class of inventories (see, however, [2]).

Given a representation of x E I (N , W) as a string of bits stored in a binary bit-
addressab]e memory (for example the canonical representation of x as the Nw-bit con-
catenation of the N original entries of w bits each, concatenated in order of increasing
value), it requires a certain amount of effort for an algorithm which only knows the
parameters N and ~' to answer a question about x by accessing some of the bits of the
stored representation. The effort required depends both on what representation is chosen
and on what retrieval question is asked~

Given an inventory (or file) x E I (N, W), Minsky and Pappert [7] use two measures
of performance for a binary representation of x and an associated retrieval algorithm.
One is the total nun~ber of bits of memory needed to store the representation. The other is
the average number of those bits which must be accessed by the algorithm in order to
answer a retrieval question. They consider two kinds of retrieval questions, the exact
match question "Is there a j E [1, N] with xs = k?" and the approximate match question
"For whichj does the w-bit binary representation of xj differ from the w-bit binary repre-
sentation of k in fewest bit positions?", both k E [0, W]. They explore the trading rela-
tions between their two cost measures for these two questions using a variety of repre-
sentations. They find a representation and an algorithm which have both storage and
access costs of only a few times the minimum possible values for the exact match question.
Approximate match seems to take either very large storage or a great deal of access.

1.'ano [3] gives a representation and an algorithm for an exact-match-and-address
question "Is there a j E [1, N] such that xj = k and if so, what is it?" His representation
is essentially equivalent to the one derived independently by the author, presented in
[2] and in Section 3. He does not consider the number of bits accessed per question.

We use the same kinds of costs as Minsky and l 'apert and get results from four ele-
mentary retrieval questions, one of which is closely related to Fano's.

The first question "What is x ?" is the identity or archival question. Its answer is a
printout of the inventory x in canonical form, i.e. the Nw-bit sequence of the w-bit repre-
sentations of the N entries of x, printed in increasing order.

The second question "What is xj?" for j ~ [1, N] is the direct or table-lookup question.
Its answer is the integer x j , or its w-bit binary representation. I t is the natural question
to ask of a table. For an inventory, the direct question asks for the stocknumber on the
item in the j th of N bins, or the file of a customer whose file number is j, and is less
natural.

The questions of greatest interest for inventories and files are of an inverse character.
"Do we have any items in stock with stocknumber k? If so, how many? And in which.
bins?" for j E [0, W]. Our third question is "For how many j E [1, N] is x~ < k?",
k E [1, W], the i~werse question. We denote its integer answer by :~k E [0, N].

A nondecreasing function from [1, N] to [0, W] does not usually have an inverse which
is a function. The inverse image of a value k E [0, W] is an interval (often empty when
W >> N) of adjacent integers in [1, N], where the entries of value k are located. In terms
of answers to the inverse question, 2k+~ is the largest integer in that interval and 2k ~ 1
is the smallest. If 2k = 2k+~ the interval is empty, and the number to the exact match
question of Minsky and Papert is "no."

Given any set S, let the magnitude I S] denote the number of its members. Then
formally

~ = I{J E [1, N l l x j < k} I, x~-~ = x~ = I{J E [1, N l l k < xs < k + 1} I
= I{J E [1, N l l x ~ = k} {. (3)

Since ~k is the magnitude of a set which grows with k, the N-tuple ~ = (~ , :~, • • • , ~w)
E [0, N] ~ i smonotone : 1 ~ i < j < W ~ 0 < 2~ <~2~ ~ N , so (2) is satisfied and

E I (W, N) is an inventory called the complen~ent of x E I (N, W).

2 4 8 PETER ELIAS

Complementation is self-inverse. Let y = ~ E I (W, N). Then .~ is the size of the set
S j , where

Sj := {k E [1, W]lyk < j} = {k E [1, W]l~k < j} = {k E [1, W]I xj > k},
j = [S~l = xj , (4)

by the definition (3) of complementation. Thus complementation provides a 1-1 map
from I (N, W) onto I (W, N) .

Direct and inverse questions for x E I (N, W) are respectively inverse and direct
questions for i E I (W, N). A binary representation of x and its associated algorithms
for direct and inverse questions can therefore be used as a representation of i by inter-
changing the nhmes of the algorithms. Because of this duality it is necessary to construct
representations and algorithms only for W > N.

To permit symmetric treatment of x and ii requires a canonical representation of i as
an ordered set of W strings, each containing the same number n of bits. This in turn
requires that there be an integer n with

N = 2 ~ - 1, W = 2 ~ - 1, w > n > 1, (5)

which we assume henceforth (except for the proof of Theorem 1). Our fourth retrieval
question asks "What is ~ ?" and its answer is the nW-bit canonical representation of i :
it is introduced by the symmetry of the analysis.

2. Measures of Pe~iformance and Results

Let each inventory x E I (N, W) be represented by a distinct finite b inary string whose
length L (x) may vary with x. The integer L (x) is called the storage cost of the represen-
tation of x, and the resulting map from I (N, W) into the finite binary strings {0, 1} * is
called a representation of the set I (N, W).

Let a binary bit-addressable memory m store the representation of x in its first L (x)
bits, leaving its later bits free to take values set by other users or programs. Associated
with the representation of I (N, W) is a set of four retrieval algorithms or machines which
have available the parameters N and W and can access the bits of m to answer the direct
and archival questions about both x and ~. Each algorithm has an access cost per use
given by the number of bits it must access in m to find the answer to its questions.
A~t(x, j) and Ai(x, k) are the access costs of the direct and inverse algorithms when
finding xj and ~k, respectively, for x E I(N, W), j E [1, N], k E [1, W]: A¢a(x) and
and A~a (x) are the access costs of the archival algorithms finding x and ii.

The storage cost and the four access costs may each differ for different x E I(N, W),
and A~ (x, j) and Ai (x, k) may also vary with j and k. Since the analysis deals with static
files, it applies to a user who keeps the same m (representing the same x E [(N, W)) a
long time and uses it to answer many questions. Such a user can average over questions
but not over inventories. Thus let

N W

Ad(x) = (l / N) ~ A d (x , j) , A~(x) = (l / N) ~ A ~ (x , k). (6)
j ~ l k ~ l

We measure the performance of a representation and its associated algorithms by the
five numbers L, Ad, Ai , Aj~, Aia, each of which is the maximum over x E I(N, W) of
the corresponding function:

L = m a x L (x) , A~ = maxA~(x) , A~ = maxAi (x) ,
xE~" x ~ I x E I

(7)
Ae~ = maxAe(x) , Ai~ = max At(x).

xEI tEE

These maximum measures can be guaranteed to any customer given his values of N and
W but not the contents of his file.

E ficient Storage and Retrieval by Content and Address of Static Files 249

We find lower bounds to each of these five cost measures, which hold for all represen-
tations and algorithms, and summarize the results in Theorem 1.

We first bound below the storage L, which is the length of the longest string in the
representation of I (N, W). For any x whose representation takes L (x) < L bits, the
algorithms must all work when the L - L (x) bits in m following the first L (x) bits are
padded out with O's (which might belong to some other data base). The padded-out
strings of uniform length L must include at least one distinct string for each x E I (N, W)
since no two inventories give the same answer to all questions. Thus 2 L must be at least
as great as the number I I (N, W)I of possible inventories.

Next we use an information-theoretic argument to lower bound the number of accesses
required to answer a retrieval question. Suppose (for the sake of this lower bounding
argument only) that a probability P (x) has been assigned to each x E I (N , W). A
retrieval algorithm accesses m and for each x E I (N, W) receives some sequence of
values of the accessed bits. If it prints the correct answer to the retrieval question and
halts no matter which x has its representation stored in m, then by the converse to the
coding theorem of information theory the average number of bits it receives cannot be
less than the entropy (in bits) of the set of answers to the question, ff for a given retrieval
question it is possible to choose P (x) so as to make all of the possible answers to that
question equiprobable, then the entropy of the set of answers for that P (x) is just the
logarithm (base 2) of the number of different possible answers. (See, e.g., l"ano [4, p. 63]
and Gallager [5, p. 51].)

For each of the four retrieval questions it is possible to find a probability assignment
which makes all answers equiprobable. The assignment P,, will do for the two archival
questions, where P , (x) = 1/I I (N , W)I for all x E I (N, W). The assignment Pd gives
equal probability to the W -l- 1 possible answers 0, 1, • • • , W to the direct question, and
P~ gives equal probability to the N --/- 1 possible answers 0, 1, . . . , N to the inverse
question, where

= J 1 / (W + 1) if x is constant, x~ = c, j ~ [1, N],
P,/(x) ~0 otherwise;

= ~ I / (N + 1) i f ~ is constant, xk = c, k E [1, W],
(0 otherwise. Pi (x)

Thus for the archival questions

)"~P,(x)A~,(x) > log l I (N , W)I ,
x E l

And for the direct and inverse questions

P~(x)A,,(x) >_ l o g [/ (N , W) I. (8)
x E l

~'-~ P.(x)Aa(x, . /) _> log (W + I) for a l l j E [1, N],
• E' (9)
~,P, . (x)A, (x , k) >_ log (N + 1) fo r all k E (1, W).
zEI

Averaging (9) further ove r j E [1, N] and k E [l, W] with equal weights gives

Y~.P,t(x)A,(x) > log (W q- 1), ~'-~P,(x)A,(x) >_ log (N .4- 1). (10)
x E l x E 1

Using for (8) and (10) the fact that the largest number in a set is no smaller than the
average, and for (S) the fact that the largest number in a set of integers is an integer,
completes the proof of

THEO~E.~I 1. Let I (N, W) be the weakly increasing subset of N-tuples in [0, W] ~v. Let p
be a binary relation fl'om I (N, W) onto [0, 1} ~ whose converse p-~ is a function from {0, 1} L
onto I. Let the measures of performance of a set of four algorithms which find the right answers
to the direct, inverse, direct archival, and i~werse archival questions about x by accessin 9 bits of

2 5 0 PETER ELIAS

TABLE I

Total
Type of Representation Bits

Stored, L

Average Bits Accessed Per Question

Ad Ai Ada Ai~,

Canonical for x Nw w nw Nw Nw
Canonical for ~ nW nw n nW nW
Enumeration of I Lo Lo Lo Lo Lo

the image of x under p be defined by (7). Then

L >_ Lo = flog I I (N , W) I ~, Ad ~_ log(W + 1) = w, As ~_ log(N + 1) = n,

Ada _> Lo, Ai~ >_ Lo.

Each of the five bounds in Theorem 1 is a t ta ined for some algori thm and some repre-
sentation, as shown in boldface in Table I. The canonical representat ion of x as the con-
catenation of w-bit representations of i ts N entries in order of increasing value permits
finding xj by accessing just the minimal w bits a t addresses (j - 1) w + t, t E [1, w]. A
similar table lookup gives 2k in the minimal n accesses to memory if the nW-bi t canonical
representat ion of ~ is stored. Any enumeration of I by a 1-1 map from I (N, W) onto the
(Lo.-bit binary representations of the) integers in [0, I I (N , W) I - 1] takes minimum
storage. An algorithm which reads all L0 bits into working memory and computes or has
stored the inverse of the map can answer all four kinds of questions with L0 accesses to
memory, which is minimal for the archival questions.

~ o n e of the representations in Table I can a t ta in or approximate all five minima a t
once, using any set of retrieval algorithms. One might in fact anticipate tha t a represen-
ta t ion which uses near to minimal storage will necessarily have an algori thm which must
make much more than the minimal number of accesses to answer a direct or inverse ques-
tion. The bulk of this paper is devoted to the construction of representations and al-
gorithms which show tha t such an anticipation is not correct, by approximating all five
minima using a single representation and set of retrieval algorithms. We summarize the
results below in Theorems 2 and 3. Theorem 3 gives the general results for a rb i t ra ry n and
w with N = 2 ~ - 1, W = 2 w - 1. Theorem 2 deals with the special case n = w, which is
proved first and then used in the proof of Theorem 3.

THEOREMS2. Let w = n > 1. Then

(i) Lo = r 2 N - (n + 1) /2 7,

and for each n there is a binary representation of I (N, N), four associated algorithms, and an
e~ :, 2 ~ > e~ > O, with

(it) L _< Lo(l + e~), Ad = A , < n (l + ~) , A ~ = A ~ = 2N_< Lo(I + e,).

Forinteger k > Oandn = 2 ~, e~ _< 1.And

(i i i) lira e~ = O.
n~o~

There is also a representation and two algorithms, for answering the two archival questions
only, with

(iv) L = A ~ = A,~ = 2 N _ < L o (1 + n / 2 N) .

THEORE~t 3. Let n > I, w -- n = s ~ O. Then

(i) Lo > N (s + (1 + 2 ') log(1 + 2 - ')) - 1 - n /2 > N (s + log e) -- 1 -- n/2,

and there is a binary representation of I (N, W) , four associated algorithms and an e , ,
2 ½ > e, > O, with

(it) L < N (s + 2 (l + e ,)) - 2 (n - ~) , A d ~ = A , , _ < N (s + 2) , A a < w (1 - + e ,) ,
As _~ n(1 -}- e,) -}- 2(1 - 2 -°) < n(1 + e.) + 2.

E~cient Storage and Retrieval by Content and Address of Static Files 251

For integer k > 0 and n = 2 ~, e~ ~ 1. And

(iii) lim en = 0 .

There is also a representation and two algorithms, for answering the two archival questions
only, withL = Ads = A~ = N(s + 2).

Theorems 1 and 3 together provide very tight bounds on five measures of the computa-
tional complexity of a specific storage and retrieval task, and show that there are systems
whose performance has nearly minimal cost by all five measures. However these five
measures are not a complete set. In addition to the bits stored and the bits accessed per
retrieval question, the bits of state information required by the algorithms or machines
which access the representation and answer the question are also a cost. So is the amount
of combinational logic or read-only memory which the algorithms or machines require.

We do not compute such additional measures here, but note that the algorithms and
representations constructed below are nearly minimal in such respects also. A number of
state bits sufficient to store an argument or two (n bits each), a value or two (w bits each)
and an address or two (log L bits each) will do, together with a few n-bit or w-bit param-
eters stored in read-only memory. And the number of operations required (additions and
subtractions of 1, shifts of I bit-position, bit-compares, etc.) is only a few per accessed bit.

For the canonical representations of x and i , the associated table lookup and logarithmic
search algorithms which give the first two lines of Table I also have such minimal com-
plexity. (So does the improved bit-by-bit logarithmic search suggested by Minsky and
Papert [7].) However, the enumeration representation seems to require more complex
algorithms, which perform arithmetic with L0-bit numbers (see Lehmer [6], Schalkwijk
[8], Cover [1].)

The algorithms and representations developed below to prove Theorems 2 and 3 re-
quire a bit-addressable memory. A machine which is constrained to access a word of
many bits can do no better, as measured in bit-accesses to memory, and may do worse, so
Theorem 1 still applies but not the guarantees in Theorems 2 and 3.

3. Quotients, Remainders, and Unary Representations

To develop the representations needed to prove Theorems 2 and 3, it is convenient to
shift at this point from the N-tuples x C I(N, W) to the bit strings of length Nw which
are their canonical representations. This section introduces notation for such strings, gives
a 1-1 map from I (N , W) into I (N , N) X T(N, (W + 1) / (N + 1) - 1) and an eco-
nomical unary representation of I (N, N) equivalent to Fano's [3], and finds tight bounds
on L0. Section 4 gives retrieval algorithms for the representation of I (N, N) , Section 5
constructs directories for use by the algorithms and proves Theorem 2, and Section 6 re-
turns to the general case and proves Theorem 3.

L e t f be a finite binary string in {0, 1} *. Let I f I denote the length off, f (i) the value of
its i th bit, and [I f [l the integer of whichf is the I f I -bit binary representation:

tt l

tl f II = ~f(J) 2ffl-j" (II)
j--I

The magnitude I l l and the norm]l f II are both many-one functions from {0, 1}* onto the
nonnegative integers, since there are 2 c:l strings of length] f] and II 0kf II =]1 f II for all
k > 0. However, f is uniquely specified by the pair of integers m = I f I and k = II f II,
m > 0, 0 < k < M = 2 ~ -- 1. (We retain the use of I S I as the number of members in
the set S: the context will make clear whether the argument of I " I is a string or a set.)

I f f is a concatenation f = f~2" • "f~ of N shorter strings, then
-

Ifl = ~If~.I, fj(k) =f If, ITk, kE [I, ILI]. (12)
j~l

For integer n and w, the set T (n, w) of N-entry, w-bit (canonical representations of)

252 P E T E R E L I A S

table~: is the set of binary-valued strings satisfying (12) with

N = 2 ~ - 1, W = 2 ~ - 1; If3[= w, IIf~ IIE [0, W] for a l l j E [1, N]; [f l = Nw. (13)

(The notation T (n, w) is used to distinguish the set of bitstrings f E T from the corre-
sponding set of N-tuples of integers (lIfl [], I] f2 [[, -" ",][fu [[) denoted by T(N , W) .
Since canonical representation is a 1-1 map, IT (n , u') I = I T (N , W) [.)

I t takes Nw bits to store a string f E T (n, w). No alternate 1-1 encoding of T (n, w)
into {0, 11L can take less, since T(n, w) = {0, 1/uw and there are not enough binary
sequences to go around unless L > Nw.

Let i (n , w) ~ T(n, w) be the subset of tables whose entries increase weakly in norm:

1 < j < k < N - - , 0 < I}L[[< IIAII _< w = 2 ~ - 1. (14)

An f E i (n , w) is (the canonical representation of) an inventory, and I i (n , w) I =
I / (iV, W)]. I t takes the same Nw bits to store a string f E i as to store any f E T.
Since not all strings of length Nw are in [the representation is redundant. Fano [3] has
given one which is more concise: we give a closely related one.

Let w > n > 0 and let b be an integer, 0 < b < w. Define the b-bit quotient string qj
to be the first b bits o f f j , the remainder string r~ to be the last w - b bits of f j , and q
and r as the resulting concatenations:

q¢(i) = r e (i) , i E [1, b]; ry(i) = f~ (b + i) , i E [1, w - b]; f j = qj~'~.;

q = q a q 2 " " q ~ E i (n , b) , r = r l r 2 ' ' ' r u E ~ ' (n , w - - b) . (15)

Let uj be the unary encoding of the difference 11 q~ 1] - 11 qj-1 I] into a string of O's
terminated by a 1, and let u be the concatenation of the resulting strings including a ter-
minal string of O's:

U l = 0[qtill; U i : ol{q~'[{--[[q]-lN1, j ~ [2, N]; UN+l = 0 B-IIqNII, B = 2 b -- 1;

u = uju2 . ' . U~v+l = u(1)u (2) . . . u (N + B) , (16)

since u contains just B O's and N l 's.
']?he encoding (16) maps _!(n, b) 1-1 onto binary sequences of uniform length N q- B

containing just B O's and N l 's. Since each 1 in any such sequence can be interpreted as
ending a sequence of O's (whose length may be zero), the inverse map is straightforward:

]J qj]] = number of O's lying to the left of j t h 1 in u, (17)

which follows from (16). Then the 1-1 map shows tha t

and complementing the sequence u by setting

a (j) = 1 - u (j) , j E [1, N + B] ; a = a (1) a (2) . . . ~ (N + B) , (19)

maps i (n, b) 1-1 onto i (b, ~). The inventory which is decoded from the complement z~ of
the unary encoding u of q is the complement q of q. Thus

][qk I] = number of l ' s lying to left of kth 0 in u. (20)

Combining (19) and (20) gives the direct definition of the complement ~ of an inventory
q without reference to u:

I[qk [I = I{./E [1, N][II qj[I <k} , [] qi]l = I {kE [1,e]l l lq~l] <j} I, (21)

which is just the pair of definitions (3) and (4) rewritten for strings qi , ~k rather than
integers x¢, ~k by using the norm notation defined in (11). The relation between u, a and
q, ~ is shown in Figure 1.

E~cient Storage and Retrieval by Content and Address of Static Files 253

W'2W-I'? f4! 6! I[[~---I

f iT' 2 ~ ~'~1-- I~--~
oII

0 4 7.N= 2r'-i

Fro. 1. The k-coordinates of points labeled by l 's are values of q(j). There is one for each argument
j = 1, 2, . . . , N = 2 ~ - 1. The j-coordinates of points labeled with O's are values of ~(k). There is
one for each argument k = 1, 2, • .. , W = 2 w - 1. Reading the labels from lower left to upper right
gives the unary encoding u = 00110101100011. Complementing u gives ~,'the unary encoding of ~.

Given N and B, the string v consisting of the first N + B - 1 bits of u is also a 1-1 en-
coding of q E i (n , b), since the value of the last bit of u is determined by the fact tha t
u has B O's and N l ' s :

N+B-- I N+B- - I

u(B + N) = N - ~ u(t) = N - ~ v(t). (22)

Since either v or u determines q and by (15) q and r determine f, either of the concatena-
tions vr, ur represent f 1-1 for any b C [0, w]. I t is easy to show tha t the storage required
is minimized when b = n, so B = N: then q E I(n, n) is called a square inventory, and

JurJ = l u l + I r l = 2 N + N (w - n) = N (w - n + 2) ,
(23)

[vr I = N(w - n + 2) - 1.

We next show tha t no other 1-1 mapping of I (n, w) into binary sequences can do much
better. Let H (p, q) be the binary entropy function (q + p = 1, 0 < p < 1):

H(p, q) = p log (l / p) + q log (l /q) . (24)

Wozencraft and Reiffen [9] show tha t

(N +) (N B) 3 1 NB
log N B > (N + B)H N + B ' N + B 2 2 1 ° g N + B

(25)
_ ~ log (4/7r).

Since log 4/7r = 2 -- log 7r ~ 0.348 < ½, (25) often determines the value of

rlog (N ; B)T exactly. For example setting B = N in (25) gives, from (13),

(2 N) 1 l (n _ l o g N) > l o g N 2 N - 1 - n/2 +~log(4/~-) + ~

1 > 2 N - 1 - - ~ l o g N > 2 N - 1 - n/2. (26)

] , ' o r n > 3, n - l o g N < I o g ~ a n d ½ 1 o g (4/~-) + ½ (n - l o g N) < ½. Since for in-
teger b and e < ½,

b/2 + e _~ x > 5/2 ~ rx~ = r(b + 1) /2 ~, (27)

checking the cases n = 1 and n = 2 proves par t (i) of Theorem 2:

Lo = flog l I (n , n)] ' = r 2 N - (n + 1) /2 ' , (28)

which compares to I v I = 2N - 1 from (23).

254 P E T E R E L J A S

For general i (n , w) w i thn > 1, s = w - n > 0,

I i (n , w) [= I I (N , W) I = N ~ r W = 2~-t-2~

(2-+2 ~) 2 "+"
= 2" " (2" "4- 2w)(2" + 2 w -- 1)

= (2w(12-b 2 - ') , " I k -- ,] 2-" 2" -4-2 ~°
(1 + 2 - ,) 2 2 - . 4 - 2 ~ - - 1 "

Taking logarithms and using (25) gives

- - O n " log J i (n , w) I > - (s -4- (1 + 2") log (1 -4- 2 - ')) ~ - n/2 -4- ½ log (1 + 2 - ')
- s - - 2 l o g (1 -b 2 - ') - b l o g ((2 ~ -b 2 ~) / (2 ~ ' b 2 ~ - 1))

> (2 " - 1)(s-4- (1 + 2 ') l o g (1 + 2 - '))
- ~ - n / 2 "4" (2" - ½) log (1 -k 2-"), (29)

where the second line drops the last term of the first. Using log (1 -b x) > x for 0 < x < 1,
and the fact that (1 -b x) log (i A- 1) /x) is monotone decreasing and so greater than
log e which is its limit at x = ~¢,

log I J~(n, w) > N(s + (1 --k 2 ') log (1 -k 2 - ')) -- 1 - n/2
> N(s q- loge) - 1 -- n/2, (30)

proving part (i) of Theorem 3. The error in the bottom line of (29) is less than 1 bit and
the error in the top line of (30) is less than 2 bits for all w > n > 1.

4. Retrieval Algorithms for Square Inventories

Givenf E i (n, w), w > n, let q E l(n, n) be its square n-bit quotient as in (15) and let u,
the unary encoding of the differences of q as in (16), be stored in a memory m = u:
re(t) = u(t), t E [1,'2N].

The algorithm F I N D Q 2f finds qj given j E [1, N] by accessing m and counting its
O's, l's, and bits in three counters,

J =.~__,m(t), K = (1 -- re(t)), T = J + K. (31)
t e l t e l

F I N D Q ~Zf needs a pair of.initial values J = Jo, K = Ko which satisfy (31), and works
when the values are such (say J0 = K0 = 0) that J0 < j.

FIND Q

Enter
Set T = J - -bK
Set U = m(T -b 1)
Add U to J (32)
Add 1 - U to K
If J < j return to Enter
Exit.

When the count J in the l 's counter first reaches j, re(T) is t h e j t h 1 in u and ends
the j th codeword u j , so that the count in the O's counter is

J

K = K (m i n T I J = j) = I Iq~l l4"~ (llq, l l - I Iq~- , l l) = IlqJ]l, (33)

and the rightmost n bits of K are qj. At that point the algorithm has accessed just

j - - Jo +]l q, l) - Ko (34)
bits of u in m.

E~cient Storage and Retrieval by Content and Address of Static Files 255 '

F I N D Q 1 accesses the same m = u, but counts down rather than up, and works when
its initial values (say J1 = K1 = N) satisfy (31) and are such tha t J1 _~ j - 1.

FIND Q 1

Enter
If J < j, add 1 to J and go to Exit
Set T = J + K
Set g = re(T) (35)
Subtract U from J
Subtract 1 - U from K
Return to Enter
Exit.

When it exits, F I N D Q 1 has set J = j and the n r ightmost bits of K are again q j . The
number of bits accessed in m by F I N D Q 1 is just

51 -- (j -- 1) + K~ -- I/qJ/I. (36)

The complementary algorithms F I N D (~ ~ and F I N D (~ 1 are obtained by replacing
m (T + 1) b y l - r e (T + 1) in F I N D Q , ~ and re (T) by 1 - re (T) in F I N D Q 1.
Given j and suitable s tar t ing values these algorithms exit with J = j and K = II t~j II,
accessing m a number of times given by (34) and (36) with IIqJ II replaced by II qJ I/-

To answer the identity question about q (or ~), append to F I N D Q ~ (or F I N D Q ~)
the commands

Print rightmost n bits of K
If J = N, halt (37)
Add 1 to J
Return to Enter.

The result ingarchival algorithm F I N D Q A (or F I N D Q A), given j = 1 and Jo = Ko =
0, prints the N values of qj (or qj), j E [1, N], in order, using the values J = j , K =
II qj [I (or II qJ II) found on the J t h loop to s tar t the (J -k 1)-st, and accessing at most the
2 N b i t s o f u f r o m m . F o r n _> 2, 2N _< nN and it is cheaper to pr int q by accessing u than
by accessing q, both in bits stored and in bits accessed.

For storage and archival access u and its associated algorithms F I N D Q A, F I N D Q A
comes very close to the lower bound L0 for L, A d, , A,~ of Theorem 1. F I N D Q and F I N D

don' t do as well at finding single values of qi or qi . Using J0 = K0 = 0 for F I N D Q ~ and
J1 = Ki = N for F I N D Q 1 and averaging (34) and (36) gives an average of

Ad = A, = N + ½ (38)

bits accessed in m per direct (or inverse) question, independent of j and q, compared to
the lower bound of n in Theorem 1.

To do much bet ter than (38) requires the use of a directory to give bet ter s tar t ing
values for the algorithms. I t is easy to enter the algorithms with a value qi obtained from
a directory because of a self-addressing proper ty of u. Given j C [1, N], s tar t ing values
Jo = i, Ko = II q~ II will work for F I N D Q ~ if i < j , and 51 = i - 1, K1 = II q~ [I will
work for F I N D Q 1 if i > j .

5. Directories

Let a memory m 1 store the canonical representations of an inventory ql C I (nl , nj) and
of its complement ~1 E I (n~, nl), and let table lookup algorithms S E E K Q (1) evaluate
qj~ and S E E K (~ (1) evaluate ~jl,each wi th an average of A 1 bi t accesses to ~ , where

[m 1] = [ql01 [= 2nlN1, A 1 = n , . (39)

Let n~ > nl and define

8 ~ n 2 ~ ~ 1 ~ S ~ 2 ~.

256 PETER ELIAS

Given an inventory q~ 6] @2, ~2), let the ql and ~ above be the nrb i t quotients of
every Sth entry of q* and .q*, and let r ~ and ~ be the corresponding s-bit remainders

= = - , j ~ [1, N d . (4 1)

Finally, let u 2 be the unary encoding of the differences of q2. Then in the memory m s =
rn~r~/uS of size

I msl =[m I] "t- [r ' l + I~ll "t- l uSl = I mll + 2Nxs + 2N2, (42)

the prefix m~r'~ ~ is a directory to u ~ for both direct and inverse questions.
Given j 6 [1, Ns], an algorithm SEEK Q (2) ~ evaluates qT, in the following stclzs.

(i) I f L j / S j = 0, set Jo = K0 = 0 a n d go to F I N D Q ~ , which ex i t swi thK = II qj2 II.
(ii) If Lj /S j ~ o, call SEEK Q (I) which finds q~/s • Then call a table lookup algorithm
to find ' r,i/s, • Set

J St_j/Sz, g II * x s = = q , . , ~ ,~ ' . / ~ . , II = II qs~z.,,, II, (4 3)

(iii) I f j = St.i/sJ, the answer was in the directory. Exit leaving K = [I q i ~ N.
(iv) I f j ~ SLj/sj, go to F I N D Q . ~ with starting values (43). F I N D Q ~5 exits with

K =: It qJ~ [].
SEEK Q (2) 1 is the descending counterpart to SEEK Q (2) ~ . If rj/s~ = N~ it sets

J , K1 N2 for H N D Q 1. If not, it calls SEE](Q (1) and table lookup to find , =: = qrjlXl
and * ru/s~ and sets

J Sr j /S ~ - 1 K II x = , = q , . ~ . ' , . ~ , II = II q~,..~, II. (4 4)

I f j = S"j /S ~, SEEK Q (2) 1 exitsleaving K =]J q7 JJ. If not it calls F I N D Q 1 withstart-
ing values (44), and F I N D Q 1 exits with K = II qi s II.

• SEEK Q (2) accesses A ~ bits in m ~ and s bits in r ~ except when L.]/Sj = 0 (or [j /S 1 =
N2). This gives an average over j 6 [1, N2] of

A ' (1 - (S - 1)/Ns), s(1 - (S - I) /N~) (45)

accesses to m' and r 1 respectively for either the ascending or descending algorithm.'It then
calls F I N D Q. Using the starting values (43) and (44) in (34) and (36), F I N D Q finds
q7 with

j SLj /Sj +]lq7 II U 2 -- - qstJ/s, II accesses to u s for F I N D Q Z~,
(46)

S~JlS ~ J + lt ~ - - - qsu/s , II II q S II accesses to u¢ ~ for F I N D Q 1,

where II 2 q~+~ Jl and Jl q0 ~ Jl are interpreted as Ns and 0 respectively.
Summing the two expressions in (46), summing further over j ~ [1, N2], and dividing by

2N2 gives an average, over the two algorithms and the N2 questions, of
w~

(1,/2N~)~ (S(r j /S ~ cJlSz) + II ~ "

(1/2N2)((S 1)(N2 + 1) -F II s = - q ~ + , II - II qo s [I)
= (S - - 1)(1 + 1/2N2) (47)

bits accessed in u s. Adding (45) and using s = ~2 -- n, A, = n, gives an average of

A ~ = (A I -~ s)(l -(S - I)/N~) + (S - I)(i +I/2N2)

= ns-t- S - 1 - (S - 1) (2 n 2 - 1) / 2 N 2
n~ + S - - 1 = n2(1 + S/n2) - 1 (4 8)

bits accessed in m s by SEEK Q (2) in finding qT. By the symmetry of m ~ and m 2, an al-
gorithm SEEK Q (2) calling F I N D (~ can find q~ with the same average number of ac-
cesses to ms. At S = N2 + 1 (i.e. ns = n, n, = 0, no directory), A ~ reduces to the value
N ~ + ½of (38).

E~cient Storage and Retrieval by Content and Address of Static Files 257

From (42) and (39) the required storage is

] m~ l = 2Nlnl + 2N1S + 2N2
= 2(N~ + 1)(1 + ,~(N1 + 1)/(N~ + 1)) - 2(1 + n~)
= 2N2(1 + n2/S) - 2(n2 - n2/S) (49)

since S = (N2 + 1) / (N1 -k 1).
To prove Theorem 2 let n2 = n, 6, = n /S . Then for square inventories A~ = Ai =

A s = n(1 + 1/6,) - 1, L = Ira21 = 2N(1 + 6,) - 2 (n - 6,). L c t h / 2 b e the difference
between I mS I and its upper bound (1 + 6)L0 in Theorem 2. Using (28) for L0,

A = 2((1 + 6.)50 --]m'])
= 2 (1 . + ~ .) r 2 N - (n + 1) /2 ~ - 4N(1 + ~.) + 4 (n - 6.)
> n(a - 6 .) - (1 + 56.) . (50)

Choose the integer s, = log S , so tha t 1/2 t < 6,, = n / S , < 2 t.
],'or the (n, ~ ,) p a i r s (3, ~), (4, 1), (5, ~) a n d (n _> 6, ~ < 2t), the last line of (50)

shows tha t ,5 > 0.]"or n = 2, ~2 = 1 the second line shows ~ = 0. For n = 1, choose
m = q q g i v i n g l m l = 2 = 2 L 0 , A d = A o = l = n = 2 n - 1 , A d ~ = A , . ~ = l = L 0 , p r o v -
ing (ii) in the theorem for n = 1. Setting ~,, = max {8,, 1/6,} completes the proof of (ii)
for all but the archival questions.

For the archival questions with n > 2, the algorithms F I N D Q A, H N D Q A access
u s in m 2 without using the directory, giving

(1 + n / 2 N) L o _> (1 + n / 2 N) (2 N - (n + 1)/2)
= 2N - ½ + (n /2) (1 - (n + 1) / 2 N)

2N = Ads = A ~ . (51)

Only the limit ~. ~ 0 remains to be proved. I t needs more directories. Let

s~ = n~+l -- he, S~ = 2"', zn TM = ~ntr~tu T M (52)

and construct S E E K Q (t + 1) like S E E K Q (2) except that i t calls S E E K Q (t) to
access the directory m t, table lookup to access r t, and F I N D Q to access u ~+~.

The derivations of (48) and (49) permit s tar t ing with A t and m ~ for any t, not only
t = 1. Using ~n~rt'r t as a dircctory to m t+a gives

A '+' = (A' q- s ,) (l + (St - 1) /N,+,) -b (S, - 1)(1 + 2/N,+,)
_<A' + s, + 2"' - 1, (53)

l m'+' l = [~n' I -{- 2N,s, + 2N,+1.

Two applications of (53), with A ~ = nx, { m ~ I = 2Nln, and st = s2 = s, gives na =
nl + 2s, and

A 3 = A a + s - t - 2 " - 1 + s + 2 " - 1 = n ~ + 2 (2 " - 1),
I~n"[= 2N3 + 2N2(s -b 1) + 2N~(s -b ha) (54)

< 2N.(1 -b (s -b 1)2-" -b (na - s)2-2").

Setting s = e (2 /3) log na ~ in (54) gives

lira (a~/n .) = 1, lira (I m3 [/2N,) = lim ([~,3 [/Lo) = 1
n 3 ~ n3~av n3~ao

and completes the proof of Theorem 2.

6. Arbitrary Inventories

To answer direct or inverse questions about an arbi t rary inventory f E I (n, w), w _> n,
let

nt+l = n, N,+l = N = 2 " - 1, (55)

2 5 8 PETER ELIAS

let q E I (n , n) be the n-bit square quotient o f f and r E ~'(n, w - n) its (w - n)-bit
remainder, with f¢ = qP'i, q = qt+l, r = /+l , and represent f in the memory m, where
m := m'+l/+1 = mt+lr, [m I _< 2N(1 + e,~) + N (w - n) = N (w - n + 2(1 + ~,,))
by Theorem 2.

For direct questions, given.] E [1, N] the algorithm SEEK F (t + 1) first calls SEEK
~+1 Q (t + 1) which finds qj , then reads the w - n bits of r~ +1 by table lookup in m, and

finally prints the concatenation f~ = q~ +lr~ +1 with an average of

A,~ _< A TM + w -- n _< n(1 + ~,~) -- 1 + w -- n < w(1 + e.) (56)

accesses to m.
For inverse questions, given k E [1, W] l c t j be its n-bit quotient and h its (w - n)-bit

remainder:

j = t k / 2 w - " j , h = k -- 2w-~j. (57)

By the definition (3) of],

][]k [I = [{i E [1, N][I[f~][< k}[= I{i E [1, Nil 2 ~-" [] q, [] + l] r, [] < k}[
= 1[qJ l[+ l{ i E [1, NIl [I q, I] = J, II r, [] < h}l. (58)

To find I[]k I[, the algorithm SEEK f (l + 1) first finds the pair of values]] 4i]l,
[] q3+1 II. If []qi [[=][qj+l [I then I[h]l =]l qi [J and the job is done. If not, add i to I] q~ []
for each i E [[I qJ I / + l, [I q~'+l Ill such that II ri II < h. The resulting sum is [I £ If.

To find the pair]l qJ']1 and][4i+1 [] takes only one more average access to u k+l than to
find Jl q~ lJ alone. Modify SEEK O (t + 1) to store an extra value and use the ascending
algorithm to find .~j+l when j is even and the descending algorithm to find qs when j is
odd. Summing the two expressions in (46), then summing over the odd j E [1, N] and
finally dividing by the/V + 1 possible pairs gives an average of

S / 2 + S / 2 (N / (N + 1)) = S(1 -- 1 /2 (N + 1)) < S (59)

bits accessed per pair. (59) is less than 1 more accesses than the number (47) needed to
find a single value, and adds less than 1 to the value of A 2 given by (48): thus for a pair,

accesses < A 2 + 1 _< n(1 + e~). (60)

(Note that for a pair, at S - 1 = N , (59) like (48) reduces to N + ½: it costs no more
acccsses to find a pair of adjacent cntrics than to find one entry, in thc unary encoding
without directories.)

The remaining accesses made by SEEK ~ (t + 1) to m are used to compare the binary
representation of h b i t by bit to the remainders r~ with i Ill qJ JJ + 1, Jl ~+1 IJ], reaching
the decision]1 r~ II < h or]] rl I] _> h at the first mismatch or at the (w - n) - th bit if all
bits match. To find the average accesses to r~ we keep i fixed and run SEEK Ff (t + 1)
once for each of the W "4- 1 values k E [0, W].

An h will have its pth bit compared to the pth bit of r~ if the first n + p - 1 bits of
k match the first n + p - 1 bits of f~. Such a match happens for a fraction 2 -(~+~-~)
of the W + 1 = 2 w values of k E [0, W]. Thus the total accesses to r~ for all k will be

w - - n

2 w ~ 2-(~+~ -~) = 2~°-~.2(1 _ 2-(w-')).
i--1

Summing further over the N remainders r~, i E [1, N], gives the total accesses to all
remainders for all W + 1 values of k. Dividing by the number W of questions k E [1, W]
which actually get asked gives an average bounded by

2(1-2-(w-~))2w(2 ~ - 1) / (2 w - 1) < 2(1-2 -(w-n)) (61)

(since w _> n). Adding to (61) the n(1 + e~) or fewer accesses needed to find the pair

l~:l~icient Storage and Retrieval by Content a~d Adtb'ess of Static Files 259

I/qJ/I, II qJ+~ II from (60) gives the bound A ~ < ~ (1 "4" e.) + 2 (1 - 2 -(' -n)) of Theorem
3 on average bits accessed in m by SEEK f (t -/- 1) to find] , .

The archival questions don' t need the directory. Modifications of SEEK F (t + 1)
and SEE](f (t "4- l) can find successive values of qj and qi by using F I N D Q A of (36)
and (37) accessing u t+z, and use each value or pair of values together with accesses to r
to find f i and]k , with a total of I ue+l [+ [r I = N(w - n + 2) or fewer accesses as
given in (23). This completes the proof of Theorem 3.

7. Summary

The complexity of any algorithm is an upper bound to the complexity of the computation
it carries out. l~ower bounds are harder to come by. Information theoretic techniques can
provide lower bounds to bit counts. Relevant bit counts for problems of retrieval and
computation are: (i) the number of bits which must be stored to store the representation
of one of a set of possible data bases or arguments, (ii) the number of bits which must be
accessed in finding one of a set of possiblc answers to a question about the object whose
representation is stored, (iii) the number of bits of state information required by the
machine or algorithm which accesses the representation to answer the question, (iv)
the number of bits of read-only memory or program or wiring information needed to
specify the machine or algorithm given the number of its states, and (v) the number of
bits in the representation which must be changed to represent an update of the data base.
In this paper we have dealt quantitatively only with (i) and (ii), kecping an eye on (iii)
and (iv) and ignoring (v) by dealing with static files. Quantitative treatment of (iii) is
not difficult. Quantitative treatment of (iv) seems to be very hard because of the diffi-
culty of finding a suitably technology-invariant measure of the complexity of combina-
tional logic. Quantitative treatment of (v) is under exploration (see Flower [10]).

Lower bounds may be used to rule out impossible schemes quickly. More important,
they act as a spur to the invention of schemes whose performance approaches the bounds,
like those above. Lower bounds to bits stored and to bits accessed can be computed for a
variety of retrieval questions, and it is possible in a number of cases simultaneously to
attain or approach both a storage bound and an access bound for a particular type of
question. The example giw~n her(; is unusual in that it permits several different types of
questions to be answered efficiently at near minimal storage cost. One question for a more
general theory is what data structures and sets of retrieval questions permit such an
approximation to all lower bounds at once. Another is to find the trading relations in the
more typical case when not all minima can simultaneously be attained.

Acknowledgments. I would like to express my appreciation to Marvin Minsky and
Seymour Papert, whose discussion both in [7] and in person arouscd my interest in this
class of problems; to Terry Welch and Robert Gallagcr, whose critical reading of portions
of the work has been most helpful; and to Cecil H. Green, whose gift to the Electrical
Engineering Department at 5 I I T of a chair for use to rotation by faculty membcrs
exploring new directions of research made concentrated effort on this and other related
research topics possible.

REFERENCES

1. COVEN, T.M. Enumerative source encoding. 1EEE Trans. IT-19 (Jan. 1973), 73-77.
2. ELiAs, P. On binary representations of monotone sequences. Prec. Sixth Princeton Conference

on Information Sciences and Systems, March 1972, Dep. of Electrical Engineering, Princeton
U., Princeton, N. J., 1972, pp. 54-57.

3. FANo,R.M. Onthenumberofbits required to implement an associative memory. Memorandum
61, Computer Structures Group, Project MAC, MIT, Cambridge, Mass., n.d.

4. FANO, R.M. Transmission of Information, MIT Press, Cambridge, Mass., and Wiley, New
York, 1961.

5. GALLAGER, R. G. Information Theory and Reliable Communication. Wiley, New York, 1968.

260 PETER ELIAS

6. IJEHMER, D . H . Teaching combinatorial tricks to a computer. Proceedings of Symposia in Ap-
plied Mathematics, Vol. X, Combinatorial Analysis, Amer. Math. Soc., Providence, R.I., 1960,
Ch. 1, pp. 5-31.

7. MINSKY, M., AND PAPERT, S. Perceptrons. MIT Press, Cambridge, Mass., 1969, pp. 215-225.
8. SCHALKWIJK, J. P .M. An algorithm for source coding. IEEE Trans. IT-18 (May 1972), 395-399.
9. WOZENCRAFT, J. M., AND REIFFEN, B. Sequential Decoding. MIT Press, Cambridge, Mass.,

1961, pp. 71-73.
10. FLOWER, R.A. Computer updating of a data structure. Quart Progress Rep. 110, Res. Lab. of

Electronics, MIT, Cambridge, Mass., July 1973.

RECEIVED OCTOBER 1972; REVISED MAY 1973

Journal of the Association for Computing Machinery, Vol. 21, No. 2, April 1974

