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1. Introduction

In the literature on genome rearrangement that focuses on mathematical models of genomes, chromosomes are usually
represented as sequences of segments called syntenic blocks, which we assume to be shared by the genomes being
compared. Let n be the total number of shared segments, we assign a unique number in the set {1, ..., n} to each segment
such that chromosomes can be regarded as permutations. We sort a given permutation by applying successive operations
that transform it into another permutation where all elements are in ascending order. The main goal of sorting problems is
to find the minimum number of such operations, which is called distance.

Reversals and transpositions are two operations that affect real genomes. They lead to the challenging classic problems
in genome rearrangement field called Sorting by Reversals Problem and Sorting by Transpositions Problem.

Reversal  Reversals occur when a block of elements in the permutation is reversed. Caprara proved that the Sorting by Reversals
Problem is NP-Hard [6]. Kececioglu and Sankoff [19] presented the first approximation algorithm with approximation
factor 2. The factor was later improved to 1.75 by Bafna and Pevzner [1] and to 1.5 by Christie [9]. The best algorithm to
date is the 1.375-approximation algorithm deviated by Berman, Hannenhalli and Karpinski [3].

Trans Transpositions occur when two adjacent blocks of elements exchange position. Bulteau, Fertin and Rusu proved that the

position Sorting by Transpositions Problem is NP-Hard [5]. Bafna and Pevzner [2] presented the first approximation algorithm with
approximation factor 1.5. The factor was later improved to 1.375 by Elias and Hartman [ 14], which is the best approximation
factor so far. From a practical viewpoint, Dias and Dias [10] and Dias et al. [11] presented heuristics that lead to the best
results to date.

When reversals and transpositions act on blocks located in the beginning of the permutation, they are called prefix
reversals and prefix transpositions, respectively. Since the Sorting by Reversals and the Sorting by Transpositions problems
are very challenging, the study of variants like prefix transpositions and prefix reversals has been tried in order to shed light
on the original problem [15].
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Prefix operations also relate to interconnection network problems where processors are labeled as permutations of a
given size n, and a communication link between two processors exists if a prefix reversal can transform one label into the
other. The maximum communication delay between a pair of processors in the network is measured by the diameter of the
graph, which is the greatest distance among all permutations of size n [21].

The so-called Pancake Flipping Problem proposed by Dweighter (pseudonym of J.E. Goodman) [ 13] is the sorting problem
where the only allowed operations are prefix reversals. Therefore, the Pancake Flipping Problem is hereafter referred to as
the Sorting by Prefix Reversals Problem. In 1979, Gates and Papadimitriou [17] proved that % movements are sufficient

and 117—6” movements may be necessary to sort any permutation of n elements. In 1997, Heydari and Sudborough [ 18] showed

that % movements may be required to sort a permutation of size n using only prefix reversals. In 2009, Chitturi et al. [7]
proved that 1% movements are sufficient to sort any permutation of n elements. The best algorithm to date was presented
in 2005 by Fischer and Ginzinger [16] with approximation factor 2. Recently, Bulteau, Fertin and Rusu [4] proved that this
is an NP-complete problem.

The problem of sorting a permutation by prefix transpositions was posed by Dias and Meidanis [12]. They presented a
2-approximation algorithm, and provided lower and upper bounds of % and n — 1, respectively, for the number of prefix
transposition that may be necessary to sort any permutation of size n. Chitturi and Sudborough [8] improved the upper
bound to n — logg n, and Labarre [20] improved the lower bound to L%J.

Recently, Sharmin et al. [22] proposed the sorting problem where the only allowed operations are prefix reversals and
prefix transpositions. They presented a 3-approximation algorithm to this problem. In this paper, we present an asymptotic
2-approximation algorithm to the same problem.

2. Basic definitions

Throughout this paper, we represent a genome with n conserved blocks as a permutation 7 = (77 7y ... m), 1 € N,
1 < m; < n,and m; # m; for all i # j. Here, we consider a permutation as a bijective function in the set {1, 2, ..., n} such
that 7 (i) = m;.
Definition. The composition of two permutations 7 and o is the permutation 7 - 0 = (7o (1) To2) --- Tom))-

We can see the composition as the relabeling of elements in 7 according to the elements in o. Let ¢ be the identity
permutation ¢(i) = i, we can easily verify that ¢ is a neutral element such thatw -t = -7 = 7.

Definition. We define the inverse of a permutation 7 as the permutation 7 ~! thatreturns 7 -7 ' =71 . 7w = «.

The inverse permutation is the function that returns nn_(}) = i. In other words, it returns the position in 7 of each
element ;. index <-> value <
Definition. A reversal p,(i,j) is the permutation (1 ... i—1}jj—1 ... i+ 1i}jj+1 ... n, 1 <i<j<n

Applying a reversal to a permutation  reverses the order of [i..j|, which is the same as the composition 7 - p,(i,j) =
(1 7y oL WAT o1 .. W1 T W1 .. Tp—1 ).

Definition. A prefix reversal pp, (k) is a reversal p, (1, k) that reverses k elements in the beginning of the permutation.

Definition. A prefix reversal p, (k) acts on element 7, if x < k.

B A
Definition. A transposition p;(i, j, k) is the permutation (12 ... i—1Wjj+1 ... k—Tii+1 ... j— 1}k ... n),
1 <i<j<k<n+ 1. Applying a transposition to a permutation 7 swaps the adjacent blocks r[i.., — 1] and 7 [j..k — 1],
which is the same as the composition 7w - p; (i, j, k) = (71 72 ... W17 Tjp1 ... k=1 TG Tig1 - .. Tjq Tk ... Tn)-

A~ BEAMEBBERIR

Definition. Aprefix transposition p,: (j, k) is a transposition p; (1, j, k) that moves a block in the beginning of the permutation.

Definition. A prefix transposition pp (j, k) acts on element 7, if x < k — 1. FESIEA—ETE » BT EEIBreakpoint

Consider the extended permutation that can be obtained from 7 by inserting two new elements: 7o = Oand 7,1 = n+1.
The extended permutation is still denoted as rr. Below, we present two definitions of breakpoint for a permutation 7.

Definition. A pair of elements 7; and 7; 1, with 1 < i < n, is a prefix reversal breakpoint if |w; 1 — m;| # 1. The number of
prefix reversal breakpoints in a permutation 7 is denoted by by, (;r). b() is the number of breakpoint

Definition. Prefix reversal breakpoints divide a permutation into strips, which are maximal intervals with no prefix reversal
breakpoints. In addition, the elements 7y = 0 and 7,1 = n + 1 do not belong to any strip.
stripA&i2 Bbreakpoint¥i {H AE R
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Definition. A pair of elements 7; and 7;¢, with 1 < i < n, is a prefix transposition breakpoint if 7; ;1 — 7; # 1. The number
of prefix transposition breakpoints in a permutation 7 is denoted by by (7). 5 AR

Observe that by definition the pair [77g, 771] is not a breakpoint.
The only permutation with no breakpoint (neither prefix reversal breakpoint nor prefix transposition breakpoint) is the
identity permutation ¢ = (12 ... n), such that by (1) = by (1) = 0. 2 HbreakpointfIHEFEIHEF e
In this paper, we mention several distance problems related to prefix operations. Those problems are defined as follows.
/xi/
Definition. Let £ be a set of rearrangement events that can be applied to , the distance d¢ (;r) is the minimum number ¢ of

operations &1, &, ...,& € Esuchthatm - & - & - ... & = 1. EARUEHIRFIRIENSH

Another important definition relates to the number of operations that may be necessary to sort any permutation of size n.
SnA&n{ETERIFTAHETIRI AL

Definition. Let S, be the group of all permutations that have the same size n, and & be the set of rearrangement events

that can be applied to permutations in S,,. The greatest distance for all permutations in S, using events in £ is said to be the

diameter of S, in regard to &, and we denote it by D¢ (n) = max{d (7w)|7 € S;}prASNH HIHEI(E e BN R AR (S48

Hereafter, we shall use pr, pt and prpt to represent rearrangement models such that we allow only prefix reversals, prefix
transpositions and both, respectively.

Our main result is an asymptotic 2-approximation algorithm to the Sorting by Prefix Reversals and Prefix Transpositions
Problem. In short, our algorithm relies on four scenarios that remove prefix reversal breakpoints and on one step that is
used when the first element in the permutation is 7r; = 1. This step does not remove prefix reversal breakpoints, but we
guarantee that it will be used at most twice during the execution of our algorithm.

Next sections are organized as follows. Section 3 further describes the literature on the Sorting by Prefix Reversals and
Prefix Transpositions Problem. Section 4 introduces our algorithm and gives a formal proof for the approximation factor.
Section 5 presents a comparative analysis of the algorithms that provide valid solutions for the problem we are dealing
with. Section 6 concludes this work.

3. Previous algorithms

In this section, we discuss the theoretical approximation aspects of three previous algorithms that provide valid
sequences to the Sorting by Prefix Reversals and Prefix Transpositions Problem.

Definition. We denote as Ay, (77, pg) = by (7w - pg) — bpr () the change in number of prefix reversal breakpoints due to
operation pg, & € {pr, pt, prpt}. o

Definition. We denote as A, (7, ps) = by (7 - pg) — by (7r) the change in number of prefix transposition breakpoints due
to operation p¢, & € {pr, pt, prpt}.
Lemma 1. Ay, (7, py) € {—1,0, 1} [16]. ppr AEFRLMPF—(Epr

Proof. The prefix reversal pp, (k) splits the pairs [, 1] and [k, 11]. Since there is no prefix reversal breakpoint at indices
0 and 1 (by definition), only at indices k, k + 1 the prefix reversal can create or remove one prefix reversal breakpoint. O

Lemma 2. b, () < dyr (1) < 2b, (or) [16].

Proof. It is straightforward from Lemma 1 that dj- () > b,-(7r) [16]. In addition, Fischer and Ginzinger [16] presented
a 2-approximation algorithm for the Sorting by Prefix Reversals Problem that finds a sequence that sorts 7 with at most
2bp, () prefix reversals. O

Lemma 3. Ap, (7, ppt), Ab, (7T, ppe) € {=2,—1,0, 1,2} [12,22].

Proof. The prefix transposition oy (j, k) splits the pairs [mo, 711, [7j—1, ;] and [;rx_1, 74]. Since there is no breakpoint at
indices 0 and 1 (by definition), only at indicesj — 1, j and k — 1, k the prefix transposition can create or remove either prefix
reversal breakpoints or prefix transposition breakpoints. O

Lemmad. 27 < d () < by () — 1[12].

Proof. It is straightforward from Lemma 3 that dy (7)) > b‘”zﬂ In addition, Dias and Meidanis [12] presented a
2-approximation algorithm for the Sorting by Prefix Transpositions Problem that finds a sequence that sorts 7 with at most

bp¢ (r) — 1 prefix transpositions. 0

Lemma 5. dy(7) > 227 [22].
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Proof. Straightforward from Lemmas 1and 3. O

Lemma6. Ay, (7, ppr) € {—n,—(n—1),...,—1,0,1,...,n— 1, n}. prEE3RBMLE D> ptAIIRER K » B % ptE 75 8

Proof. The prefix reversal pp, (k) splits the pairs [y, mi41], which implies that a prefix transposition breakpoint can be
created or removed at that position. In addition, prefix transposition breakpoints can be created or removed anywhere
in the range m[1..k]. Let us assume that 7,1 = m, + 1 for some a < k, we can see that [y, 441] iS not a prefix
transposition breakpoint. After applying pp: (k), the prefix transposition breakpoint [741, 7,] will be created. Analogously,
one can remove a prefix transpositions breakpoint if the pair [y 11, 7y ] such that gy = 7y +1existsforsomed < k. O

b )
Lemma 7. dy () > %

Proof. Straightforward from Lemmas 3and 6. O

We cited previously an algorithm for the Sorting by Prefix Reversals Problem presented by Fischer and Ginzinger [ 16], and
an algorithm for the Sorting by Prefix Transpositions Problem presented by Dias and Meidanis [ 12]. Since the problem we are
dealing with in this paper accepts both prefix reversals and prefix transpositions, those algorithms provide valid sequences
to sort any input permutation. The next lemmas show us what we can expect about the approximation guarantee provided
by both algorithms.

Lemma 8. The algorithm presented by Fischer and Ginzinger [ 16] for the Sorting by Prefix Reversals Problem is a 4-approximation
algorithm for the Sorting by Prefix Reversals and Prefix Transpositions Problem.

Proof. The algorithm presented by Fischer and Ginzinger finds a sequence that sorts 7= with at most 2b, () prefix reversals.
bpr ()

Because we know from Lemma 5 that dy (1) > 55—, the stated approximation guarantee follows. O

Lemma 9. The algorithm presented by Dias and Meidanis [12] for the Sorting by Prefix Transpositions Problem is an unbounded
algorithm for the Sorting by Prefix Reversals and Prefix Transpositions Problem.

Proof. The algorithm presented by Dias and Meidanis finds a sequence that sorts w with at most by () — 1 prefix

bpe ()
n

transpositions. We know from Lemma 7 that dpp; (77) > ,s0 the best we could do is to guarantee an O(n) approximation

ratio. O

Recently, Sharmin et al. [22] presented a 3-approximation algorithm to the problem of sorting permutations by prefix
reversals and prefix transpositions. They showed that it is possible to remove 2 prefix reversal breakpoints in three

operations. Therefore, they use at most w operations to sort an arbitrary permutation 7. Because we know from

Lemma 5 that dyp (77) > w the stated approximation guarantee follows.
In Section 4, we present a new algorithm with a lower approximation ratio. Our algorithm has an asymptotic
approximation factor 2. The three algorithms cited in this section were used in a practical analysis against our algorithm in

Section 5.
4. Algorithm for sorting by prefix reversals and prefix transpositions

First, we will assume 71 % 1 and explain in Section 4.1 that our algorithm always finds a movement that removes at
least one breakpoint if that condition is satisfied. In Section 4.2, we deal with ; = 1, we do not remove any prefix reversal
breakpoint in this case, but we guarantee that it occurs at most twice during the execution of our algorithm. That will lead
to the guaranteed asymptotic approximation factor.

4.1. Removing prefix reversal breakpoints m1+1

This section deals with permutations 7= such that 7; # 1. Our algorithm firstly tries to remove two prefix reversal
breakpoints, which is the best we can do according to Lemma 3 by using prefix transpositions. Observe that this goal cannot
be achieved by prefix reversals according to Lemma 1. That said, the prefix transposition that removes 2 breakpoints should
cause the following effects. £ ppt#&BRpr breakpointWR & IF

1. Let wy = a, the operation pp (j, k) should place a just after one of the elementsa — 1 ora+ 1inm - py(j, k). In this case,
the element a — 1 or a + 1 must be at position k — 1, we also need to assure that the pair [7_1, 7rx] is a prefix reversal
breakpoint in order to be able to split it using o, (j, k).

2. Let mj_1 = b, the operation pp (j, k) should place b just before one of the elements b — 1orb 4 1in 7 - py(j, k). In this
case, the element b — 1 or b 4 1 must be at position k, we also need to assure that the pair [7rj_4, 7] is a prefix reversal
breakpoint in order to be able to split it using o (j, k).
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. —, | .

ascending strip i a) 7= (0la atl .oatit.. bela—l..a—I]..n+1)b)x=(
L

H Ppr !

< :

descending strip : '

|
Ppr I
h Ppt H h

Il :

H ! : :
' 7T-p1‘L:<()(«',..I§+l...a+l(1 a—1... a—ileb ... n+l): Tpr=0b..Ja—i...a—1aa+l1]...n+1) E

'
H '
.................................................... i ——————)

bea+1...n+1)

Fig. 2. Remove one prefix reversal breakpoint. Dotted boxes represent strips that have one or more elements. Solid boxes represent strips that have at
least two elements.

We add a final constraint that the prefix transposition should not bring the element 1 to the beginning of the permutation.
Therefore, let 77; = ¢, we have to guarantee that ¢ # 1. pptRIf& » Hal+1

Fig. 1illustrates the scenarios where pp (j, k) removes two breakpoints. In some cases, more than one scenario is possible
for an input permutation ;7. When that happens, we arrange them in an order of priority where the scenario in Fig. 1(a) is
better than the one in Fig. 1(b), which is in turn better than Fig. 1(c), which is again better than Fig. 1(d). a>b = c>d

The implementation is straightforward and requires O(1) time. Lines 9-22 in Algorithm 1 show our implementation. Let
Ppt (, k) be the prefix transposition, variable kab receives the value of k in Fig. 1(a) and (b). Likewise, kcd receives the value
of k in Fig. 1(c) and (d). Variables ja, jb, jc, and jd receive the values of j in each scenario a, b, c and d, respectively.

The following lemma presents what our algorithm does when we cannot remove two prefix reversal breakpoints.

Lemma 10. If 771 # 1, then there is at least one prefix transposition py (j, k) such that A, (7w, pp) < —1.

Proof. Let 71 = a, we can always find an operation that places a close to a — 1 or a + 1. We will divide our proof in four
cases, depending on whether a is part of an ascending or descending strip. If a is part of a unitary strip, then at least two of
the cases below are possible.

If a is part of an ascending strip of length i + 1 {(a,a + 1, ..., a + i), then there is a prefix reversal breakpoint whose
elements are a — 1 and another arbitrary element b.

Case a: If there is a prefix reversal breakpoint [b, a — 1], then we can apply the prefix reversal p, (k) such that 7 = b. We
use this case if a — 1is part of a descending strip (a — 1, a — 2, ..., a — I) with at least two elements, otherwise we
use Case b.

Caseb: If there is a prefix reversal breakpoint [a — 1, b], then we can apply the prefix transposition pp: (i + 1, k) such that
Ty = b.

If a is part of a descending strip (a, a — 1, ..., a — i), then there is a prefix reversal breakpoint whose elements are a + 1
and another arbitrary element b.

Case c: If there is a prefix reversal breakpoint [a 4 1, b], then we can apply the prefix transposition pp: (i + 1, k) such that
7, = b. We use this case if a 4+ 1 is part of a descending strip (a + [, ..., a + 2, a + 1) with at least two elements,
otherwise we use Case d.

Cased: If there is a prefix reversal breakpoint [b, a + 1], then we can apply the prefix reversal p, (k) such thatmy =b. O

Fig. 2 illustrates all the cases. The implementation of the method to remove one prefix reversal breakpoint is
straightforward and requires O(1) time. Lines 23-35 in Algorithm 1 show our implementation. Let 71 = @, variable x receives
the position of a — 1 in Fig. 2(a) and (b), and variable y receives the position of a + 1 in Fig. 2(c) and (d).
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4.2. Dealingwithm; = 1

P(M)ABESHE 18strip
Let us denote by ¢ () the strip that contains the element 1 in 7, which can occur in ascending order (¢(7) =
(1,2, ...,i))ordescending order (¢(7r) = (i,i— 1, ..., 1)). This section deals with permutations 7 such that 7; = 1. Our

algorithm simply sends ¢ (7) in ascending order to the end of the permutation, before the element n + 1 in the extended
representation. Lines 6-7 of Algorithm 1 execute this action.

Nothing actually happens in the first time ¢ (;7) is sent to the end of the permutation, what is important is the property
shown in Lemma 11 that occurs when a prefix operation takes ¢ (;r) away from there.

Algorithm 1: Sorting by Prefix Reversals and Prefix Transpositions

Input: 7, n
1d<0
2 while 7 # (do
3 i1
4 while |7Ti+1 —nj| = 1do
5 | i<i+1
6 | ifr; = 1then AEBMREIMIBreakpoint » BRFERZ RHIRMRK
// Send (mq,73,..., ;) to the last position -
7 7o pprli+ 10+ 1) ()RR %E
s | else
// Try to remove two prefix reversal breakpoints %%%B%Zﬂﬁbreakpoint
9 kab < ”;;1171 +1
10 ja en;kzb_l +1;jben;k:1b+1 +1
-1
1 ked < T+ +1
. -1 i -1
12 Jje <y i + 1;jd < T i1 +1
13 if |7gap—1 — 7kap| # 1then
14 if 7jq # 1and |7jq—1 — 7jq| # 1then
15 | 7 < 7 - ppe(a, kab)
16 elseif 7jp # 1and |7j,—1 — 7jp| # 1then
17 | 7 < 7 - ppe(jb, kab)
18 else if |wycg—1 — kel # 1then
19 ifn'jc # 1and [Tje—1 — Tl # 1then
20 | 7 < 7 ppec, ked)
21 elseif 7jg # 1and |mjg_1 — 7jg| # 1then
22 | 7 < 7 - ppe(id, ked)
23 else
// Remove one prefix reversal breakpoint . - . _
2 if 7, < ; then #T8BR 1{Ebreakpointi fRIFEAstrip (F@BIRK)
// mi...w is an increasing sequence
-1
25 X <« ﬂnl—l
26 if 7y = mx41 + 1then
27 | 7 < m-pprx—1)
28 else
29 | 7 <7 ppel+1,x+1)
30 else
// mi...7w is a decreasing sequence
-1
31 y <« ﬂn]Jr]
32 if ry = my_1 — 1then
33 | 7 <7 ppel+1,y+1)
34 else
35 LH(—J‘[',OP,—(_V—])
36 | d<d+1

7 return d

w

B EAFERIRE  BEEIEBHTENEER
Lemma 11. When ¢ (i) is in ascending order at the end of the permutation 7, the prefix operation performed by Algorithm 1 that
moves it away from there forces the element n to be moved to the end of the permutation.

Proof. It is somewhat obvious, but one should keep in mind that in order to move ¢ (;r) away from the last position the

prefix operations must act on it, which means they must have the form p,,(n) and p,(j, n + 1). EWIERIER UG p(m)FE EI R 1%
The prefix transpositions shown in Fig. 1 would act on ¢ (;7) only if sub-sequences (b + 1, ..., n+ 1) in Fig. 1(a) and (c),

or(b—1,...,n+ 1) inFig. 1(b) and (d) were comprised solely of n 4 1.
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In Fig. 1(a) and (b), the prefix transposition will place a after a— 1, which is the last element in ¢ (;7). Therefore, the prefix
transposition does not remove ¢ (;7) from the last position, it just adds new elements to it.

Fig. 1(c) and (d) do not remove ¢ () from the last position because they cannot even act on ¢(7r). Note that ¢ () is in
ascending order and hence the first element cannot be one unit lower than the last element on ¢ (;r), unless ¢ () has only
one element, but in this case we would have used the scenario in Fig. 1(a) and (b).

We follow by inspecting the prefix operations shown in Fig. 2, which correspond to Lines 24-35 in Algorithm 1. We
inspect each scenario one by one.

e Fig. 2(a): the sub-sequence (a — 1,...,a— 1, ..., n+ 1) should be comprised solely by n + 1, which does not happen
because the strip (a — 1, ..., a — I) has at least two elements. R gEAN-1 > EEZVDEMITE » HFE

e Fig. 2(b): the sub-sequence (b,...,n + 1) should be comprised solely by n + 1. So, a — 1 is the last element in
¢ (). The prefix transposition pp:(j, n + 1) will place {a, ..., a + i) after ¢(r) and hence ¢ (7 - pp:(,n + 1)) =
(1,...,a,a+ 1,..., a). Therefore, the prefix transposition does not really remove ¢ (;r) from the last position, it just
adds new elements.

e Fig. 2(c): the sub-sequence (b, ..., n+ 1) should be comprised solely by n + 1. In addition, this scenario requires the last
strip (a+ 1, ..., a+ 1) to have more than two elements and to be in descending order, which cannot be managed since
we want the last strip to be ¢ (;7) in ascending order.

e Fig. 2(d): the sub-sequence (a+ 1, ..., n+ 1) should be comprised solely by n + 1. In addition, pp, (1) should bring the
first element a close to the last element a + 1. However, a + 1is indeed n 4+ 1 and hence a is n. So this scenario can force
¢ () to leave the last position, and the side effect is that it also sends the strip that contains the element n in ascending
order to the end of the permutation. O

Lemma 12. Let & be a permutation of the formmw = (... n ¢(wr) n+ 1), ¢(;r) in ascending order, Algorithm 1 will not split
the pair [n, 1] unless we can find a prefix transposition pp, such that & - p,r = 1.

Proof. We start by disregarding any prefix transposition shown in Fig. 1 since they would break the pair [n, 1] only if one
of two scenarios was true.

e 7; = 1, then the prefix transposition o (j, k) would bring the element 1 to the beginning of the permutation, which we
explicitly deny.

e 7, = 1, it implies that we can find a block 7[1.,j — 1], j < k, such that 71 = n + 1 and 7j_; = 0, which can never
happen.

We follow by inspecting the prefix operations shown in Fig. 2.

e Fig. 2(a): we disregard this prefix reversal because (a — 1, ..., a — [) is a decreasing strip with at least two elements,
which cannot be managed since we want that strip to be ¢(;7) in ascending order. )
e Fig. 2(b): the prefix transposition o (j, k) could lead to one of two scenarios: mj=1=c
- mj=1,then{a,a+1,...,a+1i)isastrip such thata+ 1 = n + 1. In addition, the sub-sequence {c, ..., a — 1) must
be ¢ (;r) and the sub-sequence (b, ..., n 4+ 1) must be comprised solely of n 4 1. Indeed, this entire configuration is
a permutation that is just one step away from the identity and pp (j, k) is the operation we need to perform this last
step. EERE—THIENR
- 1, = 1,thena — 1 = n + 1 and the first element a should be equal to n + 2, which is impossible by definition. So, we
disregard this case.
e Fig. 2(c): we disregard this prefix transposition pp (j, k) because it leads to impossible scenarios:

- m; = 1, then the sub-sequence (c, ..., a+1, ..., a4+ 1) should be ¢ (r) in ascending order, but it is impossible because
(a+1,...,a++ 1) is a decreasing strip with at least two elements.
- m, = 1,then {(a+1, ..., a+ 1) is a decreasing strip with at least two elements ended by n, which is impossible because

the element n + 1 only appears in the extended form and never leaves the end of the permutation.
e Fig. 2(d): we disregard this prefix reversal because it only works if we make a + 1 = 1, and hence a = 0, which is
impossible. O

Lemma 13. The prefix transposition that moves w1 = 1 to the end of the permutation occurs at most twice during the execution
of Algorithm 1.

Proof. If element 1 is found in the beginning of the permutation, then ¢ (;r) is moved in ascending order to the end of the
permutation. Lemma 11 shows that ¢ (;r) is taken away from there when we are ready to move the element n into its place.
After that, no prefix operation in Figs. 1 and 2 will split the pair [n, n 4+ 1] because it is not a prefix reversal breakpoint.
Therefore, the pair [n, n 4+ 1] will be split if the element 1 appears for the second time in the first position. In that case, a
prefix transposition will send ¢ (;7) to the end and hence create the permutationw = (... n ¢(;r) n+ 1) such that ¢ (;r) is
in ascending order.

Lemma 12 shows that [n, 1] will not be split unless we can find an operation that immediately transforms the
permutation into the identity. As a consequence, element 1 will never appear in the beginning of a permutation different
from the identity, so the prefix transposition that moves 7r; = 1 to the end of the permutation will never be used more than
twice. O
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Lemma 14. The sequence produced by Algorithm 1 to sort 7t has at most by, (7) + 2 prefix operations.

Proof. Algorithm 1 always removes one prefix reversal breakpoint if element 1 is not in the beginning of the permutation.

Lemma 13 says that 7; = 1 occurs at most twice during the execution of Algorithm 1. Let ¢(r) = (1,2,...,i) and
ppt (i+ 1, n+ 1) be the prefix transposition applied on 77, we know that [, 7;41] is a prefix reversal breakpoint, otherwise
7r; would not be the last element in ¢ (57 ). Let us assume [, 77,1] is a prefix reversal breakpoint, which represents the first
time we send 7r; = 1 to the end of the permutation. In this case, p,: (i+ 1, n+ 1) does not increase nor decrease the number
of prefix reversal breakpoints in our sequence. 5 —R:f#¢(n) > BIGII—{EBreakpoint

We now assume [7,,, 7,+1] is not a prefix reversal breakpoint, which represents the last time we send 7; = 1 to the end
of the permutation. In this case, pp: (i+ 1, n+ 1) increases the number of prefix reversal breakpoints by one. However, when
that happens, we create the permutation (... n ¢(;r) n+ 1), which by Lemma 12 the pair [n, 1] will not be broken until we
reach a permutationo = (0i4+1i4+2 ...112 ...Jn+ 1) thatis just one prefix transposition away from the identity.
We observe that the last prefix transpositior will remo*e two breakpoints. In short, we increase the number of breakpoints
when we send 77 = 1 to the end of the permutation for the last time, but we guarantee that later we will always perform
an operation that removes two breakpoints, thus we have two operations that remove one breakpoint.

In summary, our sequence would have at most (b () + 1) + 2 — 1 = b, (7) + 2 operations, which occurs when we
move 771 = 1 to the end of the permutation twice. 0O 1st 2nd last

Theorem 1. Algorithm 1is an asymptotic 2-approximation algorithm to the Sorting by Prefix Reversals and Prefix Transpositions

Problem.
Proof. We know from Lemma 5 that dpqp (77) > b’”zﬁ and we know from Lemma 14 that Algorithm 1 uses at most by, (77)+2
byr ()42
pbpr(ﬂ)
2

operations. So the approximation ratio is =2+ bpr‘zn) . The larger the size of permutations, the more likely it is that

they have many prefix reversal breakpoints. In this case, limp,, (z)—00(2 + b;ﬁ) =2+e€ O

Theorem 2. Algorithm 1 runs in O(n?).

Proof. Lines 6-36 require O(1) time and lines 4-5 require O(n). The while loop in line 2 will run at most by, () 4+ 2 = 0(n)
times according to Lemma 14. Therefore, the stated complexity follows. O

We end this section with a conjecture about the diameter D,,. This conjecture comes from what we observed in our
experiments and is valid for 5 < n < 13.

Conjecture 1. Let Dy, (n) be the greatest distance between two permutations in S, using prefix reversals and prefix
transpositions, then Dy, (n) = n — L%J forn > 5.

5. Experimental results

This section presents a comparative analysis of the four algorithms that provide valid solutions to the Sorting by Prefix
Reversals and Prefix Transpositions Problem. We implemented all the algorithms in Python.

We will denote Algorithm 1 as 2-app, the 3-approximation algorithm presented by Sharmin et al. [22] as 3-app, the
algorithm presented by Dias and Meidanis [ 12] for the Sorting by Prefix Transpositions Problem as ptSort, and the algorithm
presented by Fischer and Ginzinger [ 16] for the Sorting by Prefix Reversals Problem as prSort.

Table 1 presents the average number of operations performed by each algorithm to sort all possible small permutations
up to size 12. The total number of permutations used to generate this table was 2,112:2 n! = 522,956, 312.

In Table 1, the column Dist shows the average distance for each set of permutations and the column Diam shows the
diameter. We observe that 2-app (Algorithm 1) is the one that provides closest solutions to the real distance followed by
3-app (Sharmin et al. algorithm).

We expanded our analysis to include large permutations. We chose 100 thousand permutations randomly with size x for
eachxintherange [2..500]. When x < 8, the number of distinct permutations is less than 100 thousand, so we simply picked
all possible permutations. The total number of permutations used in this second analysis was Zgzz n!+ (500 — 8) x 10° =
49, 246, 232.

Fig. 3 shows how the approximation ratio behaves when n grows. Since we do not know the exact distance of these
permutations, the ratio was calculated between the number of operations answered by each algorithm and the lower bound
in Lemma 5.

The prSort algorithm obtained poor results as the approximation ratio converges to a value between 2.4 and 2.5. We
notice that 2-app presented an approximation ratio close to 1.4, which is the best result in our analysis. The 3-app and
ptSort algorithms behaved alike, and the approximation ratio did not exceed 2. That is an interesting observation because
3-app was developed to the problem we are dealing with, while ptSort was developed to the problem of sorting permutation
by prefix transpositions.
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Table 1

Average number of operations used by each algorithm to sort a set of all possible permutations of a given size.
2-app refers to Algorithm 1. 3-app refers to the 3-approximation algorithm presented by Sharmin et al. [22].
ptSort refers to the algorithm presented by Dias and Meidanis [12]. Finally, prSort refers to the algorithm
presented by Fischer and Ginzinger [16]. The average distance Dist and the diameter Diam are also given in
this table for comparison purposes.

Size Dist Diam Algorithms
2-app 3-app ptSort prSort
2 0.500 1 0.500 0.500 0.500 0.500
3 1.000 2 1.000 1.167 1.167 1.500
4 1.583 2 1.792 1.875 1.917 2.792
5 2.175 3 2.558 2.617 2.717 4.008
6 2.736 4 3.286 3.408 3.550 5.256
7 3.332 5 4.022 4238 4.407 6.496
8 3.895 5 4.730 5.096 5.282 7.737
9 4.471 6 5.449 5.974 6.171 8.977
10 5.039 7 6.157 6.867 7.071 10.214
11 5.598 7 6.868 7.772 7.980 11.448
12 6.164 8 7.575 8.686 8.897 12.680
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Fig. 3. Approximation ratio of each algorithm when the permutation size grows.

Fig. 4 helps to explain why 3-app and ptSort behave alike. On the left side, we plot the percentage of prefix reversals
and prefix transpositions returned by each algorithm and on the right side we show the average decrease in the number of
prefix transposition breakpoints caused by the rearrangement operations. Note that here we are using prefix transposition
breakpoints instead of prefix reversal breakpoints that were used to prove the approximation ratio. The prefix transposition
breakpoints assess how helpful prefix reversals are in finding shorter sorting sequences. However, they do not prove any
approximation bound because dpp () > w as shown by Lemma 7.

Comparing 3-app with ptSort, we observe that the prefix transpositions performed by the former remove, on average, 0.1
less prefix transposition breakpoints than the prefix transpositions performed by the latter. However, they both converge
to the same approximation ratio (see Fig. 3) because 3-app also applies 9.8% of prefix reversals that remove, on average, 2.0
prefix transposition breakpoints.

Fig. 4 also shows that 90.2% of the operations performed by 3-app are prefix transpositions, which differs from our
algorithm 2-app that uses prefix transpositions in around 70.7% of the cases. By analyzing the variation in the number
of prefix transposition breakpoints caused by prefix reversals and prefix transpositions (right side of Fig. 4), we found that
prefix reversals remove, on average, 2.2 and 2.0 prefix transposition breakpoints for 2-app and 3-app, respectively. Similarly,
prefix transpositions remove, on average, 1.1, 0.9 and 1.0 prefix transposition breakpoints for 2-app, 3-app and ptSort,
respectively.

In summary, both prefix reversals and prefix transpositions used by 2-app remove more prefix transposition breakpoints
than their 3-app counterparts. In addition, 2-app uses more prefix reversals, which on average remove more prefix
transposition breakpoints than prefix transpositions. These facts explain why 2-app leads to the best results.

We did one last experiment to assess the approximation ratio convergence when the number of prefix reversal
breakpoints grows. This test reveals that having permutations with more prefix reversal breakpoints favors the use of prefix
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Fig. 4. On the left side, we plot the percentage of prefix reversals and prefix transpositions used by each algorithm. On the right side, we show the average
decrease in the number of prefix transposition breakpoints caused by prefix reversals and prefix transpositions.

We randomly generated 100 million permutations with size n = 100. We grouped these permutations by the number
of prefix reversal breakpoints in order to generate Fig. 5. The Y-axis represents the approximation ratio and the X-axis
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Fig. 5. Approximation ratio convergence when the number of prefix reversal breakpoints grows. The Y-axis represents the approximation ratio and the
X-axis represents the number of prefix reversal breakpoints.

represents the number of prefix reversal breakpoints. The first conclusion is that 2-app is the best no matter the number of
prefix reversal breakpoints. Our curve converges to an approximation average of 1.4.

We also observed that the comparison between ptSort and prSort depends on the number of prefix reversal breakpoints.
The higher the number of prefix reversal breakpoints, the better the results provided by ptSert. The intersection point
occurred at 55 prefix reversal breakpoints. That behavior indicates that it is easier to remove prefix reversal breakpoints
with prefix transpositions when the number of breakpoints is high, which is reasonable.

When the number of prefix reversal breakpoints is close to 100, the average approximation ratio of ptSert equals to that
of 3-app. Thus, we finally established which condition makes those algorithms to have similar behavior. In Fig. 5, the curves
for ptSort and 3-app converge to an average approximation ratio close to 1.9.

A noteworthy information not evident in the graphs is how often each algorithm provides the smallest sorting sequence.
In our experiments, 2-app systematically found strictly shorter sorting sequences than the other algorithms on permutations
longer than 30 elements. For permutations up to size 30, 2-app provides the smallest sorting sequence in 95.62% of the cases,
followed by 3-app and ptSort that provide the smallest sorting sequence in 10.12% and 7.72% of the cases, respectively. These
values do not add up to 100% because of ties.

6. Conclusions and future work

In this paper, we presented an asymptotic 2-approximation algorithm for the problem of sorting permutations by prefix
reversals and prefix transpositions that runs in O(n?). This is the best approximation to date.

Our analysis shows that our algorithm is the best on small permutations ranging from 2 to 12 and on large permutations
up to 500 elements. That indicates that our approach is better than any other in theoretical and practical aspects.

The approximation factor 2 was proved using the lower bound that states that the number of prefix reversal breakpoints
should be twice as higher as the distance. We believe this lower bound can be improved, which could lead to a better
approximation factor.

We will keep on studying this problem: our next step is to evaluate the conditions that make our algorithm results differ
from the distance. That could possibly lead to improvements on some hard to sort permutations.

The Sorting by Prefix Reversals and Prefix Transpositions Problem is relatively new, and hence few considerations
about the diameter have been made. We have analyzed our data and developed a conjecture that is supported by small
permutations up to size 13. We intend to study a formal proof for this conjecture.

Another research line we intend to study is the Sorting by Prefix Reversals and Prefix Transpositions Problem on signed
permutations. In that case, the reversals change the order of the segment and the sign of each element in this segment.
Signed reversals are more significant for the biology because signs can represent gene orientation, which changes when one
inversion affects a stretch of DNA sequence in the genome.

Acknowledgments

This work was made possible by a Postdoctoral Fellowship from FAPESP to UD (number 2012/01584-3) and by project
funding from CNPq to ZD (numbers 306730/2012-0, 477692/2012-5 and 483370/2013-4).


Aaron
asymptotic 2-approximation algorithm

Aaron
O(n2)

Aaron
We believe this lower bound can be improved, which could lead to a better approximation factor.

Aaron
lower bound

Aaron
diameter

Aaron
2-app is the best

Aaron
ptSort and prSort depends on the number of prefix reversal breakpoints.

Aaron
intersection

Aaron
it is easier to remove prefix reversal breakpoints with prefix transpositions when the number of breakpoints is high

Aaron
how often each algorithm provides the smallest sorting sequence.

Aaron
longer than 30 elements

Aaron
evaluate the conditions that make our algorithm results differ from the distance

Aaron
We intend to study a formal proof for this conjecture.

Aaron
on signed permutations.

Aaron
Signed reversals are more significant for the biology


Z. Dias, U. Dias / Discrete Applied Mathematics 181 (2015) 78-89 89

The authors thank Espaco da Escrita—Coordenadoria Geral da Universidade—UNICAMP—for the language services
provided.

The authors thank the Center for Computational Engineering and Sciences at Unicamp for financial support through the
FAPESP/CEPID Grant 2013/08293-7.

The authors also acknowledge “Laboratério Multiusuario de Bioinformdatica da Embrapa” for the use of computational
resources.

References

[1] V.Bafna, P. Pevzner, Genome rearrangements and sorting by reversals, SIAM J. Comput. 25 (1996) 272-289.
[2] V.Bafna, P.A. Pevzner, Sorting by transpositions, SIAM J. Discrete Math. 11 (1998) 224-240.
[3] P. Berman, S. Hannenhalli, M. Karpinski, 1.375-approximation algorithm for sorting by reversals, in: Proceedings of the 10th Annual European
Symposium on Algorithms, ESA’2002, Rome, Italy, pp. 200-210.
[4] L.Bulteau, G. Fertin, I. Rusu, Pancake flipping is hard, in: Mathematical Foundations of Computer Science 2012, in: Lecture Notes in Computer Science,
vol. 7464, 2012, pp. 247-258.
[5] L. Bulteau, G. Fertin, L. Rusu, Sorting by transpositions is difficult, SIAM J. Comput. 26 (2012) 1148-1180.
[6] A. Caprara, Sorting permutations by reversals and eulerian cycle decompositions, SIAM J. Discrete Math. 12 (1999) 91-110.
[7] B.Chitturi, W. Fahle, Z. Meng, L. Morales, C. Shields, I. Sudborough, W. Voit, An (18/11)n upper bound for sorting by prefix reversals, Theoret. Comput.
Sci. 410 (2009) 3372-3390.
[8] B. Chitturi, I. Sudborough, Bounding prefix transposition distance for strings and permutations, Theoret. Comput. Sci. 421 (2012) 15-24.
[9] D.A.Christie, A 3/2-approximation algorithm for sorting by reversals, in: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’98, San Francisco, California, United States, pp. 244-252.
[10] U. Dias, Z. Dias, Heuristics for the transposition distance problem, J. Bioinform. Comput. Biol. 11 (2013) 1350013.
[11] U. Dias, G.R. Galvdo, C.N. Lintzmayer, Z. Dias, A general heuristic for genome rearrangement problems, J. Bioinform. Comput. Biol. 12 (2014) 1450012.
[12] Z. Dias, ]. Meidanis, Sorting by prefix transpositions, in: Proceedings of the 9th International Symposium on String Processing and Information
Retrieval, SPIRE’2002, Lisbon, Portugal, pp. 65-76.
[13] H.Dweighter, Problem e2569, Amer. Math. Monthly 82 (1975) 1010.
[14] I Elias, T. Hartman, A 1.375-approximation algorithm for sorting by transpositions, IEEE/ACM Trans. Comput. Biol. Bioinform. 3 (2006) 369-379.
[15] G. Fertin, A. Labarre, 1. Rusu, E. Tannier, S. Vialette, Combinatorics of Genome Rearrangements, The MIT Press, 2009.
[16] ]. Fischer, S. Ginzinger, A 2-approximation algorithm for sorting by prefix reversals, in: Algorithms—ESA 2005, in: Lecture Notes in Computer Science,
vol. 3669, 2005, pp. 415-425.
[17] W. Gates, C. Papadimitriou, Bounds for sorting by prefix reversal, Discrete Math. 27 (1979) 47-57.
[18] M.H. Heydari, L.H. Sudborough, On the diameter of the pancake network, J. Algorithms 25 (1997) 67-94.
[19] J. Kececioglu, D. Sankoff, Exact and approximation algorithms for the inversion distance between two chromosomes, Algorithmica 13 (1995) 80-110.
[20] A.Labarre, Lower bounding edit distances between permutations, SIAM J. Discrete Math. 27 (2013) 1410-1428.
[21] S. Lakshmivarahan, J.S. Jwo, S.K. Dhall, Symmetry in interconnection networks based on Cayley graphs of permutation groups: a survey, Parallel
Comput. 19 (1993) 361-407.
[22] M. Sharmin, R. Yeasmin, M. Hasan, A. Rahman, M.S. Rahman, Pancake flipping with two spatulas, Electron. Notes Discrete Math. 36 (2010) 231-238.


http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref1
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref2
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref4
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref5
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref6
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref7
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref8
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref10
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref11
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref13
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref14
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref15
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref16
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref17
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref18
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref19
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref20
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref21
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref22
Aaron
[15]

Aaron
[16]

Aaron
[12

Aaron
[22]


	Sorting by Prefix Reversals and Prefix Transpositions
	Introduction
	Basic definitions
	Previous algorithms
	Algorithm for sorting by prefix reversals and prefix transpositions
	Removing prefix reversal breakpoints
	Dealing with  π1 = 1 

	Experimental results
	Conclusions and future work
	Acknowledgments
	References


