
Discrete Applied Mathematics 181 (2015) 78–89

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Sorting by Prefix Reversals and Prefix Transpositions
Zanoni Dias ⇤, Ulisses Dias
Institute of Computing, University of Campinas, Campinas - SP, Brazil

a r t i c l e i n f o

Article history:

Received 4 October 2013
Received in revised form 28 August 2014
Accepted 2 September 2014
Available online 26 September 2014

Keywords:

Approximation algorithms
Genome rearrangement
Prefix reversals
Prefix transpositions

a b s t r a c t

In this paper, we present a new algorithm for the Sorting by Prefix Reversals and Prefix
Transpositions Problem. The previous approximation algorithm was bounded by factor 3,
and here we present an asymptotic 2-approximation algorithm. We consider theoretical
and practical aspects in our analysis, and we show that our method is better than other
approaches in both cases.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the literature on genome rearrangement that focuses on mathematical models of genomes, chromosomes are usually
represented as sequences of segments called syntenic blocks, which we assume to be shared by the genomes being
compared. Let n be the total number of shared segments, we assign a unique number in the set {1, . . . , n} to each segment
such that chromosomes can be regarded as permutations. We sort a given permutation by applying successive operations
that transform it into another permutation where all elements are in ascending order. The main goal of sorting problems is
to find the minimum number of such operations, which is called distance.

Reversals and transpositions are two operations that affect real genomes. They lead to the challenging classic problems
in genome rearrangement field called Sorting by Reversals Problem and Sorting by Transpositions Problem.

Reversals occur when a block of elements in the permutation is reversed. Caprara proved that the Sorting by Reversals
Problem is NP-Hard [6]. Kececioglu and Sankoff [19] presented the first approximation algorithm with approximation
factor 2. The factor was later improved to 1.75 by Bafna and Pevzner [1] and to 1.5 by Christie [9]. The best algorithm to
date is the 1.375-approximation algorithm deviated by Berman, Hannenhalli and Karpinski [3].

Transpositions occur when two adjacent blocks of elements exchange position. Bulteau, Fertin and Rusu proved that the
Sorting by Transpositions Problem is NP-Hard [5]. Bafna and Pevzner [2] presented the first approximation algorithm with
approximation factor 1.5. The factor was later improved to 1.375 by Elias and Hartman [14], which is the best approximation
factor so far. From a practical viewpoint, Dias and Dias [10] and Dias et al. [11] presented heuristics that lead to the best
results to date.

When reversals and transpositions act on blocks located in the beginning of the permutation, they are called prefix
reversals and prefix transpositions, respectively. Since the Sorting by Reversals and the Sorting by Transpositions problems
are very challenging, the study of variants like prefix transpositions and prefix reversals has been tried in order to shed light
on the original problem [15].

⇤ Corresponding author. Tel.: +55 1935215861; fax: +55 1935215847.
E-mail addresses: zanoni@ic.unicamp.br (Z. Dias), udias@ic.unicamp.br (U. Dias).
URL: http://www.ic.unicamp/⇠zanoni (Z. Dias).

http://dx.doi.org/10.1016/j.dam.2014.09.004
0166-218X/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2014.09.004
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2014.09.004&domain=pdf
mailto:zanoni@ic.unicamp.br
mailto:udias@ic.unicamp.br
http://www.ic.unicamp/~zanoni
http://www.ic.unicamp/~zanoni
http://www.ic.unicamp/~zanoni
http://www.ic.unicamp/~zanoni
http://www.ic.unicamp/~zanoni
http://dx.doi.org/10.1016/j.dam.2014.09.004
Aaron
bounded by factor 3

Aaron
2-approximation algorithm

Aaron
syntenic blocks,

Aaron
同線 syntenic

Aaron
be shared by the genomes

Aaron
n be the total number of shared segments

Aaron
find the minimum number of such operations, which is called distance.

Aaron
NP-Hard

Aaron
1.375

Aaron
Kececioglu and Sankoff

Aaron
Reversal

Aaron
Trans
position

Aaron
NP-Hard

Aaron
1.375

Aaron
流出 shed

Z. Dias, U. Dias / Discrete Applied Mathematics 181 (2015) 78–89 79

Prefix operations also relate to interconnection network problems where processors are labeled as permutations of a
given size n, and a communication link between two processors exists if a prefix reversal can transform one label into the
other. The maximum communication delay between a pair of processors in the network is measured by the diameter of the
graph, which is the greatest distance among all permutations of size n [21].

The so-called Pancake Flipping Problem proposed by Dweighter (pseudonymof J.E. Goodman) [13] is the sorting problem
where the only allowed operations are prefix reversals. Therefore, the Pancake Flipping Problem is hereafter referred to as
the Sorting by Prefix Reversals Problem. In 1979, Gates and Papadimitriou [17] proved that 5n+5

3 movements are sufficient
and 17n

16 movementsmay be necessary to sort any permutation of n elements. In 1997, Heydari and Sudborough [18] showed
that 15n

14 movements may be required to sort a permutation of size n using only prefix reversals. In 2009, Chitturi et al. [7]
proved that 18n

11 movements are sufficient to sort any permutation of n elements. The best algorithm to date was presented
in 2005 by Fischer and Ginzinger [16] with approximation factor 2. Recently, Bulteau, Fertin and Rusu [4] proved that this
is an NP-complete problem.

The problem of sorting a permutation by prefix transpositions was posed by Dias and Meidanis [12]. They presented a
2-approximation algorithm, and provided lower and upper bounds of n

2 and n � 1, respectively, for the number of prefix
transposition that may be necessary to sort any permutation of size n. Chitturi and Sudborough [8] improved the upper
bound to n� log8 n, and Labarre [20] improved the lower bound to b 3n4 c.

Recently, Sharmin et al. [22] proposed the sorting problem where the only allowed operations are prefix reversals and
prefix transpositions. They presented a 3-approximation algorithm to this problem. In this paper, we present an asymptotic
2-approximation algorithm to the same problem.

2. Basic definitions

Throughout this paper, we represent a genome with n conserved blocks as a permutation ⇡ = (⇡1 ⇡2 . . . ⇡n), ⇡i 2 N,
1 ⇡i n, and ⇡i 6= ⇡j for all i 6= j. Here, we consider a permutation as a bijective function in the set {1, 2, . . . , n} such
that ⇡(i) = ⇡i.

Definition. The composition of two permutations ⇡ and � is the permutation ⇡ · � = (⇡� (1) ⇡� (2) . . . ⇡� (n)).

We can see the composition as the relabeling of elements in ⇡ according to the elements in � . Let ◆ be the identity
permutation ◆(i) = i, we can easily verify that ◆ is a neutral element such that ⇡ · ◆ = ◆ · ⇡ = ⇡ .

Definition. We define the inverse of a permutation ⇡ as the permutation ⇡�1 that returns ⇡ · ⇡�1 = ⇡�1 · ⇡ = ◆.

The inverse permutation is the function that returns ⇡�1⇡(i) = i. In other words, it returns the position in ⇡ of each
element ⇡i.

Definition. A reversal ⇢r(i, j) is the permutation (1 . . . i � 1 j j � 1 . . . i + 1 i j + 1 . . . n), 1 i < j n.
Applying a reversal to a permutation ⇡ reverses the order of ⇡ [i..j], which is the same as the composition ⇡ · ⇢r(i, j) =
(⇡1 ⇡2 . . . ⇡i�1⇡j ⇡j�1 . . . ⇡i+1 ⇡i ⇡j+1 . . . ⇡n�1 ⇡n).

Definition. A prefix reversal ⇢pr(k) is a reversal ⇢r(1, k) that reverses k elements in the beginning of the permutation.

Definition. A prefix reversal ⇢pr(k) acts on element ⇡x if x k.

Definition. A transposition ⇢t(i, j, k) is the permutation (1 2 . . . i � 1 j j + 1 . . . k � 1 i i + 1 . . . j � 1 k . . . n),
1 i < j < k n + 1. Applying a transposition to a permutation ⇡ swaps the adjacent blocks ⇡ [i..j� 1] and ⇡ [j..k� 1],
which is the same as the composition ⇡ · ⇢t(i, j, k) = (⇡1 ⇡2 . . . ⇡i�1⇡j ⇡j+1 . . . ⇡k�1 ⇡i ⇡i+1 . . . ⇡j�1 ⇡k . . . ⇡n).

Definition. A prefix transposition⇢pt(j, k) is a transposition⇢t(1, j, k) thatmoves a block in the beginning of the permutation.

Definition. A prefix transposition ⇢pt(j, k) acts on element ⇡x if x k� 1.

Consider the extendedpermutation that canbe obtained from⇡ by inserting twonewelements:⇡0 = 0 and⇡n+1 = n+1.
The extended permutation is still denoted as ⇡ . Below, we present two definitions of breakpoint for a permutation ⇡ .

Definition. A pair of elements ⇡i and ⇡i+1, with 1 i n, is a prefix reversal breakpoint if |⇡i+1 � ⇡i| 6= 1. The number of
prefix reversal breakpoints in a permutation ⇡ is denoted by bpr(⇡).

Definition. Prefix reversal breakpoints divide a permutation into strips, which aremaximal intervals with no prefix reversal
breakpoints. In addition, the elements ⇡0 = 0 and ⇡n+1 = n + 1 do not belong to any strip.

Aaron
interconnection network problems

Aaron
maximum communication delay

Aaron
diameter

Aaron
prefix reversals

Aaron
Fischer and Ginzinger

Aaron
2

Aaron
NP-complete

Aaron
n − log8 n

Aaron
⌊ 3n ⌋

Aaron
3

Aaron
2

Aaron
a permutation π = (π1 π2 . . . πn)

Aaron
π(i) = πi

Aaron
π · σ = (πσ (1) πσ (2) . . . πσ (n)).

Aaron
合成 composition

Aaron
中立 neutral

Aaron
ι(i) = i

Aaron
relabeling

Aaron
逆轉 inverse

Aaron
index <-> value

Aaron
reversalρr(i,j

Aaron

Aaron
j j−1 ... i+1 i

Aaron
π · ρr (i, j)

Aaron
prefix reversal ρpr (k)

Aaron
ρr (1, k)

Aaron
x ≤ k

Aaron
transpositionρt(i,j,k)

Aaron
swaps the adjacent blocks

Aaron
j j+1 ... k−

Aaron
i i+1 ... j−1

Aaron
A

Aaron
B

Aaron
A、B互為鄰居且相互交換

Aaron
prefixtranspositionρpt(j,k)

Aaron
ρt(1,j,k)

Aaron
x ≤ k − 1

Aaron
insertingtwonewelements:π0 =0andπn+1 =n+1.

Aaron
前後多插入一個元素，為了要建立Breakpoint

Aaron
if |πi+1 − πi| ̸= 1

Aaron
bpr (π)

Aaron
b() is the number of breakpoint

Aaron
strips,whicharemaximalintervalswithnoprefixreversal breakpoints

Aaron
條 strips

Aaron
strip為沒有breakpoint對最大區間

Aaron
1 ≤ i ≤ n

80 Z. Dias, U. Dias / Discrete Applied Mathematics 181 (2015) 78–89

Definition. A pair of elements ⇡i and ⇡i+1, with 1 i n, is a prefix transposition breakpoint if ⇡i+1 � ⇡i 6= 1. The number
of prefix transposition breakpoints in a permutation ⇡ is denoted by bpt(⇡).

Observe that by definition the pair [⇡0, ⇡1] is not a breakpoint.
The only permutation with no breakpoint (neither prefix reversal breakpoint nor prefix transposition breakpoint) is the

identity permutation ◆ = (1 2 . . . n), such that bpr(◆) = bpt(◆) = 0.
In this paper, we mention several distance problems related to prefix operations. Those problems are defined as follows.

Definition. Let ⇠ be a set of rearrangement events that can be applied to ⇡ , the distance d⇠ (⇡) is the minimum number t of
operations ⇠1, ⇠2, . . . , ⇠t 2 ⇠ such that ⇡ · ⇠1 · ⇠2 · . . . · ⇠t = ◆.

Another important definition relates to the number of operations thatmay be necessary to sort any permutation of size n.

Definition. Let Sn be the group of all permutations that have the same size n, and ⇠ be the set of rearrangement events
that can be applied to permutations in Sn. The greatest distance for all permutations in Sn using events in ⇠ is said to be the
diameter of Sn in regard to ⇠ , and we denote it by D⇠ (n) = max{d⇠ (⇡)|⇡ 2 Sn}.

Hereafter, we shall use pr, pt and prpt to represent rearrangementmodels such thatwe allow only prefix reversals, prefix
transpositions and both, respectively.

Our main result is an asymptotic 2-approximation algorithm to the Sorting by Prefix Reversals and Prefix Transpositions
Problem. In short, our algorithm relies on four scenarios that remove prefix reversal breakpoints and on one step that is
used when the first element in the permutation is ⇡1 = 1. This step does not remove prefix reversal breakpoints, but we
guarantee that it will be used at most twice during the execution of our algorithm.

Next sections are organized as follows. Section 3 further describes the literature on the Sorting by Prefix Reversals and
Prefix Transpositions Problem. Section 4 introduces our algorithm and gives a formal proof for the approximation factor.
Section 5 presents a comparative analysis of the algorithms that provide valid solutions for the problem we are dealing
with. Section 6 concludes this work.

3. Previous algorithms

In this section, we discuss the theoretical approximation aspects of three previous algorithms that provide valid
sequences to the Sorting by Prefix Reversals and Prefix Transpositions Problem.

Definition. We denote as �bpr
(⇡ , ⇢⇠) = bpr(⇡ · ⇢⇠) � bpr(⇡) the change in number of prefix reversal breakpoints due to

operation ⇢⇠ , ⇠ 2 {pr, pt, prpt}.

Definition. We denote as �bpt
(⇡ , ⇢⇠) = bpt(⇡ ·⇢⇠)� bpt(⇡) the change in number of prefix transposition breakpoints due

to operation ⇢⇠ , ⇠ 2 {pr, pt, prpt}.

Lemma 1. �bpr
(⇡ , ⇢pr) 2 {�1, 0, 1} [16].

Proof. The prefix reversal⇢pr(k) splits the pairs [⇡0, ⇡1] and [⇡k, ⇡k+1]. Since there is no prefix reversal breakpoint at indices
0 and 1 (by definition), only at indices k, k + 1 the prefix reversal can create or remove one prefix reversal breakpoint. ⇤

Lemma 2. bpr(⇡) dpr(⇡) 2bpr(⇡) [16].

Proof. It is straightforward from Lemma 1 that dpr(⇡) � bpr(⇡) [16]. In addition, Fischer and Ginzinger [16] presented
a 2-approximation algorithm for the Sorting by Prefix Reversals Problem that finds a sequence that sorts ⇡ with at most
2bpr(⇡) prefix reversals. ⇤

Lemma 3. �bpt
(⇡ , ⇢pt), �bpr

(⇡ , ⇢pt) 2 {�2,�1, 0, 1, 2} [12,22].
Proof. The prefix transposition ⇢pt(j, k) splits the pairs [⇡0, ⇡1], [⇡j�1, ⇡j] and [⇡k�1, ⇡k]. Since there is no breakpoint at
indices 0 and 1 (by definition), only at indices j� 1, j and k� 1, k the prefix transposition can create or remove either prefix
reversal breakpoints or prefix transposition breakpoints. ⇤

Lemma 4. bpt (⇡)

2 dpt(⇡) bpt(⇡)� 1 [12].

Proof. It is straightforward from Lemma 3 that dpt(⇡) � bpt (⇡)

2 . In addition, Dias and Meidanis [12] presented a
2-approximation algorithm for the Sorting by Prefix Transpositions Problem that finds a sequence that sorts ⇡ with at most
bpt(⇡)� 1 prefix transpositions. ⇤

Lemma 5. dprpt(⇡) � bpr (⇡)

2 [22].

Aaron
if πi+1 − πi ̸= 1

Aaron
1 ≤ i ≤ n

Aaron
bpr(ι) = bpt(ι) = 0

Aaron
沒有breakpoint的排序即排序完成

Aaron
ξ be a set of rearrangement events

Aaron
/xi/

Aaron
Sn be the group of all permutations that have the same size n,

Aaron
Sn為n個元素的所有排列可能

Aaron
greatest distance

Aaron
diameter

Aaron
Dξ (n) = max{dξ (π)|π ∈ Sn}

Aaron
π·ξ1 ·ξ2 ·...·ξt =ι

Aaron
所有Sn中的排列使用𝛏中事件的最大距離（事件數）

Aaron
pr , pt and prpt

Aaron
漸進的 asymptotic

Aaron
four scenarios that remove prefix reversal breakpoints

Aaron
at most twice

Aaron
one step that is used when the first element in the permutation is π1 = 1

Aaron
three

Aaron
∆bpr (π , ρξ) = bpr (π · ρξ) − bpr (π)

Aaron
∆bpt(π,ρξ)=bpt(π·ρξ)−bpt(π)

Aaron
prefix reversal

Aaron
prefixtransposition

Aaron
後 - 前

Aaron
𝛏為可以在排序中操作的事件

Aaron
−1, 0, 1

Aaron
only at indices k, k + 1 the prefix reversal can create or remove one prefix reversal breakpoint.

Aaron
𝜌pr只會新增或刪除一個pr

Aaron
2bpr (π)

Aaron
−2,−1,0,1,2

Aaron
j − 1, j

Aaron
k − 1, k

Aaron
bpt (π) − 1

Aaron
bpt(π)−1

Aaron
prpt

Aaron
對方向敏感

Aaron
pr

Aaron
pair [π0 , π1] is not a breakpoint.

Z. Dias, U. Dias / Discrete Applied Mathematics 181 (2015) 78–89 81

Proof. Straightforward from Lemmas 1 and 3. ⇤

Lemma 6. �bpt
(⇡ , ⇢pr) 2 {�n,�(n� 1), . . . ,�1, 0, 1, . . . , n� 1, n}.

Proof. The prefix reversal ⇢pr(k) splits the pairs [⇡k, ⇡k+1], which implies that a prefix transposition breakpoint can be
created or removed at that position. In addition, prefix transposition breakpoints can be created or removed anywhere
in the range ⇡ [1..k]. Let us assume that ⇡a+1 = ⇡a + 1 for some a < k, we can see that [⇡a, ⇡a+1] is not a prefix
transposition breakpoint. After applying ⇢pr(k), the prefix transposition breakpoint [⇡a+1, ⇡a] will be created. Analogously,
one can remove a prefix transpositions breakpoint if the pair [⇡a0+1, ⇡a0] such that⇡a0+1 = ⇡a0+1 exists for some a0 < k. ⇤

Lemma 7. dprpt(⇡) � bpt (⇡)

n
.

Proof. Straightforward from Lemmas 3 and 6. ⇤

Wecited previously an algorithm for the Sorting by Prefix Reversals Problempresented by Fischer andGinzinger [16], and
an algorithm for the Sorting by Prefix Transpositions Problempresented byDias andMeidanis [12]. Since the problemwe are
dealing with in this paper accepts both prefix reversals and prefix transpositions, those algorithms provide valid sequences
to sort any input permutation. The next lemmas show us what we can expect about the approximation guarantee provided
by both algorithms.

Lemma 8. The algorithm presented by Fischer and Ginzinger [16] for the Sorting by Prefix Reversals Problem is a 4-approximation

algorithm for the Sorting by Prefix Reversals and Prefix Transpositions Problem.

Proof. The algorithmpresented by Fischer andGinzinger finds a sequence that sorts⇡ with atmost 2bpr(⇡) prefix reversals.
Because we know from Lemma 5 that dprpt(⇡) � bpr (⇡)

2 , the stated approximation guarantee follows. ⇤

Lemma 9. The algorithm presented by Dias and Meidanis [12] for the Sorting by Prefix Transpositions Problem is an unbounded

algorithm for the Sorting by Prefix Reversals and Prefix Transpositions Problem.

Proof. The algorithm presented by Dias and Meidanis finds a sequence that sorts ⇡ with at most bpt(⇡) � 1 prefix
transpositions.We know fromLemma7 that dprpt(⇡) � bpt (⇡)

n
, so the bestwe could do is to guarantee anO(n) approximation

ratio. ⇤

Recently, Sharmin et al. [22] presented a 3-approximation algorithm to the problem of sorting permutations by prefix
reversals and prefix transpositions. They showed that it is possible to remove 2 prefix reversal breakpoints in three
operations. Therefore, they use at most 3bpr (⇡)

2 operations to sort an arbitrary permutation ⇡ . Because we know from
Lemma 5 that dprpt(⇡) � bpr (⇡)

2 , the stated approximation guarantee follows.
In Section 4, we present a new algorithm with a lower approximation ratio. Our algorithm has an asymptotic

approximation factor 2. The three algorithms cited in this section were used in a practical analysis against our algorithm in
Section 5.

4. Algorithm for sorting by prefix reversals and prefix transpositions

First, we will assume ⇡1 6= 1 and explain in Section 4.1 that our algorithm always finds a movement that removes at
least one breakpoint if that condition is satisfied. In Section 4.2, we deal with ⇡1 = 1, we do not remove any prefix reversal
breakpoint in this case, but we guarantee that it occurs at most twice during the execution of our algorithm. That will lead
to the guaranteed asymptotic approximation factor.

4.1. Removing prefix reversal breakpoints

This section deals with permutations ⇡ such that ⇡1 6= 1. Our algorithm firstly tries to remove two prefix reversal
breakpoints, which is the best we can do according to Lemma 3 by using prefix transpositions. Observe that this goal cannot
be achieved by prefix reversals according to Lemma 1. That said, the prefix transposition that removes 2 breakpoints should
cause the following effects.

1. Let ⇡1 = a, the operation ⇢pt(j, k) should place a just after one of the elements a� 1 or a+ 1 in ⇡ · ⇢pt(j, k). In this case,
the element a� 1 or a + 1 must be at position k� 1, we also need to assure that the pair [⇡k�1, ⇡k] is a prefix reversal
breakpoint in order to be able to split it using ⇢pt(j, k).

2. Let ⇡j�1 = b, the operation ⇢pt(j, k) should place b just before one of the elements b� 1 or b + 1 in ⇡ · ⇢pt(j, k). In this
case, the element b� 1 or b + 1 must be at position k, we also need to assure that the pair [⇡j�1, ⇡j] is a prefix reversal
breakpoint in order to be able to split it using ⇢pt(j, k).

Aaron
pr能夠增加或減少pt的幅度較大，因為pt對方向敏感

Aaron
anywhere

Aaron
prpt

Aaron
pt

Aaron
Fischer and Ginzinger

Aaron
Dias and Meidanis

Aaron
4-approximation

Aaron
atmost2bpr(π)prefixreversals.

Aaron
unbounded

Aaron
bpt(π) − 1

Aaron
Lemma 7 that dprpt (π) ≥ bpt (π) ,

Aaron
O(n)

Aaron
Sharmin

Aaron
3

Aaron
remove 2 prefix reversal breakpoints in three operations

Aaron
3bpr(π)

Aaron
2

Aaron
assume π1 ̸= 1

Aaron
wedealwithπ1 =1

Aaron
leastonebreakpoint

Aaron
donotremoveanyprefixreversal breakpoint in this case, but we guarantee that it occurs at most twice

Aaron
𝛑1≠1

Aaron
remove two prefix reversal breakpoints

Aaron
Lemma 3 by using prefix transpositions

Aaron
使用𝜌pt移除pr breakpoint效果最好

Aaron
pair [πk−1, πk] is a prefix reversal breakpoint

Aaron
π1 =a

Aaron
a − 1 or a + 1 must be at position k − 1

Aaron
πj−1 =b

Aaron
b − 1 or b + 1 must be at position k

82 Z. Dias, U. Dias / Discrete Applied Mathematics 181 (2015) 78–89

Fig. 1. Scenarios where we can remove two prefix reversal breakpoints. In addition, Algorithm 1 forces c 6= 1.

Fig. 2. Remove one prefix reversal breakpoint. Dotted boxes represent strips that have one or more elements. Solid boxes represent strips that have at
least two elements.

We add a final constraint that the prefix transposition should not bring the element 1 to the beginning of the permutation.
Therefore, let ⇡j = c , we have to guarantee that c 6= 1.

Fig. 1 illustrates the scenarios where ⇢pt(j, k) removes two breakpoints. In some cases, more than one scenario is possible
for an input permutation ⇡ . When that happens, we arrange them in an order of priority where the scenario in Fig. 1(a) is
better than the one in Fig. 1(b), which is in turn better than Fig. 1(c), which is again better than Fig. 1(d).

The implementation is straightforward and requires O(1) time. Lines 9–22 in Algorithm 1 show our implementation. Let
⇢pt(j, k) be the prefix transposition, variable kab receives the value of k in Fig. 1(a) and (b). Likewise, kcd receives the value
of k in Fig. 1(c) and (d). Variables ja, jb, jc , and jd receive the values of j in each scenario a, b, c and d, respectively.

The following lemma presents what our algorithm does when we cannot remove two prefix reversal breakpoints.

Lemma 10. If ⇡1 6= 1, then there is at least one prefix transposition ⇢pt(j, k) such that �bpr
(⇡ , ⇢pt) �1.

Proof. Let ⇡1 = a, we can always find an operation that places a close to a � 1 or a + 1. We will divide our proof in four
cases, depending on whether a is part of an ascending or descending strip. If a is part of a unitary strip, then at least two of
the cases below are possible.

If a is part of an ascending strip of length i + 1 ha, a + 1, . . . , a + ii, then there is a prefix reversal breakpoint whose
elements are a� 1 and another arbitrary element b.
Case a: If there is a prefix reversal breakpoint [b, a� 1], then we can apply the prefix reversal ⇢pr(k) such that ⇡k = b. We

use this case if a� 1 is part of a descending strip ha� 1, a� 2, . . . , a� liwith at least two elements, otherwise we
use Case b.

Case b: If there is a prefix reversal breakpoint [a� 1, b], then we can apply the prefix transposition ⇢pt(i + 1, k) such that
⇡k = b.

If a is part of a descending strip ha, a� 1, . . . , a� ii, then there is a prefix reversal breakpoint whose elements are a+ 1
and another arbitrary element b.
Case c: If there is a prefix reversal breakpoint [a + 1, b], then we can apply the prefix transposition ⇢pt(i + 1, k) such that

⇡k = b. We use this case if a + 1 is part of a descending strip ha + l, . . . , a + 2, a + 1i with at least two elements,
otherwise we use Case d.

Cased: If there is a prefix reversal breakpoint [b, a + 1], then we can apply the prefix reversal ⇢pr(k) such that ⇡k = b. ⇤

Fig. 2 illustrates all the cases. The implementation of the method to remove one prefix reversal breakpoint is
straightforward and requiresO(1) time. Lines 23–35 inAlgorithm1 showour implementation. Let⇡1 = a, variable x receives
the position of a� 1 in Fig. 2(a) and (b), and variable y receives the position of a + 1 in Fig. 2(c) and (d).

Aaron
Dotted boxes represent strips

Aaron
Solid boxes represent strips

Aaron
Dot is a pr breakpoint

Aaron
4種可能

Aaron
let πj = c, we have to guarantee that c ̸= 1.

Aaron
𝜌pt前後，其𝛑1≠1

Aaron
remove two prefix reversal breakpoints.

Aaron
c ̸= 1

Aaron
a>b = c>d

Aaron
ρpt (j, k) be the prefix transposition

Aaron
π1 ̸= 1

Aaron
π1 = a

Aaron
places a close to a − 1 or a + 1

Aaron
whether a is part of an ascending or descending strip.

Aaron
單一的 unitary

Aaron
ascending strip

Aaron
descending strip

Aaron
a − 1

Aaron
a + 1

Aaron
ascending strip

Aaron
descending strip

Aaron

Aaron

Aaron

Aaron

Aaron

Aaron

Aaron

Aaron

Aaron

Aaron

Aaron
breakpoint [b, a − 1]

Aaron
breakpoint [a − 1, b]

Aaron
ρpr (k)

Aaron
ρpt (i + 1, k)

Aaron
breakpoint [a + 1, b]

Aaron
breakpoint [b, a + 1]

Aaron
xreceives the position of a − 1

Aaron
y receives the position of a + 1

Aaron

Aaron

Aaron

Aaron

Aaron

Aaron

Aaron

Aaron

Z. Dias, U. Dias / Discrete Applied Mathematics 181 (2015) 78–89 83

4.2. Dealing with ⇡1 = 1

Let us denote by �(⇡) the strip that contains the element 1 in ⇡ , which can occur in ascending order (�(⇡) =
h1, 2, . . . , ii) or descending order (�(⇡) = hi, i� 1, . . . , 1i). This section deals with permutations ⇡ such that ⇡1 = 1. Our
algorithm simply sends �(⇡) in ascending order to the end of the permutation, before the element n + 1 in the extended
representation. Lines 6–7 of Algorithm 1 execute this action.

Nothing actually happens in the first time �(⇡) is sent to the end of the permutation, what is important is the property
shown in Lemma 11 that occurs when a prefix operation takes �(⇡) away from there.

Algorithm 1: Sorting by Prefix Reversals and Prefix Transpositions
Input: ⇡ , n

1 d 0
2 while ⇡ 6= ◆ do
3 i 1
4 while |⇡i+1 � ⇡i| = 1 do
5 i i + 1
6 if ⇡1 = 1 then

// Send h⇡1, ⇡2, . . . ,⇡ii to the last position
7 ⇡ ⇡ · ⇢pt (i + 1, n + 1)
8 else

// Try to remove two prefix reversal breakpoints

9 kab ⇡�1⇡1�1 + 1

10 ja ⇡�1⇡kab�1 + 1; jb ⇡�1⇡kab+1 + 1

11 kcd ⇡�1⇡1+1 + 1

12 jc ⇡�1⇡kcd�1 + 1; jd ⇡�1⇡kcd+1 + 1
13 if |⇡kab�1 � ⇡kab| 6= 1 then
14 if ⇡ja 6= 1 and |⇡ja�1 � ⇡ja| 6= 1 then
15 ⇡ ⇡ · ⇢pt (ja, kab)

16 else if ⇡jb 6= 1 and |⇡jb�1 � ⇡jb| 6= 1 then
17 ⇡ ⇡ · ⇢pt (jb, kab)

18 else if |⇡kcd�1 � ⇡kcd| 6= 1 then
19 if ⇡jc 6= 1 and |⇡jc�1 � ⇡jc | 6= 1 then
20 ⇡ ⇡ · ⇢pt (jc, kcd)

21 else if ⇡jd 6= 1 and |⇡jd�1 � ⇡jd| 6= 1 then
22 ⇡ ⇡ · ⇢pt (jd, kcd)

23 else
// Remove one prefix reversal breakpoint

24 if ⇡1 ⇡i then
// ⇡1 . . . ⇡i is an increasing sequence

25 x ⇡�1⇡1�1
26 if ⇡x = ⇡x+1 + 1 then
27 ⇡ ⇡ · ⇢pr (x� 1)
28 else
29 ⇡ ⇡ · ⇢pt (i + 1, x + 1)

30 else
// ⇡1 . . . ⇡i is a decreasing sequence

31 y ⇡�1⇡1+1
32 if ⇡y = ⇡y�1 � 1 then
33 ⇡ ⇡ · ⇢pt (i + 1, y + 1)
34 else
35 ⇡ ⇡ · ⇢pr (y� 1)

36 d d + 1
37 return d

Lemma 11. When�(⇡) is in ascending order at the end of the permutation⇡ , the prefix operation performed by Algorithm 1 that

moves it away from there forces the element n to be moved to the end of the permutation.

Proof. It is somewhat obvious, but one should keep in mind that in order to move �(⇡) away from the last position the
prefix operations must act on it, which means they must have the form ⇢pr(n) and ⇢pt(j, n + 1).

The prefix transpositions shown in Fig. 1 would act on �(⇡) only if sub-sequences hb+ 1, . . . , n+ 1i in Fig. 1(a) and (c),
or hb� 1, . . . , n + 1i in Fig. 1(b) and (d) were comprised solely of n + 1.

Aaron
π1 = 1

Aaron
else π ← π · ρpt (ja, kab) else if πjb ̸= 1 and |πjb−1 − πjb| ̸= 1 then π ← π · ρpt (jb, kab) if |πkcd−1 − πkcd | ̸= 1 then ifπjc ̸=1and|πjc−1 −πjc|̸=1then π ← π · ρpt (jc, kcd) else if πjd ̸= 1 and |πjd−1 − πjd| ̸= 1 then + 1 ifπja ̸=1and|πja−1 −πja|̸=1then πkcd +1 if |πkab−1 − πkab | ̸= 1 then 9 10 11 12 13 14 15 16 17 18 19 20 21 22 // Try to remove two prefix reversal breakpoints kab ← π−1 π1 −1 ja ← π−1 πkab −1 kcd ← π−1 π1 +1 + 1 + 1; jb ← π−1 + 1 jc ← π−1 πkcd −1 πkab +1 + 1; jd ← π−1 + 1 π ← π · ρpt (jd, kcd)

Aaron
else π ← π · ρpt (i + 1, x + 1) π1 . . . πi is a decreasing sequence y ← π−1 π1 +1 ifπy =πy−1 −1then π ← π · ρpt (i + 1, y + 1) else π ← π · ρpr (y − 1) 24 25 26 27 28 29 30 31 32 33 34 35 // Remove one prefix reversal breakpoint if π1 ≤ πi then // π1 . . . πi is an increasing sequence x ← π−1 π1 −1 ifπx =πx+1 +1then π ← π · ρpr (x − 1) else //

Aaron
後移除1個breakpoint並保持最大strip（方向敏感）

Aaron
先移除2個breakpoint

Aaron
φ(π) the strip that contains the element 1 in π

Aaron
𝝓(𝛑)為含有1的strip

Aaron
6 7 ifπ1 =1then // Send ⟨π1,π2,...,πi⟩ to the last position π ← π · ρpt (i + 1, n + 1)

Aaron
不會移除任何的Breakpoint，但保證最多只出現兩次
將𝝓(𝛑)移到最後

Aaron
Lemma 11

Aaron
ascendingorder

Aaron
must have the form ρpr (n) and ρpt (j, n + 1).

Aaron
這兩種操作可以將𝝓(𝛑)移到最後

Aaron
when a prefix operation takes φ(π) away from there.

Aaron
moves it away from there forces the element n to be moved to the end of the permutation.

Aaron
當𝝓(𝛑)是升序在尾端時，演算法1會移動元素n到尾端

84 Z. Dias, U. Dias / Discrete Applied Mathematics 181 (2015) 78–89

In Fig. 1(a) and (b), the prefix transpositionwill place a after a�1, which is the last element in �(⇡). Therefore, the prefix
transposition does not remove �(⇡) from the last position, it just adds new elements to it.

Fig. 1(c) and (d) do not remove �(⇡) from the last position because they cannot even act on �(⇡). Note that �(⇡) is in
ascending order and hence the first element cannot be one unit lower than the last element on �(⇡), unless �(⇡) has only
one element, but in this case we would have used the scenario in Fig. 1(a) and (b).

We follow by inspecting the prefix operations shown in Fig. 2, which correspond to Lines 24–35 in Algorithm 1. We
inspect each scenario one by one.
• Fig. 2(a): the sub-sequence ha � 1, . . . , a � l, . . . , n + 1i should be comprised solely by n + 1, which does not happen

because the strip ha� 1, . . . , a� li has at least two elements.
• Fig. 2(b): the sub-sequence hb, . . . , n + 1i should be comprised solely by n + 1. So, a � 1 is the last element in

�(⇡). The prefix transposition ⇢pt(j, n + 1) will place ha, . . . , a + ii after �(⇡) and hence �(⇡ · ⇢pt(j, n + 1)) =
h1, . . . , a, a + 1, . . . , aii. Therefore, the prefix transposition does not really remove �(⇡) from the last position, it just
adds new elements.

• Fig. 2(c): the sub-sequence hb, . . . , n+1i should be comprised solely by n+1. In addition, this scenario requires the last
strip ha + l, . . . , a + 1i to have more than two elements and to be in descending order, which cannot be managed since
we want the last strip to be �(⇡) in ascending order.

• Fig. 2(d): the sub-sequence ha + 1, . . . , n + 1i should be comprised solely by n + 1. In addition, ⇢pr(n) should bring the
first element a close to the last element a+ 1. However, a+ 1 is indeed n+ 1 and hence a is n. So this scenario can force
�(⇡) to leave the last position, and the side effect is that it also sends the strip that contains the element n in ascending
order to the end of the permutation. ⇤

Lemma 12. Let ⇡ be a permutation of the form ⇡ = (. . . n �(⇡) n + 1), �(⇡) in ascending order, Algorithm 1 will not split

the pair [n, 1] unless we can find a prefix transposition ⇢pt such that ⇡ · ⇢pt = ◆.

Proof. We start by disregarding any prefix transposition shown in Fig. 1 since they would break the pair [n, 1] only if one
of two scenarios was true.
• ⇡j = 1, then the prefix transposition ⇢pt(j, k) would bring the element 1 to the beginning of the permutation, which we

explicitly deny.
• ⇡k = 1, it implies that we can find a block ⇡ [1..j � 1], j < k, such that ⇡1 = n + 1 and ⇡j�1 = 0, which can never

happen.

We follow by inspecting the prefix operations shown in Fig. 2.
• Fig. 2(a): we disregard this prefix reversal because ha � 1, . . . , a � li is a decreasing strip with at least two elements,

which cannot be managed since we want that strip to be �(⇡) in ascending order.
• Fig. 2(b): the prefix transposition ⇢pt(j, k) could lead to one of two scenarios:

– ⇡j = 1, then ha, a+ 1, . . . , a+ ii is a strip such that a+ 1 = n+ 1. In addition, the sub-sequence hc, . . . , a� 1imust
be �(⇡) and the sub-sequence hb, . . . , n + 1imust be comprised solely of n + 1. Indeed, this entire configuration is
a permutation that is just one step away from the identity and ⇢pt(j, k) is the operation we need to perform this last
step.

– ⇡k = 1, then a� 1 = n + 1 and the first element a should be equal to n + 2, which is impossible by definition. So, we
disregard this case.

• Fig. 2(c): we disregard this prefix transposition ⇢pt(j, k) because it leads to impossible scenarios:
– ⇡j = 1, then the sub-sequence hc, . . . , a+ l, . . . , a+1i should be �(⇡) in ascending order, but it is impossible because
ha + l, . . . , a + 1i is a decreasing strip with at least two elements.

– ⇡k = 1, then ha+ l, . . . , a+1i is a decreasing strip with at least two elements ended by n, which is impossible because
the element n + 1 only appears in the extended form and never leaves the end of the permutation.

• Fig. 2(d): we disregard this prefix reversal because it only works if we make a + 1 = 1, and hence a = 0, which is
impossible. ⇤

Lemma 13. The prefix transposition that moves ⇡1 = 1 to the end of the permutation occurs at most twice during the execution

of Algorithm 1.

Proof. If element 1 is found in the beginning of the permutation, then �(⇡) is moved in ascending order to the end of the
permutation. Lemma 11 shows that �(⇡) is taken away from there when we are ready to move the element n into its place.
After that, no prefix operation in Figs. 1 and 2 will split the pair [n, n + 1] because it is not a prefix reversal breakpoint.
Therefore, the pair [n, n + 1] will be split if the element 1 appears for the second time in the first position. In that case, a
prefix transposition will send �(⇡) to the end and hence create the permutation ⇡ = (. . . n �(⇡) n+ 1) such that �(⇡) is
in ascending order.

Lemma 12 shows that [n, 1] will not be split unless we can find an operation that immediately transforms the
permutation into the identity. As a consequence, element 1 will never appear in the beginning of a permutation different
from the identity, so the prefix transposition that moves ⇡1 = 1 to the end of the permutation will never be usedmore than
twice. ⇤

Aaron
adds new elements to it.

Aaron
cannot even act on φ(π)

Aaron
升序

Aaron
unless φ(π) has only one element

Aaron
strip ⟨a − 1, . . . , a − l⟩ has at least two elements.

Aaron
ascending

Aaron
a after a−1, which is the last element in φ(π).

Aaron
a會變成𝝓(𝛑)的最後一個元素

Aaron
a − 1 is the last element in φ(π)

Aaron
adds new elements

Aaron
cannot be managed

Aaron
φ(π) to leave the last position

Aaron
not split the pair [n, 1] unless we can find a prefix transposition ρpt such that π · ρpt = ι.

Aaron
忽視 disregarding

Aaron
πj = 1

Aaron
πk = 1

Aaron
π1 = n+1andπj−1 = 0

Aaron
bring the element 1 to the beginning

Aaron
只能為n-1，但至少要兩元素，故矛盾

Aaron
decreasing

Aaron
⟨c,...,a−1⟩must be φ(π

Aaron
this last step.

Aaron
這是最後一步的情況

Aaron
𝛑j = 1 = c

Aaron
endedbyn

Aaron
a + 1 = 1

Aaron
moves π1 = 1 to the end

Aaron
most twice

Aaron
φ(π) is moved in ascending order to the end

Aaron
no prefix operation in Figs. 1 and 2 will split the pair [n, n + 1] because it is not a prefix reversal breakpoint.

Aaron
pair [n, n + 1] will be split if the element 1 appears for the second time

Aaron
nφ(π)n+1

Aaron
Lemma 11

Aaron
Lemma 12

Aaron
theprefixtranspositionthatmovesπ1 =1totheendofthepermutationwillneverbeusedmorethan twice.

Z. Dias, U. Dias / Discrete Applied Mathematics 181 (2015) 78–89 85

Lemma 14. The sequence produced by Algorithm 1 to sort ⇡ has at most bpr(⇡) + 2 prefix operations.

Proof. Algorithm 1 always removes one prefix reversal breakpoint if element 1 is not in the beginning of the permutation.
Lemma 13 says that ⇡1 = 1 occurs at most twice during the execution of Algorithm 1. Let �(⇡) = h1, 2, . . . , ii and

⇢pt(i+ 1, n+ 1) be the prefix transposition applied on ⇡ , we know that [⇡i, ⇡i+1] is a prefix reversal breakpoint, otherwise
⇡i would not be the last element in �(⇡). Let us assume [⇡n, ⇡n+1] is a prefix reversal breakpoint, which represents the first
time we send ⇡1 = 1 to the end of the permutation. In this case, ⇢pt(i+1, n+1) does not increase nor decrease the number
of prefix reversal breakpoints in our sequence.

We now assume [⇡n, ⇡n+1] is not a prefix reversal breakpoint, which represents the last time we send ⇡1 = 1 to the end
of the permutation. In this case, ⇢pt(i+1, n+1) increases the number of prefix reversal breakpoints by one. However, when
that happens, we create the permutation (. . . n �(⇡) n+1), which by Lemma 12 the pair [n, 1] will not be broken until we
reach a permutation � = (0 i + 1 i + 2 . . . n 1 2 . . . i n + 1) that is just one prefix transposition away from the identity.
We observe that the last prefix transposition will remove two breakpoints. In short, we increase the number of breakpoints
when we send ⇡1 = 1 to the end of the permutation for the last time, but we guarantee that later we will always perform
an operation that removes two breakpoints, thus we have two operations that remove one breakpoint.

In summary, our sequence would have at most (bpr(⇡) + 1) + 2 � 1 = bpr(⇡) + 2 operations, which occurs when we
move ⇡1 = 1 to the end of the permutation twice. ⇤

Theorem 1. Algorithm 1 is an asymptotic 2-approximation algorithm to the Sorting by Prefix Reversals and Prefix Transpositions

Problem.

Proof. Weknow from Lemma5 that dprpt(⇡) � bpr (⇡)

2 andwe know from Lemma14 that Algorithm1uses atmost bpr(⇡)+2
operations. So the approximation ratio is bpr (⇡)+2

bpr (⇡)
2

= 2+ 4
bpr (⇡)

. The larger the size of permutations, the more likely it is that

they have many prefix reversal breakpoints. In this case, limbpr (⇡)!1(2 + 4
bpr (⇡)

) = 2 + ✏. ⇤

Theorem 2. Algorithm 1 runs in O(n2).

Proof. Lines 6–36 require O(1) time and lines 4–5 require O(n). The while loop in line 2 will run at most bpr(⇡)+ 2 = O(n)
times according to Lemma 14. Therefore, the stated complexity follows. ⇤

We end this section with a conjecture about the diameter Dprpt . This conjecture comes from what we observed in our
experiments and is valid for 5 n 13.

Conjecture 1. Let Dprpt(n) be the greatest distance between two permutations in Sn using prefix reversals and prefix

transpositions, then Dprpt(n) = n� b n+1
3 c for n � 5.

5. Experimental results

This section presents a comparative analysis of the four algorithms that provide valid solutions to the Sorting by Prefix
Reversals and Prefix Transpositions Problem. We implemented all the algorithms in Python.

We will denote Algorithm 1 as 2-app, the 3-approximation algorithm presented by Sharmin et al. [22] as 3-app, the
algorithm presented by Dias andMeidanis [12] for the Sorting by Prefix Transpositions Problem as ptSort, and the algorithm
presented by Fischer and Ginzinger [16] for the Sorting by Prefix Reversals Problem as prSort.

Table 1 presents the average number of operations performed by each algorithm to sort all possible small permutations
up to size 12. The total number of permutations used to generate this table was

P12
n=2 n! = 522, 956, 312.

In Table 1, the column Dist shows the average distance for each set of permutations and the column Diam shows the
diameter. We observe that 2-app (Algorithm 1) is the one that provides closest solutions to the real distance followed by
3-app (Sharmin et al. algorithm).

We expanded our analysis to include large permutations. We chose 100 thousand permutations randomly with size x for
each x in the range [2..500].When x 8, the number of distinct permutations is less than 100 thousand, sowe simply picked
all possible permutations. The total number of permutations used in this second analysis was

P8
n=2 n!+ (500� 8)⇥ 105 =

49, 246, 232.
Fig. 3 shows how the approximation ratio behaves when n grows. Since we do not know the exact distance of these

permutations, the ratio was calculated between the number of operations answered by each algorithm and the lower bound
in Lemma 5.

The prSort algorithm obtained poor results as the approximation ratio converges to a value between 2.4 and 2.5. We
notice that 2-app presented an approximation ratio close to 1.4, which is the best result in our analysis. The 3-app and
ptSort algorithms behaved alike, and the approximation ratio did not exceed 2. That is an interesting observation because
3-appwas developed to the problemwe are dealingwith,whileptSortwas developed to the problemof sorting permutation
by prefix transpositions.

Aaron
most bpr (π) + 2

Aaron
2

Aaron
O(n2)

Aaron
Algorithm 1 always removes one prefix reversal breakpoint if element 1 is not in the beginning of the permutation.

Aaron
[πi , πi+1] is a prefix reversal breakpoint

Aaron
[πn, πn+1] is a prefix reversal breakpoint, which represents the first timewesendπ1 =1totheend

Aaron
[πn,πn+1]isnotaprefixreversalbreakpoint,whichrepresentsthelasttimewesendπ1 =1totheend

Aaron
nφ(π)n+1

Aaron

Aaron

Aaron
the last prefix transposition will remove two breakpoints.

Aaron
increases the number of prefix reversal breakpoints by one

Aaron
bpr (π) + 2

Aaron
1st

Aaron
2nd

Aaron
last

Aaron
第二次調動𝝓(𝛑)，會增加一個Breakpoint

Aaron
The larger the size of permutations

Aaron
limbpr (π)→∞(2 + 4) = 2 + ε.

Aaron
at most bpr (π) + 2

Aaron
4–5 require O(n)

Aaron
推測 conjecture

Aaron
Dprpt (n) = n − ⌊ n+1 ⌋

Aaron
2-app

Aaron
3-app

Aaron
ptSort

Aaron
prSort

Aaron
12 n! = 522, 956, 312. n=2

Aaron
Dist

Aaron
Diam

Aaron
average distance

Aaron
diameter

Aaron
8n=2n!+(500−8)×105 = 49, 246, 232.

Aaron
how the approximation ratio behaves when n grows

Aaron
2-app presented an approximation ratio close to 1.4

86 Z. Dias, U. Dias / Discrete Applied Mathematics 181 (2015) 78–89

Table 1
Average number of operations used by each algorithm to sort a set of all possible permutations of a given size.
2-app refers to Algorithm 1. 3-app refers to the 3-approximation algorithm presented by Sharmin et al. [22].
ptSort refers to the algorithm presented by Dias and Meidanis [12]. Finally, prSort refers to the algorithm
presented by Fischer and Ginzinger [16]. The average distance Dist and the diameter Diam are also given in
this table for comparison purposes.

Size Dist Diam Algorithms
2-app 3-app ptSort prSort

2 0.500 1 0.500 0.500 0.500 0.500
3 1.000 2 1.000 1.167 1.167 1.500
4 1.583 2 1.792 1.875 1.917 2.792
5 2.175 3 2.558 2.617 2.717 4.008
6 2.736 4 3.286 3.408 3.550 5.256
7 3.332 5 4.022 4.238 4.407 6.496
8 3.895 5 4.730 5.096 5.282 7.737
9 4.471 6 5.449 5.974 6.171 8.977

10 5.039 7 6.157 6.867 7.071 10.214
11 5.598 7 6.868 7.772 7.980 11.448
12 6.164 8 7.575 8.686 8.897 12.680

Fig. 3. Approximation ratio of each algorithm when the permutation size grows.

Fig. 4 helps to explain why 3-app and ptSort behave alike. On the left side, we plot the percentage of prefix reversals
and prefix transpositions returned by each algorithm and on the right side we show the average decrease in the number of
prefix transposition breakpoints caused by the rearrangement operations. Note that here we are using prefix transposition
breakpoints instead of prefix reversal breakpoints that were used to prove the approximation ratio. The prefix transposition
breakpoints assess how helpful prefix reversals are in finding shorter sorting sequences. However, they do not prove any
approximation bound because dprpt(⇡) � bpt (⇡)

n
as shown by Lemma 7.

Comparing 3-appwithptSort, we observe that the prefix transpositions performed by the former remove, on average, 0.1
less prefix transposition breakpoints than the prefix transpositions performed by the latter. However, they both converge
to the same approximation ratio (see Fig. 3) because 3-app also applies 9.8% of prefix reversals that remove, on average, 2.0
prefix transposition breakpoints.

Fig. 4 also shows that 90.2% of the operations performed by 3-app are prefix transpositions, which differs from our
algorithm 2-app that uses prefix transpositions in around 70.7% of the cases. By analyzing the variation in the number
of prefix transposition breakpoints caused by prefix reversals and prefix transpositions (right side of Fig. 4), we found that
prefix reversals remove, on average, 2.2 and 2.0 prefix transposition breakpoints for 2-app and 3-app, respectively. Similarly,
prefix transpositions remove, on average, 1.1, 0.9 and 1.0 prefix transposition breakpoints for 2-app, 3-app and ptSort,
respectively.

In summary, both prefix reversals and prefix transpositions used by 2-app removemore prefix transposition breakpoints
than their 3-app counterparts. In addition, 2-app uses more prefix reversals, which on average remove more prefix
transposition breakpoints than prefix transpositions. These facts explain why 2-app leads to the best results.

We did one last experiment to assess the approximation ratio convergence when the number of prefix reversal
breakpoints grows. This test reveals that having permutations withmore prefix reversal breakpoints favors the use of prefix
transpositions.

Aaron
Average number of operations

Aaron
why 3-app and ptSort behave alike.

Aaron
percentage

Aaron
average decrease

Aaron
prefix transposition

Aaron
how helpful prefix reversals are in finding shorter sorting sequences

Aaron
dprpt (π) ≥ bpt (π)

Aaron
because 3-app also applies 9.8% of prefix reversals that remove

Aaron
2-app uses more prefix reversals

Aaron
These facts explain why 2-app leads to the best results

Aaron
having permutations with more prefix reversal breakpoints favors the use of prefix transpositions.

Aaron
具有更多前綴反轉斷點的排列有利於使用前綴換位

Z. Dias, U. Dias / Discrete Applied Mathematics 181 (2015) 78–89 87

Fig. 4. On the left side, we plot the percentage of prefix reversals and prefix transpositions used by each algorithm. On the right side, we show the average
decrease in the number of prefix transposition breakpoints caused by prefix reversals and prefix transpositions.

We randomly generated 100 million permutations with size n = 100. We grouped these permutations by the number
of prefix reversal breakpoints in order to generate Fig. 5. The Y -axis represents the approximation ratio and the X-axis

Aaron
100 million permutations with size n = 100

88 Z. Dias, U. Dias / Discrete Applied Mathematics 181 (2015) 78–89

Fig. 5. Approximation ratio convergence when the number of prefix reversal breakpoints grows. The Y -axis represents the approximation ratio and the
X-axis represents the number of prefix reversal breakpoints.

represents the number of prefix reversal breakpoints. The first conclusion is that 2-app is the best no matter the number of
prefix reversal breakpoints. Our curve converges to an approximation average of 1.4.

We also observed that the comparison between ptSort and prSort depends on the number of prefix reversal breakpoints.
The higher the number of prefix reversal breakpoints, the better the results provided by ptSort. The intersection point
occurred at 55 prefix reversal breakpoints. That behavior indicates that it is easier to remove prefix reversal breakpoints
with prefix transpositions when the number of breakpoints is high, which is reasonable.

When the number of prefix reversal breakpoints is close to 100, the average approximation ratio of ptSort equals to that
of 3-app. Thus, we finally established which condition makes those algorithms to have similar behavior. In Fig. 5, the curves
for ptSort and 3-app converge to an average approximation ratio close to 1.9.

A noteworthy information not evident in the graphs is how often each algorithm provides the smallest sorting sequence.
In our experiments,2-app systematically found strictly shorter sorting sequences than the other algorithms onpermutations
longer than 30 elements. For permutations up to size 30, 2-app provides the smallest sorting sequence in 95.62% of the cases,
followed by 3-app andptSort that provide the smallest sorting sequence in 10.12% and 7.72% of the cases, respectively. These
values do not add up to 100% because of ties.

6. Conclusions and future work

In this paper, we presented an asymptotic 2-approximation algorithm for the problem of sorting permutations by prefix
reversals and prefix transpositions that runs in O(n2). This is the best approximation to date.

Our analysis shows that our algorithm is the best on small permutations ranging from 2 to 12 and on large permutations
up to 500 elements. That indicates that our approach is better than any other in theoretical and practical aspects.

The approximation factor 2 was proved using the lower bound that states that the number of prefix reversal breakpoints
should be twice as higher as the distance. We believe this lower bound can be improved, which could lead to a better
approximation factor.

We will keep on studying this problem: our next step is to evaluate the conditions that make our algorithm results differ
from the distance. That could possibly lead to improvements on some hard to sort permutations.

The Sorting by Prefix Reversals and Prefix Transpositions Problem is relatively new, and hence few considerations
about the diameter have been made. We have analyzed our data and developed a conjecture that is supported by small
permutations up to size 13. We intend to study a formal proof for this conjecture.

Another research line we intend to study is the Sorting by Prefix Reversals and Prefix Transpositions Problem on signed
permutations. In that case, the reversals change the order of the segment and the sign of each element in this segment.
Signed reversals are more significant for the biology because signs can represent gene orientation, which changes when one
inversion affects a stretch of DNA sequence in the genome.

Acknowledgments

This work was made possible by a Postdoctoral Fellowship from FAPESP to UD (number 2012/01584-3) and by project
funding from CNPq to ZD (numbers 306730/2012-0, 477692/2012-5 and 483370/2013-4).

Aaron
asymptotic 2-approximation algorithm

Aaron
O(n2)

Aaron
We believe this lower bound can be improved, which could lead to a better approximation factor.

Aaron
lower bound

Aaron
diameter

Aaron
2-app is the best

Aaron
ptSort and prSort depends on the number of prefix reversal breakpoints.

Aaron
intersection

Aaron
it is easier to remove prefix reversal breakpoints with prefix transpositions when the number of breakpoints is high

Aaron
how often each algorithm provides the smallest sorting sequence.

Aaron
longer than 30 elements

Aaron
evaluate the conditions that make our algorithm results differ from the distance

Aaron
We intend to study a formal proof for this conjecture.

Aaron
on signed permutations.

Aaron
Signed reversals are more significant for the biology

Z. Dias, U. Dias / Discrete Applied Mathematics 181 (2015) 78–89 89

The authors thank Espaço da Escrita—Coordenadoria Geral da Universidade—UNICAMP—for the language services
provided.

The authors thank the Center for Computational Engineering and Sciences at Unicamp for financial support through the
FAPESP/CEPID Grant 2013/08293-7.

The authors also acknowledge ‘‘Laboratório Multiusuário de Bioinformática da Embrapa’’ for the use of computational
resources.

References

[1] V. Bafna, P. Pevzner, Genome rearrangements and sorting by reversals, SIAM J. Comput. 25 (1996) 272–289.
[2] V. Bafna, P.A. Pevzner, Sorting by transpositions, SIAM J. Discrete Math. 11 (1998) 224–240.
[3] P. Berman, S. Hannenhalli, M. Karpinski, 1.375-approximation algorithm for sorting by reversals, in: Proceedings of the 10th Annual European

Symposium on Algorithms, ESA’2002, Rome, Italy, pp. 200–210.
[4] L. Bulteau, G. Fertin, I. Rusu, Pancake flipping is hard, in: Mathematical Foundations of Computer Science 2012, in: Lecture Notes in Computer Science,

vol. 7464, 2012, pp. 247–258.
[5] L. Bulteau, G. Fertin, I. Rusu, Sorting by transpositions is difficult, SIAM J. Comput. 26 (2012) 1148–1180.
[6] A. Caprara, Sorting permutations by reversals and eulerian cycle decompositions, SIAM J. Discrete Math. 12 (1999) 91–110.
[7] B. Chitturi, W. Fahle, Z. Meng, L. Morales, C. Shields, I. Sudborough, W. Voit, An (18/11)n upper bound for sorting by prefix reversals, Theoret. Comput.

Sci. 410 (2009) 3372–3390.
[8] B. Chitturi, I. Sudborough, Bounding prefix transposition distance for strings and permutations, Theoret. Comput. Sci. 421 (2012) 15–24.
[9] D.A. Christie, A 3/2-approximation algorithm for sorting by reversals, in: Proceedings of the 9thAnnual ACM–SIAMSymposiumonDiscreteAlgorithms,

SODA’98, San Francisco, California, United States, pp. 244–252.
[10] U. Dias, Z. Dias, Heuristics for the transposition distance problem, J. Bioinform. Comput. Biol. 11 (2013) 1350013.
[11] U. Dias, G.R. Galvão, C.N. Lintzmayer, Z. Dias, A general heuristic for genome rearrangement problems, J. Bioinform. Comput. Biol. 12 (2014) 1450012.
[12] Z. Dias, J. Meidanis, Sorting by prefix transpositions, in: Proceedings of the 9th International Symposium on String Processing and Information

Retrieval, SPIRE’2002, Lisbon, Portugal, pp. 65–76.
[13] H. Dweighter, Problem e2569, Amer. Math. Monthly 82 (1975) 1010.
[14] I. Elias, T. Hartman, A 1.375-approximation algorithm for sorting by transpositions, IEEE/ACM Trans. Comput. Biol. Bioinform. 3 (2006) 369–379.
[15] G. Fertin, A. Labarre, I. Rusu, E. Tannier, S. Vialette, Combinatorics of Genome Rearrangements, The MIT Press, 2009.
[16] J. Fischer, S. Ginzinger, A 2-approximation algorithm for sorting by prefix reversals, in: Algorithms—ESA 2005, in: Lecture Notes in Computer Science,

vol. 3669, 2005, pp. 415–425.
[17] W. Gates, C. Papadimitriou, Bounds for sorting by prefix reversal, Discrete Math. 27 (1979) 47–57.
[18] M.H. Heydari, I.H. Sudborough, On the diameter of the pancake network, J. Algorithms 25 (1997) 67–94.
[19] J. Kececioglu, D. Sankoff, Exact and approximation algorithms for the inversion distance between two chromosomes, Algorithmica 13 (1995) 80–110.
[20] A. Labarre, Lower bounding edit distances between permutations, SIAM J. Discrete Math. 27 (2013) 1410–1428.
[21] S. Lakshmivarahan, J.S. Jwo, S.K. Dhall, Symmetry in interconnection networks based on Cayley graphs of permutation groups: a survey, Parallel

Comput. 19 (1993) 361–407.
[22] M. Sharmin, R. Yeasmin, M. Hasan, A. Rahman, M.S. Rahman, Pancake flipping with two spatulas, Electron. Notes Discrete Math. 36 (2010) 231–238.

http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref1
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref2
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref4
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref5
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref6
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref7
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref8
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref10
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref11
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref13
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref14
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref15
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref16
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref17
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref18
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref19
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref20
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref21
http://refhub.elsevier.com/S0166-218X(14)00396-5/sbref22
Aaron
[15]

Aaron
[16]

Aaron
[12

Aaron
[22]

	Sorting by Prefix Reversals and Prefix Transpositions
	Introduction
	Basic definitions
	Previous algorithms
	Algorithm for sorting by prefix reversals and prefix transpositions
	Removing prefix reversal breakpoints
	Dealing with π1 = 1

	Experimental results
	Conclusions and future work
	Acknowledgments
	References

