
Information Processing Letters 168 (2021) 106097

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Longest previous overlapping factor array

Hideo Bannai a, Shunsuke Inenaga b,c, Neerja Mhaskar d,∗
a M&D Data Science Center, Tokyo Medical and Dental University, Japan
b Department of Informatics, Kyushu University, Japan
c PRESTO, Japan Science and Technology Agency, Japan
d Department of Computing and Software, McMaster University, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 December 2019
Received in revised form 18 November 2020
Accepted 13 January 2021
Available online 26 January 2021
Communicated by Abhi Shelat

Keywords:
Algorithms
Longest previous overlapping factor
Overlapping factor
Manhattan skyline problem

In this paper, we introduce the longest previous overlapping factor array of a string – a variant
of the longest previous factor array. We show that it can be computed in linear time in the
length of the input string, via a reduction to the Max-variant of the Manhattan skyline
problem Crochemore et al. (2014) [5].

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Crochemore and Ilie in [3] introduced the longest pre-
vious factor array (LPF): given a string w of length n, for
any position i in w, LPF[i] stores the length of the longest
prefix of w[i..n] that has a previous occurrence which be-
gins in the position range [1..i − 1] of w. Several linear
time algorithms have been proposed to compute the LPF
array [3,4]. Of the many applications of the LPF array, one
of its most important application is its use in the compu-
tation of the famous Lempel-Ziv factorization [10] used for
data compression.

Later, an important variant of the LPF array, called
the longest previous non-overlapping factor array (LPnF) was
proposed [6,7]: LPnF[i] stores the length of the longest
prefix of w[i..n] that has a previous occurrence which ends
in position range [1..i − 1] of w. Thus, for any 1 ≤ i ≤ n,
the corresponding factor w[i..i +LPnF[i] − 1] must have a

* Corresponding author.
E-mail addresses: hdbn.dsc@tmd.ac.jp (H. Bannai),

inenaga@inf.kyushu-u.ac.jp (S. Inenaga), pophlin@mcmaster.ca
(N. Mhaskar).
https://doi.org/10.1016/j.ipl.2021.106097
0020-0190/© 2021 Elsevier B.V. All rights reserved.
previous occurrence that does not overlap with position i.
It is known that the LPnF array of a string of length n can
be computed in O(n) time [6,7]. The main application of
LPnF is the Lempel-Ziv factorization without self-references
(a.k.a. f-factorization) [2], which plays a central role in the
solutions to various string problems such as approxima-
tion of the smallest grammar-based compression [9], and
computation of all maximal repetitions (a.k.a. runs) [8] in
a given string, just to mention a few. Other variants of the
LPF array have been proposed in the literature, for exam-
ple the longest reverse factor array [6], which can also be
computed in linear time in the length of the input string.

In this paper, we discuss another variant of LPF, called
the longest previous overlapping factor array (LPoF) of a
given string. Namely, LPoF[i] stores the length of the
longest prefix of w[i..n] that has a previous occurrence
which ends in the position range [i..i + LPoF[i] − 2]
of w. Thus, for any 1 ≤ i ≤ n, the corresponding factor
w[i..i +LPnF[i] − 1] must have a previous occurrence that
does overlap with position i. The LPoF array is a natural
extension to the LPF array and can be seen as a com-
plement to LPnF, since LPF[i] = max{LPnF[i], LPoF[i]}
always holds. While there exists a simple O(n)-time algo-

https://doi.org/10.1016/j.ipl.2021.106097
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2021.106097&domain=pdf
mailto:hdbn.dsc@tmd.ac.jp
mailto:inenaga@inf.kyushu-u.ac.jp
mailto:pophlin@mcmaster.ca
https://doi.org/10.1016/j.ipl.2021.106097

H. Bannai, S. Inenaga and N. Mhaskar Information Processing Letters 168 (2021) 106097

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

w a b a a a b a b a a a b a b a a b
LPF 0 0 1 2 3 2 10 9 8 7 6 5 4 3 3 2 1
LPnF 0 0 1 1 3 2 6 6 6 6 6 5 4 3 3 2 1
LPoF 0 0 0 2 0 0 10 9 8 7 0 0 3 0 0 0 0

Fig. 1. The LPF,LPnF, and LPoF arrays for string w = abaaababaaababaab.
rithm which computes the LPF array from the Suffix Array
and the Longest Common Prefix Array [3,4], the above equa-
tion suggests yet another approach for computing the LPF
array.

On the other hand, we remark that the LPoF array can-
not be computed trivially from either or both the LPF and
LPnF arrays. This poses an interesting theoretical ques-
tion: Can we compute the LPoF array in O(n) time? We
answer this question affirmatively, by presenting a linear-
time algorithm which computes the LPoF array using a
linear-time algorithm for solving a variant of the Manhat-
tan skyline problem [5].

The outline of the paper is as follows: in Section 2,
we give the mathematical background and briefly discuss
a variant of the Manhattan skyline problem. In Section 3,
we present our algorithm to compute the LPoF array.

2. Preliminaries

2.1. Strings

A string w is an ordered sequence of letters or symbols
chosen from a finite totally ordered set of �, called an al-
phabet. The length of w is written |w| = n. Throughout this
paper, we assume that � is the integer alphabet of poly-
nomial size in n.

We also write a string w of length n in an array form
as w[1..n]. We denote by w[i] the i-th letter of w. A string
w[i.. j], where 1 ≤ i ≤ j ≤ n, is called a substring or a factor
of w[1..n]. A substring w[i.. j] is a proper substring of w if
j − i + 1 < n. A substring w[1.. j], where 1 ≤ j ≤ n is called
a prefix of w. A substring w[i..n], where 1 ≤ i ≤ n is called
a suffix of w.

A positive integer p is said to be a period of a string
w of length n if w[i] = w[i + p] for any 1 ≤ i ≤ n − p. A
non-empty string w of even length is said to be a square
if w has a period |w|

2 (or equivalently if w is of the form
xx). A substring u = w[i.. j] of w is called a repetition in
w if the smallest period p of u satisfies p ≤ |u|

2 = j−i+1
2 . A

repetition u = w[i.. j] of w is said to be a maximal repetition
or a run in w if the period p cannot be extended to the
left or to the right, i.e., i = 1 or w[i − 1] �= w[i + p − 1],
and j = n or w[j + 1] �= w[j − p + 1]. Each run r in w is
represented by a triple (i, j, p) such that r = w[i.. j] and p
is the smallest period of r.

Theorem 1 ([8,1]). For any string w of length n, the number
of runs in w is O(n). Also, all runs in w can be computed in
O(n) time and space if w is drawn from an integer alphabet of
polynomial size in n.

The paper [1] presents a new and much simpler algo-
rithm for calculating runs.
2

2.2. Longest previous overlapping factor array

Given a string u of the form u = vx = yv, where
|u| > |v| > |x|, v is called an overlapping factor. For exam-
ple, given the string u = abacabacaba = (abac)2aba,
abacaba is an overlapping factor of u.

Given a string w of length n, the Longest Previous Over-
lapping Factor array (LPoF) is an integer array of length n
where each element

LPoF[i] = max{� ≥ 2 | w[k..k + � − 1] = w[i..i + � − 1],
k < i ≤ k + � − 1}

if such � exists, otherwise it is 0.
Fig. 1 gives the LPF, LPnF, and LPoF arrays corre-

sponding to the string w = abaaababaaababaab. It is
easy to see that the LPF array can be trivially computed
from both the LPnF and LPoF arrays, as the i-th element
of the LPF array is simply the maximum of the i-th el-
ements of the LPnF and LPoF arrays; that is, LPF[i] =
max{LPnF[i], LPoF[i]} for any 1 ≤ i ≤ n.

Note however that the LPF array can also be computed
in linear time using the Suffix Array and the Longest Com-
mon Prefix Array, which is conceptually simpler than the
approach mentioned above.

2.3. Manhattan skyline problem

Crochemore et al. [5] presented the Min-variant of
the Manhattan Skyline Problem, and showed that it can
be computed in linear time. Here we consider the Max-
variant of the Manhattan Skyline Problem (MSP) as shown
below.

Input: A set S of O(n) subintervals of [1..n], where
each subinterval [i.. j] is associated with a nat-
ural weight, height([i.. j]), of size O(n).

Output: A table f [t] = max{height([i.. j]) | t ∈ [i.. j], [i.. j] ∈
S}, t ∈ [1..n].

The Max-variant of MSP can be solved in O(n) time
using the same strategy given in [5] to solve the Min-
variant of MSP with the exception of sorting the intervals
in non-increasing order instead of non-decreasing order.
Consequently, we obtain the following lemma.

Lemma 2. The Max-variant of MSP can be solved in O(n) time.

3. Computing the LPoF array

We follow a similar schema presented in [5] for com-
puting internal local periods of a string, to compute the

H. Bannai, S. Inenaga and N. Mhaskar Information Processing Letters 168 (2021) 106097
LPoF array values; that is, we infer the LPoF array val-
ues from the run structure of w. More specifically, we
observe that any overlapping string in w corresponds to
one of the runs in w. If LPoF[i] = �, then for some k
such that � > i − k, w[k..i − 1] = w[i..i + (i − k) − 1], and
w[k..i + (i − k) − 1] is a square of period i − k. This also
implies that there must exist a run (b, e, p) with period
p = i − k containing position i. Furthermore, it must sat-
isfy b + p ≤ i ≤ e − p. The last condition is due to the
fact that a run (b, e, p) with min{1, i − p + 1} ≤ b or
e ≤ min{i + p − 1, n} does not contribute to the value of
LPoF[i]. For example in Fig. 1, although the run (1, 16, 6)

contains the position i = 11, it does not satisfy the condi-
tion b + p ≤ i ≤ e − p, and therefore it does not contribute
to the value of LPoF[11].

The rationale for the last condition is as follows. For
two occurrences of a substring u, where |u| = �, to overlap
in a run, � must be larger than the period p of the run.
Consequently, these overlapping occurrences, say at indices
i1 and i2 > i1, are separated by p positions in the run;
that is, i2 − i1 = p. However, for a substring occurring at
an index b ≤ i < b + p, its previous overlapping occurrence
must be at i − p < b. This case is not possible as the run
would be left extensible. Further, for a substring starting at
index e − p < i ≤ e, it has a length < p in the run, and as
result does not overlap with any of its occurrences in the
run. Therefore, both these cases do not contribute to the
LPoF[i] values.

There can be more than one such run that contains po-
sition i, but the one that gives the largest � is the one
with the largest endpoint e. For example, in Fig. 1 the po-
sition i = 7 is contained in two runs (1, 16, 6), and (5, 9, 2)

which satisfy the above conditions. Since we are interested
in the largest �, we consider the run (1, 16, 6) with the
largest endpoint e = 16.

To this end, we reduce the computation of each ele-
ment of the LPoF array to an instance of the Max-variant
of the Manhattan Skyline problem as follows:

LPoF[i] = max{height(t) | i ∈ t, t ∈ I} − i + 1,

where I is the set of intervals corresponding to the runs in
w such that

I = {[b + p..e − p] | (b, e, p) is a run in w,

and b + p ≤ e − p},
and height(t) = e is the weight of the interval t = [b +
p..e − p] for each run (b, e, p). Then, for any i, LPoF[i]
is the largest weight of all the intervals containing i, if
such intervals exist; otherwise LPoF[i] = 0. This is an in-
stance of the Max-variant of the Manhattan Skyline Prob-
lem shown above. By Lemma 2, it can be computed in
O(n) time. Since we can compute all runs in w in O(n)

time by Theorem 1, LPoF array can be computed in O(n)

time. Therefore, we have shown the following:

Theorem 3. For any string w of length n, over an integer al-
phabet of polynomial size in n, the LPoF array of w can be
computed in O(n) time and space.

For example, the string w given in Fig. 1 contains
the following runs: (1, 16, 6), (3, 5, 1), (5, 9, 2), (9, 11, 1),
(11, 15, 2) and (15, 16, 1). Then we get,

I = {[7..10], [4..4], [7..7], [10..10], [13..13]}
with weights 16, 5, 9, 11, and 15, respectively. Consider an
index i = 7. This index is contained in intervals [7..10]
and [7..7] with weights 16 and 9 respectively. Therefore,
LPoF[7] = 16 − 7 + 1 = 10.

Declaration of competing interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this pa-
per.

Acknowledgements

This work is based on the authors’ discussions during
the StringMasters workshop held in Prague, August 29-31,
2018.

This work was supported by JSPS KAKENHI [Grant
Numbers JP16H02783, 20H04141 (HB), JP17H01697 (SI)],
and by JST PRESTO [Grant Number JPMJPR1922 (SI)].

References

[1] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, K. Tsuruta, The
“Runs” theorem, SIAM J. Comput. 46 (5) (2017) 1501–1514.

[2] M. Crochemore, C. Hancart, T. Lecroq, Algorithms on Strings, Cam-
bridge University Press, 2007.

[3] M. Crochemore, L. Ilie, Computing longest previous factor in linear
time and applications, Inf. Process. Lett. 106 (2008) 75–80.

[4] M. Crochemore, L. Ilie, C.S. Iliopoulos, M. Kubica, W. Rytter, T. Waleń,
Computing the longest previous factor, Electron. J. Comb. 34 (2013)
15–26.

[5] M. Crochemore, C.S. Iliopoulos, M. Kubica, J. Radoszewski, W. Ryt-
ter, T. Waleń, Extracting powers and periods in a word from its runs
structure, Theor. Comput. Sci. 521 (2014) 29–41.

[6] M. Crochemore, C.S. Iliopoulos, M. Kubica, W. Rytter, T. Waleń, Effi-
cient algorithms for three variants of the LPF table, J. Discret. Algo-
rithms 11 (2012) 51–61.

[7] M. Crochemore, G. Tischler, Computing longest previous non-
overlapping factors, Inf. Process. Lett. 111 (6) (2011) 291–295.

[8] R.M. Kolpakov, G. Kucherov, Finding maximal repetitions in a word
in linear time, in: FOCS 1999, 1999, pp. 596–604.

[9] W. Rytter, Application of Lempel-Ziv factorization to the approxima-
tion of grammar-based compression, Theor. Comput. Sci. 302 (1–3)
(2003) 211–222.

[10] J. Ziv, A. Lempel, A universal algorithm for sequential data compres-
sion, IEEE Trans. Inf. Theory IT-23 (3) (1977) 337–349.
3

http://refhub.elsevier.com/S0020-0190(21)00011-9/bibC61B8E121C48A42A8B3B90F1ADDB8298s1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bibC61B8E121C48A42A8B3B90F1ADDB8298s1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bibC6D03775DCE2D3AB0D49EC9D3822306Cs1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bibC6D03775DCE2D3AB0D49EC9D3822306Cs1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bibE87FDD447E6CDA4E84AD9235B9514DEEs1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bibE87FDD447E6CDA4E84AD9235B9514DEEs1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bib7720E33EBE730F8EB941DBD34545D6D9s1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bib7720E33EBE730F8EB941DBD34545D6D9s1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bib7720E33EBE730F8EB941DBD34545D6D9s1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bib138EAFDB7D7094391199D36585CAEC73s1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bib138EAFDB7D7094391199D36585CAEC73s1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bib138EAFDB7D7094391199D36585CAEC73s1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bib43084C28B3048002023F3A8660B98E34s1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bib43084C28B3048002023F3A8660B98E34s1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bib43084C28B3048002023F3A8660B98E34s1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bib7DEA79E6CF2C57099D3670021656E3BAs1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bib7DEA79E6CF2C57099D3670021656E3BAs1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bib540E150A665FC1312F8D2C2D8B933016s1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bib540E150A665FC1312F8D2C2D8B933016s1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bibFCAF9004BA51E0D4389A80B50A3CD8BCs1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bibFCAF9004BA51E0D4389A80B50A3CD8BCs1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bibFCAF9004BA51E0D4389A80B50A3CD8BCs1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bibF6B1E796B8FFAE4172E2752C26DD404Cs1
http://refhub.elsevier.com/S0020-0190(21)00011-9/bibF6B1E796B8FFAE4172E2752C26DD404Cs1

	Longest previous overlapping factor array
	1 Introduction
	2 Preliminaries
	2.1 Strings
	2.2 Longest previous overlapping factor array
	2.3 Manhattan skyline problem

	3 Computing the LPoF array
	Declaration of competing interest
	Acknowledgements
	References

