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In this paper, we introduce the longest previous overlapping factor array of a string – a variant 
of the longest previous factor array. We show that it can be computed in linear time in the 
length of the input string, via a reduction to the Max-variant of the Manhattan skyline 
problem Crochemore et al. (2014) [5].
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1. Introduction

Crochemore and Ilie in [3] introduced the longest pre-
vious factor array (LPF): given a string w of length n, for 
any position i in w, LPF[i] stores the length of the longest 
prefix of w[i..n] that has a previous occurrence which be-
gins in the position range [1..i − 1] of w. Several linear 
time algorithms have been proposed to compute the LPF
array [3,4]. Of the many applications of the LPF array, one 
of its most important application is its use in the compu-
tation of the famous Lempel-Ziv factorization [10] used for 
data compression.

Later, an important variant of the LPF array, called 
the longest previous non-overlapping factor array (LPnF) was 
proposed [6,7]: LPnF[i] stores the length of the longest 
prefix of w[i..n] that has a previous occurrence which ends 
in position range [1..i − 1] of w. Thus, for any 1 ≤ i ≤ n, 
the corresponding factor w[i..i +LPnF[i] − 1] must have a 
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previous occurrence that does not overlap with position i. 
It is known that the LPnF array of a string of length n can 
be computed in O(n) time [6,7]. The main application of 
LPnF is the Lempel-Ziv factorization without self-references
(a.k.a. f-factorization) [2], which plays a central role in the 
solutions to various string problems such as approxima-
tion of the smallest grammar-based compression [9], and 
computation of all maximal repetitions (a.k.a. runs) [8] in 
a given string, just to mention a few. Other variants of the 
LPF array have been proposed in the literature, for exam-
ple the longest reverse factor array [6], which can also be 
computed in linear time in the length of the input string.

In this paper, we discuss another variant of LPF, called 
the longest previous overlapping factor array (LPoF) of a 
given string. Namely, LPoF[i] stores the length of the 
longest prefix of w[i..n] that has a previous occurrence 
which ends in the position range [i..i + LPoF[i] − 2]
of w. Thus, for any 1 ≤ i ≤ n, the corresponding factor 
w[i..i +LPnF[i] − 1] must have a previous occurrence that 
does overlap with position i. The LPoF array is a natural 
extension to the LPF array and can be seen as a com-
plement to LPnF, since LPF[i] = max{LPnF[i], LPoF[i]}
always holds. While there exists a simple O(n)-time algo-
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

w a b a a a b a b a a a b a b a a b
LPF 0 0 1 2 3 2 10 9 8 7 6 5 4 3 3 2 1
LPnF 0 0 1 1 3 2 6 6 6 6 6 5 4 3 3 2 1
LPoF 0 0 0 2 0 0 10 9 8 7 0 0 3 0 0 0 0

Fig. 1. The LPF,LPnF, and LPoF arrays for string w = abaaababaaababaab.
rithm which computes the LPF array from the Suffix Array
and the Longest Common Prefix Array [3,4], the above equa-
tion suggests yet another approach for computing the LPF
array.

On the other hand, we remark that the LPoF array can-
not be computed trivially from either or both the LPF and 
LPnF arrays. This poses an interesting theoretical ques-
tion: Can we compute the LPoF array in O(n) time? We 
answer this question affirmatively, by presenting a linear-
time algorithm which computes the LPoF array using a 
linear-time algorithm for solving a variant of the Manhat-
tan skyline problem [5].

The outline of the paper is as follows: in Section 2, 
we give the mathematical background and briefly discuss 
a variant of the Manhattan skyline problem. In Section 3, 
we present our algorithm to compute the LPoF array.

2. Preliminaries

2.1. Strings

A string w is an ordered sequence of letters or symbols
chosen from a finite totally ordered set of �, called an al-
phabet. The length of w is written |w| = n. Throughout this 
paper, we assume that � is the integer alphabet of poly-
nomial size in n.

We also write a string w of length n in an array form 
as w[1..n]. We denote by w[i] the i-th letter of w. A string 
w[i.. j], where 1 ≤ i ≤ j ≤ n, is called a substring or a factor
of w[1..n]. A substring w[i.. j] is a proper substring of w if 
j − i + 1 < n. A substring w[1.. j], where 1 ≤ j ≤ n is called 
a prefix of w. A substring w[i..n], where 1 ≤ i ≤ n is called 
a suffix of w.

A positive integer p is said to be a period of a string 
w of length n if w[i] = w[i + p] for any 1 ≤ i ≤ n − p. A 
non-empty string w of even length is said to be a square
if w has a period |w|

2 (or equivalently if w is of the form 
xx). A substring u = w[i.. j] of w is called a repetition in 
w if the smallest period p of u satisfies p ≤ |u|

2 = j−i+1
2 . A 

repetition u = w[i.. j] of w is said to be a maximal repetition
or a run in w if the period p cannot be extended to the 
left or to the right, i.e., i = 1 or w[i − 1] �= w[i + p − 1], 
and j = n or w[ j + 1] �= w[ j − p + 1]. Each run r in w is 
represented by a triple (i, j, p) such that r = w[i.. j] and p
is the smallest period of r.

Theorem 1 ([8,1]). For any string w of length n, the number 
of runs in w is O(n). Also, all runs in w can be computed in 
O(n) time and space if w is drawn from an integer alphabet of 
polynomial size in n.

The paper [1] presents a new and much simpler algo-
rithm for calculating runs.
2

2.2. Longest previous overlapping factor array

Given a string u of the form u = vx = yv, where 
|u| > |v| > |x|, v is called an overlapping factor. For exam-
ple, given the string u = abacabacaba = (abac)2aba, 
abacaba is an overlapping factor of u.

Given a string w of length n, the Longest Previous Over-
lapping Factor array (LPoF) is an integer array of length n
where each element

LPoF[i] = max{� ≥ 2 | w[k..k + � − 1] = w[i..i + � − 1],
k < i ≤ k + � − 1}

if such � exists, otherwise it is 0.
Fig. 1 gives the LPF, LPnF, and LPoF arrays corre-

sponding to the string w = abaaababaaababaab. It is 
easy to see that the LPF array can be trivially computed 
from both the LPnF and LPoF arrays, as the i-th element 
of the LPF array is simply the maximum of the i-th el-
ements of the LPnF and LPoF arrays; that is, LPF[i] =
max{LPnF[i], LPoF[i]} for any 1 ≤ i ≤ n.

Note however that the LPF array can also be computed 
in linear time using the Suffix Array and the Longest Com-
mon Prefix Array, which is conceptually simpler than the 
approach mentioned above.

2.3. Manhattan skyline problem

Crochemore et al. [5] presented the Min-variant of 
the Manhattan Skyline Problem, and showed that it can 
be computed in linear time. Here we consider the Max-
variant of the Manhattan Skyline Problem (MSP) as shown 
below.

Input: A set S of O(n) subintervals of [1..n], where 
each subinterval [i.. j] is associated with a nat-
ural weight, height([i.. j]), of size O(n).

Output: A table f [t] = max{height([i.. j]) | t ∈ [i.. j], [i.. j] ∈
S}, t ∈ [1..n].

The Max-variant of MSP can be solved in O(n) time 
using the same strategy given in [5] to solve the Min-
variant of MSP with the exception of sorting the intervals 
in non-increasing order instead of non-decreasing order. 
Consequently, we obtain the following lemma.

Lemma 2. The Max-variant of MSP can be solved in O(n) time.

3. Computing the LPoF array

We follow a similar schema presented in [5] for com-
puting internal local periods of a string, to compute the 
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LPoF array values; that is, we infer the LPoF array val-
ues from the run structure of w. More specifically, we 
observe that any overlapping string in w corresponds to 
one of the runs in w. If LPoF[i] = �, then for some k
such that � > i − k, w[k..i − 1] = w[i..i + (i − k) − 1], and 
w[k..i + (i − k) − 1] is a square of period i − k. This also 
implies that there must exist a run (b, e, p) with period 
p = i − k containing position i. Furthermore, it must sat-
isfy b + p ≤ i ≤ e − p. The last condition is due to the 
fact that a run (b, e, p) with min{1, i − p + 1} ≤ b or 
e ≤ min{i + p − 1, n} does not contribute to the value of 
LPoF[i]. For example in Fig. 1, although the run (1, 16, 6)

contains the position i = 11, it does not satisfy the condi-
tion b + p ≤ i ≤ e − p, and therefore it does not contribute 
to the value of LPoF[11].

The rationale for the last condition is as follows. For 
two occurrences of a substring u, where |u| = �, to overlap 
in a run, � must be larger than the period p of the run. 
Consequently, these overlapping occurrences, say at indices 
i1 and i2 > i1, are separated by p positions in the run; 
that is, i2 − i1 = p. However, for a substring occurring at 
an index b ≤ i < b + p, its previous overlapping occurrence 
must be at i − p < b. This case is not possible as the run 
would be left extensible. Further, for a substring starting at 
index e − p < i ≤ e, it has a length < p in the run, and as 
result does not overlap with any of its occurrences in the 
run. Therefore, both these cases do not contribute to the 
LPoF[i] values.

There can be more than one such run that contains po-
sition i, but the one that gives the largest � is the one 
with the largest endpoint e. For example, in Fig. 1 the po-
sition i = 7 is contained in two runs (1, 16, 6), and (5, 9, 2)

which satisfy the above conditions. Since we are interested 
in the largest �, we consider the run (1, 16, 6) with the 
largest endpoint e = 16.

To this end, we reduce the computation of each ele-
ment of the LPoF array to an instance of the Max-variant 
of the Manhattan Skyline problem as follows:

LPoF[i] = max{height(t) | i ∈ t, t ∈ I} − i + 1,

where I is the set of intervals corresponding to the runs in 
w such that

I = {[b + p..e − p] | (b, e, p) is a run in w,

and b + p ≤ e − p},
and height(t) = e is the weight of the interval t = [b +
p..e − p] for each run (b, e, p). Then, for any i, LPoF[i]
is the largest weight of all the intervals containing i, if 
such intervals exist; otherwise LPoF[i] = 0. This is an in-
stance of the Max-variant of the Manhattan Skyline Prob-
lem shown above. By Lemma 2, it can be computed in 
O(n) time. Since we can compute all runs in w in O(n)

time by Theorem 1, LPoF array can be computed in O(n)

time. Therefore, we have shown the following:

Theorem 3. For any string w of length n, over an integer al-
phabet of polynomial size in n, the LPoF array of w can be 
computed in O(n) time and space.

For example, the string w given in Fig. 1 contains 
the following runs: (1, 16, 6), (3, 5, 1), (5, 9, 2), (9, 11, 1), 
(11, 15, 2) and (15, 16, 1). Then we get,

I = {[7..10], [4..4], [7..7], [10..10], [13..13]}
with weights 16, 5, 9, 11, and 15, respectively. Consider an 
index i = 7. This index is contained in intervals [7..10]
and [7..7] with weights 16 and 9 respectively. Therefore, 
LPoF[7] = 16 − 7 + 1 = 10.
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