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Abstract

We consider the problem of identifying tandem scattered subsequences within
a string. Our algorithm identifies a longest subsequence which occurs twice
without overlap in a string. This algorithm is based on the Hunt-Szymanski
algorithm, therefore its performance improves if the string is not self similar.
This occurs naturally on strings over large alphabets. Our algorithm relies
on new results for data structures that support dynamic longest increasing
sub-sequences. In the process we also obtain improved algorithms for the
decremental string comparison problem.

Keywords: dynamic programming, Hunt-Szymanski algorithm, longest
increasing sub-sequence
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1. Introduction

In this paper we study longest common scattered sub-sequences (LCSS).
Given two strings P and S the LCSS is used extensively as a measure of
similarity. In particular we consider a variant of this problem, where the
LCSS must occur twice without overlap in an initial string F . We study al-
gorithms and data structures that are relevant for this goal. Namely we use
the Hunt-Szymanski algorithm (1977) and present new results for data struc-
tures that maintain information about the longest increasing sub-sequence
of a dynamic sequence of numbers and new algorithms for the decremental
string comparison problem. Specifically we obtain the following results:
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1. A data structure to maintain the longest increasing subsequence (LIS)
of a dynamic list of numbers. This structure can be used to efficiently:
Append a number at the end of the list; remove the current minimum
value from the sequence (ExtractMin); obtain a current longest in-
creasing subsequence (GetLIS). When the list contains ! ≥ 2 elements,
the operation Append requires O(log !) time1. If the size of the LIS
is λ ≥ 2 then the ExtractMin operation requires O(λ log !) time. See
Theorem 1. We further improve these bounds by analyzing batches
of operations and assuming the final sequence is empty. In this case
ExtractMin requires O(λ(1 + log(min{λ, !/λ}))) amortized time per
operation and Append requires O(1) amortized time, when the num-
bers are inserted in decreasing sequences of size at least λ elements.
See Theorem 2. This structure uses optimal O(!) space.

2. Using the Hunt and Szymanski (1977) reduction from LCSS to LIS we
obtain new bounds for the decremental string comparison problem. In
particular, for a given string F of size n > 1, we show that it is possible
to obtain all the LCSS values for all the pairs of strings P and S such
that F = P.S in O(min{n, !}λ(1 + log(min{λ, !/λ})) + nλ + !) time,
where λ ≥ 2 is the size of the LCSS and ! ≥ 2 is the number of pairs
of positions in F that contain the same letter. Therefore it is possible
to determine the LTSS within this time, i.e., the LCSS which occurs
twice without overlap in a string F .

2. The problem

Let us start by describing the longest tandem scattered sub-sequence
(LTSS) problem of a given string F . We will use a running example with
F = AGCGAACGGGTA. The meaning of tandem is that the sub-sequence needs
to occur twice without overlap in F . Therefore F can be partitioned into a
prefix P and a suffix S, i.e., F = P.S, such that the desired scattered sub-
sequence is a longest common scattered sub-sequence (LCSS) between P and
S. To determine which partition yields the overall largest sub-sequence it is
necessary to test all such partitions.

1Note that to simplify expressions as O(1+ log !) we impose restrictions on parameters
such as ! ≥ 2. This also avoids invalid expressions such as when ! = 0. In general the
complexity of the excluded cases is O(1).
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Let us consider the partition with P = AGCG and S = AACGGGTA. The
LCSS is the longest string that occurs as a scattered sub-sequence of P and
S. Figure 1 illustrates that the string ACG is a longest common scatted sub-
sequence of P and S. A common sub-sequence can be defined as a set of pairs
(i, j) where i is an index over P and j an index over S and the i-th letter of
P is equal to the j-th letter of S, represented as P (i) = S(j). All numbers
i must be distinct among themselves and all numbers j must be distinct
among themselves. Moreover sorting the pairs by i must also yield a sorted
sequence by j. In our example the LCSS for P and S can be represented by
the set {(1, 1), (3, 3), (4, 4)}.

Figure 1 also shows an LCSS for a second prefix suffix decomposition of
F = P ′.S ′. This second decomposition is related to the first as P ′ = P.A and
in fact the LCSS is similar to the previous LCSS, with the extra character A,
i.e., ACGA.

In this example the LCSS between P ′ and S ′ is the desired overall LTSS.

P = A G C G

S = A A C G G G T A

P ′ = A G C G A

S ′ = A C G G G T A

Figure 1: Example of LCSS for two prefix suffix decompositions of F , F = P.S and
F = P ′.S′

3. Reduction to decremental string comparison

In this section we present the main ideas of an algorithm that computes
LTSS. Given a string F we can reduce this problem to computing the size of
the LCSSs for all prefix and suffix decompositions of F , i.e., for all P.S = F ,
where P is a prefix and S is a suffix. The resulting tandem can be obtained
from the overall largest LCSS.

3

Aaron
F = P.S and F =P′.S′

Aaron
a set of pairs (i, j)

Aaron
P(i) = S(j)

Aaron
a sorted sequence by j

Aaron
prefix suffix decomposition

Aaron
the LCSSs for all prefix and suffix decompositions



This process involves n LCSS computations, when the size of F is n.
Each LCSS can be determined with the classical dynamic programming table
between P and S. Table D is a bi-dimensional array that stores integers.
Each value D[i, j] represents the size of the LCSS between the prefix of P
with i letters and the prefix of S with j letters. The coordinate i ranges from
0 to the size of P , likewise coordinate j ranges between 0 and the size of S.
The value 0 represents the empty prefix.

The values D[i, j] can be computed locally according to the equalities
bellow, where P (i) denotes the i-th letter of P and S(j) the j-th letter of S:

D[i, j] = 0 if i = 0 or j = 0 (1)

D[i, j] = D[i− 1, j − 1] + 1 if i, j > 0 and P (i) = S(j) (2)

D[i, j] = max{D[i, j − 1], D[i− 1, j]} if i, j > 0 and P (i) #= S(j) (3)

Let us consider a running example with P = AGCG and S = AACGGGTA.
The values of table D[i, j] are shown in the top portion of Figure 2. For
example the value D[4, 3] is 2, which means that the LCSS between AGCG
and AAC has size 2. The D values can be computed with some local relations,
which we review in Section 4. Hence this table requires O(n2) time to build,
when P and S have O(n) size.

The LCSSs can be recovered with tracebacks. A traceback is a pointer
from a cell D[i, j] to one of its neighboring cells D[i − 1, j], D[i, j − 1] or
D[i− 1, j− 1]. The resulting paths represent the corresponding LCSSs. The
diagonal tracebacks represent matches between the corresponding strings, we
show only these tracebacks in Figure 2. In our example there is a diagonal
traceback from D[4, 4], representing the fact that both strings end with the
letter G. Let us then consider S ′ = ACGGGTA and P ′ = P.A. We also need to
compute the D table for these strings, shown at the in the middle of Figure 2.
To avoid confusion we refer to this table as D′.

We aim to compute a representation of table D′ in O(n) time, instead of
O(n2). First let us highlight the changes between D andD′. ColumnD[i, 1] is
removed, which corresponds to removing A from S. Row D′[5, j] is inserted,
which corresponds to appending A to P . Several values are maintained,
D[i, j + 1] = D′[i, j]. The remaining values decrease by 1, i.e., D′[i, j] =
D[i, j + 1] − 1. In our example only the values of column D′[i, 0] decrease,
the remaining values are maintained. To determine which cells change and
which remain constant we consider another representation of table D. The
representation used in the Hunt-Szymanski algorithm Hunt and Szymanski
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0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1

0 1 1 1 2 2 2 2 2

0 1 1 2 2 2 2 2 2

0 1 1 2 3 3 3 3 3

0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1

0 1 1 2 2 2 2 2

0 1 2 2 2 2 2 2

0 1 2 3 3 3 3 3

0 1 2 3 3 3 3 4

0 0 0 0 0 0 0
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0 0 1 1 1 1 1

0 1 1 1 1 1 1

0 1 2 2 2 2 2

0 1 2 2 2 2 3

0 1 2 2 2 2 3
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Figure 2: Illustration of tables D, D′ and D′′ with diagonal tracebacks.

(1977).

4. Dynamic Hunt-Szymanski Algorithm

In this section we show to efficiently compute decremental string compar-
ison, i.e., a simple and efficient way to obtain table D′ from table D. Let us
start by reviewing and augmenting the Hunt-Szymanski algorithm (Hunt and Szymanski,
1977). The algorithm works by reducing the LCSS to the problem of deter-
mining a longest increasing sub-sequence of numbers (LIS). This reduction is
illustrated in Figure 3. It works in two steps. In the first step it processes S.
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1 2 3 4 5 6 7 8

A A C G G G T A

8 > 2> 1

3

6 > 5> 4

7

⇓ 1st

⇓ 2nd

8, 2, 1 , 6, 5, 4, 3 , 6, 5, 4

A G GC

1 3 4

A C G

S =

P =

L = PS =

MS(A) =

MS(C) =

MS(G) =

MS(T) =

Figure 3: Reduction from LCSS to LIS.

For every letter b in S it computes the list of positions where b occurs in S,
represented by MS(b). In the second step it processes P , from left to right,
and produces a list of numbers PS. For every letter b of P the list MS(b) is
appended to the current list of numbers.

The resulting list PS consists of a list of positions of S, where the same
position may appear several times. Hence selecting a subsequence from PS

is equivalent to choosing letters from S. In our example a resulting longest
increasing subsequence is 1 < 3 < 4. Selecting these letters from S yields
the desired common subsequence ACG. To avoid selecting the same letter
from S repeatedly the LIS needs to be strictly increasing. Moreover, to
guarantee that a letter from P is selected only once the lists MS(b) are
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T1 : 8 > 2 > 1

T2 : 6 > 5 > 4 > 3

T3 : 6 > 5 > 4

T1 : 8 > 2

T2 : 6 > 5 > 4 > 3

T3 : 6 > 5 > 4

T1 : 8 > 2

T2 : 6 > 5 > 4 > 3

T3 : 6 > 5 > 4

T4 : 8

T1 : 8 > 6 > 5 > 4 > 3

T2 : 6 > 5 > 4

T3 : 8

ExtractMin()

Append(8)

Append(2)

ExtractMin()

Append(8)

Figure 4: Dynamic LIS computation. The top box shows the Tk lists for P and S.

sorted in decreasing order and this order is used to build PS.
The Hunt-Szymanski algorithm then proceeds to efficiently compute the

LIS. In this context we represent the list of numbers by L, abstracting away
the process that was used to produce it, i.e. L = PS. To determine the LIS
the algorithm uses a sequence of threshold lists Tk. List Tk contains the value
i of L if the longest increasing subsequence of the first elements of L up to
and including i, has size k. The top box of Figure 4 shows this threshold
structure for the sequence L we are considering.

Now let us return to the decremental string problem and study how this
data structure is affected when P changes to P ′ and S changes to S ′. The
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top part of Figure 2 shows the dynamic programming table D, for P and S.
The figure also illustrates D′ and D′′ for the consecutive decompositions that
append letters to P and remove letters from the beginning of S. This figure
serves to illustrate the relation between the D table and the Tk lists. Figure 2
shows only diagonal tracebacks, as these are the only ones that appear in the
Tk lists. For example consider the cells in D that are equal to 2, the list T2

gives a representation of this set. The cells (2, 6), (2, 5), (2, 4) and (3, 3) are
the respective diagonal tracebacks. The Tk lists store only the j coordinates,
therefore the list T2 contains 6 < 5 < 4 < 3. In general list Tk stores the
decreasing j coordinates of the cells with D value k and diagonal tracebacks.

Computing the threshold structure is done incrementally by processing
the elements of L from left to right. Therefore the original Hunt-Szymanski
algorithm already supports the Append operation, which updates the struc-
ture when a new number is appended. Each list Tk is stored in decreasing
order. With this organization the sequence of tail elements is kept in increas-
ing order throughout the execution of the algorithm. After processing our
sample list L the resulting sequence of tail elements is 1 < 3 < 4. This order
is used to determine in which Tk a given element of L should be inserted.
Let us consider our running example and start with all the Tk lists empty.
The first 8 initializes T1. The 2 is also append to T1 because 8 > 2, likewise
1 is also appended to T1 because 2 > 1. Number 6 initializes list T2, because
1 < 6, which becomes the current sequence of tail elements. Numbers 5, 4
and 3 are also appended to T2, as they are all greater than 1 and in decreas-
ing order. The number 6 initializes list T3, because 1 < 3 < 6. Likewise
5 and 4 are also appended to T3. Since list T3 is not empty, we know that
L contains an increasing subsequence of length 3. Since T4 was left empty,
there is no increasing subsequence of length 4. Therefore the size of a LIS in
our example is 3.

We now focus on adapting the threshold structure to obtain the longest
subsequence which occurs twice without overlap, in a string F . Consider
F = AGCGAACGGGTA, in which case the subsequence could be ACGA, which
has size 4. To compute it we can divide F = P.S into a prefix P and a
suffix S and compute the corresponding LCSS. Notice that this process is
guaranteed to obtain a non-overlapping subsequence, which occurs twice in
F . However the resulting LCSS might not be the longest such subsequence.
In the division we used before the resulting subsequence had only size 3.
Again the straightforward approach is to compute the LCSS for all possible
P and S pairs.
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Our approach aims to avoid repeated computation by modifying the Tk

lists, instead of recomputing them. We will append letters to P and delete
them from to S. Assume that we have the Tk lists for the strings P and
S. We aim to update this structure for strings P ′ = P.A and S ′ = ACGGGTA,
i.e., we want to append a letter to P and remove the first letter from S.
Removing the first letter from S changes the MS(b) lists, in particular all
the positions are offset by 1, for example MS′(G) = 5, 4, 3. This offset does
not alter the relative order of the numbers nor the shape of the threshold
structure. Therefore we ignore this offset, to simplify the exposition. Instead
assume that we start numbering the positions of S ′ at 2. Now the only
change is to MS′(A) = 8, 2, which looses position 1, as it is no longer part of
S ′. In general the position that gets removed is the overall minimum. Hence
we need to apply an ExtractMin operation to the threshold structure. This
operation should remove all the instances of the minimum in L, in this case
all the instances of 1. In this particular example there is only one instance,
but in general there can be several such occurrences.

Due to the decreasing order of the Tk lists and increasing order of the
tail elements it is straightforward to locate the overall minimum element.
The minimum is always the tail element of T1. Notice that even if there
are several instances of the minimum in L there is only one element in T1,
because of our approach of discarding duplicated elements. Now remove this
element from T1. The resulting structure still maintains the necessary orders
as the sequence of the tail elements becomes 2 < 3 < 4, and the internal
order of the Tk’s was not altered. This structure is shown in the second box
of Figure 4. This is indeed the same structure that can be obtained from the
sequence 8, 2, 6, 5, 4, 3, 6, 5, 4. Thus, in this case, no further work is required.

Since P ′ contains an extra A. Hence we need to append the list MS′(A)
to L. Therefore we execute the operations Append(8) and Append(2). This
alters the Tk lists, as explained above. Appending the number 8, initializes
T4, because 2 < 3 < 4 < 8. Appending the number 2 does not produce any
change because it is already the tail of T1. In this case we simply drop
the element, Section 4.1 describes more a elaborated process that is used
when the size of the LIS is not enough and we want to retrieve an actual
such sequence. At this point we obtained a LIS of size 4 which identifies
a LCSS of P ′ and S ′ that is our goal subsequence of F . However to make
sure this is indeed the longest subsequence we must continue the process and
update the Tk lists for P ′′ = P ′.A and S ′′ = CGGGTA. Again we begin by
computing ExtractMin. Notice that the operation removes both instances
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of the number 2. This time the operation is more elaborated because after
removing the 2 from T1 the resulting sequence of tail elements is no longer
increasing. Note that 8 is the tail of T1 and 3 is the tail of T2 and 8 > 3. To
solve this problem we could transfer the 3 from T2 to T1, thus fixing the first
inequality as 3 < 4. However this is not correct. Note that at this point the
sequence L we are considering is 8, 6, 5, 4, 3, 6, 5, 4, in which case T1 should
be 8 > 6 > 5 > 4 > 3. Therefore the correct procedure is to remove all
the elements from T2 and append them to T1. Now T2 becomes empty so all
the elements from T3 are moved to T2, which leads T3 to become empty and
therefore all the elements from T4 are moved to T3. Hence T4 becomes empty
and the process terminates because T4 was the last list.

The general procedure for ExtractMin is to remove the tail element from
T1 and then transfer from T2 to T1 all the elements that are larger than the
current tail element. The process continues from Tk+1 to Tk until there are no
further elements to transfer, either because Tk+1 is empty or all its elements
are larger than the current tail element of Tk. In Section 4.1 we formalize,
extend and analyze this data structure. Our example finishes by appending
8, which gets discarded and therefore does not alter the structure. For P ′′ and
S ′′ the resulting LIS has size 3 and is therefore smaller than the subsequence
ACGA obtained for P ′ and S ′. This was in fact a desired subsequence, but the
algorithm must scan the remaining pairs of prefixes and suffixes to certify
this conclusion.

4.1. Implementation and Analysis

First let us discuss which data structures can be used to efficiently store
the threshold data structure. In the classical Hunt-Szymanski algorithm each
Tk list can be stored in a stack, where reading the Top element and pushing
new elements can be achieved in constant time. There is no need to pop
elements from the stacks, so it is enough to store the Top values. These
values are stored in an array so that it is possible to perform a binary search
on the top elements. The procedure to execute Append(i) is to execute a
binary search on the array to find k such that Top(Tk−1) < i ≤ Top(Tk). If
Tk is empty assume its stack top is +∞, also assume there is a sentinel list
T0 with Top(T0) = −∞. If for the resulting k we have Top(Tk) = i then the
procedure stops, otherwise it performs Push(Tk, i).

To support the ExtractMin operation we prefer to use a different data
structure. We represent the Tk lists using balanced binary search trees
(BST), in particular red-black trees. This allows us to compute Min(Tk),
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Insert(Tk, i), Remove(Tk, i), Predecessor(Tk, i), Split(Tk, v) and
Concatenate(Tk, Tk′) in O(log !) time, where ! is the size of L. Like the
Hunt-Szymanski algorithm, we keep an array Min[k] that stores the tail
element of Tk, so that it can be accessed in constant time. The Min(Tk)
operation finds the smallest element in Tk. When the BST of Tk is empty
it returns +∞. The Insert(Tk, i) operation inserts the number i into the
BST of Tk. The Remove(Tk, i) operation removes the number i from the
BST of Tk, if key i does not exist then an error is reported and the current
process is stopped. The Predecessor(Tk, i) operation finds the largest el-
ement of Tk that is less than or equal to i, i.e., max{j ∈ Tk|j ≤ i}, the
result should be a pointer to the corresponding tree node v, if no such node
exists the pointer should be NULL. The Split(Tk, v) operation divides the
BST of Tk in two by keeping all the nodes with keys strictly larger than v
in Tk and putting v and the remaining nodes in a new BST. The operation
Concatenate(Tk, v) joins the BST containing node v into the BST of Tk,
assuming that all the key values in Tk are larger than or equal to the key in
v and v is the maximum key value in its BST. Recall that we assume that
the values in Tk are not repeated, therefore the Insert and Concatenate
operations drop duplicated elements when they occur. Algorithms 1 and 2
show the pseudo-code for the Append and ExtractMin operations, respec-
tively. Note that for the Append procedure the Min[k] array plays the role
of the Top operation in the classical version.

Let us now analyze the time performance of the Append procedure, Algo-
rithm 1. Without the Min[k] array the overall time would beO((log !)(log λ)+
log !), where the first term accounts for the binary search in lines 4 to 10.
The second term accounts for the Insert operation in line 12. Using the
Min[k] array this term reduces to O(log λ) and thus the overall time be-
comes O(log !) because λ ≤ !, since λ is the size of a subsequence of L.

Now let us analyze the ExtractMin procedure, Algorithm 2. The while

loop executes at most λ times. Each execution requires O(log !) time for the
Predecessor, Split and Concatenate operations. Hence we obtain a bound
of at most O(λ log !) time. However an even tighter bound is possible. This
operation can be bounded by O(

∑λ
k=1 log(|Tk|)), where |Tk| is the size of the

list Tk. Because the log function is concave and the size of all the lists adds
up to ! we can use Jensen’s inequality (1906) to obtain an O(1 + log(!/λ))
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Algorithm 1 Append(i)
Ensure: Updated threshold structure for L with i appended.
1: !← (!+ 1) # Increase size of L.
2: j ← 0
3: k ← (λ+ 1)
4: while j + 1 < k do

5: m← +(j + k)/2,
6: if i > Min[m] then

7: j ← m
8: else

9: k ← m
10: end if

11: end while

12: Insert(Tk, i)
13: Min[k] ← i
14: if k = (λ+ 1) then
15: λ← (λ+ 1) # LIS grows
16: end if

bound. The following derivation justifies the bound.

λ
∑

k=1

log(|Tk|) = λ
λ
∑

k=1

log(|Tk|)

λ

≤ λ log

(

λ
∑

k=1

|Tk|

λ

)

= λ log(!/λ)

For our particular application of the LTSS we do not need to recover
an actual sequence, at least not at the same time as identifying the P.S
partition of F . Still for a general dynamic LIS problem this may be useful.
Hence we will now explain how to augment the data structure to support
such a process.

Recall the L sequences that occur in our running example. In the top of
Figure 5 we show these sequences, numbered L1, L2 and L3, corresponding to
the pairs of strings (P, S), (P ′, S ′) and (P ′′, S ′′). To retrieve the elements from
the list L we need to index them. For L1 this is straightforward to obtain,
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Algorithm 2 ExtractMin()

Require: L is not empty
Ensure: Updated threshold structure for L without the current minimum.
1: !← (!− 1) # Decrease size of L.
2: Remove(T1, Min[1])
3: k ← 2
4: if ! > 0 then

5: while Min(Tk−1) ≥ Min[k] do

6: v ← Predecessor(Tk, Min(Tk−1))
7: Split(Tk, v)
8: Concatenate(Tk−1, v)
9: Min[k − 1] ← Min[k]
10: k ← k + 1
11: end while

12: end if

13: Min[k − 1] ← Min(Tk−1)
14: if Min[λ] = +∞ then

15: λ← (λ− 1) # LIS shrinks
16: end if

we simply number the elements from 1 to 10. However when L1 changes to
L2 and the number 1 is removed, we do not re-index the sequence. A gap is
left at position 3. Likewise when L2 changes to L3 a gap is left at position
2. Position 12 can be re-used because it was the last position of L2.

To retrieve the sequences we augment the elements inside each Tk. Each
element stores a value of i of L and a list which contains positions where i
occurs. These lists must contain at least one such position, but may con-
tain more than one. The lists contain other positions precisely to avoid
repeated elements in a Tk. To support LIS retrieval duplicated elements are
not dropped, instead their positions are stored in lists. Figure 5 shows this
structure for L2 where the list T1 contains the element 2 and the position
list 2, 12. Note that these position lists can be stored in increasing order, for
each element. Moreover the concatenation of these lists, for a fixed Tk, is
also sorted in increasing order. We refer to these global lists as Pk. Hence
for L2 we have P1 = 1, 2, 12 and P2 = 4, 5, 6, 7 and P3 = 8, 9, 10 and P4 = 11.

The possible sequences for our problem are shown in the bottom part of
Figure 5. Each sequence is obtained by choosing one element from T1, T2,
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1 2 3 4 5 6 7 8 9 10 11 12

8 2 1 6 5 4 3 6 5 4

8 2 6 5 4 3 6 5 4 8 2

8 6 5 4 3 6 5 4 8 8

L1 =

L2 =

L3 =

T1 : 8: 1 > 2: 2 < 12

T2 : 6: 4 > 5: 5 > 4: 6 > 3: 7

T3 : 6: 8 > 5: 9 > 4: 10

T4 : 8: 11
Predecessor(P3, 11− 1)

Predecessor(T1, 4− 1)

T1 T2 T3 T4

2:2, 5:5, 6:8, 8:11

2:2, 4:6, 6:8, 8:11

2:2, 3:7, 6:8, 8:11

2:2, 4:6, 5:9, 8:11

2:2, 3:7, 5:9, 8:11

2:2, 3:7, 4:10, 8:11

Figure 5: Top: Example dynamic list L. Middle: Augmented threshold data structure for
L2. Bottom: Longest increasing sequences for L2 in the order produced by Algorithm 3.

T3 and T4, in general one element from T1 to Tλ. The sequences must be
increasing in the values chosen from Tk and also in the values chosen from
Pk. To guarantee that searching through these lists always yields a sequence
of size λ the procedure starts with k = λ and proceeds to decrease k. This
is illustrated by the big arrow in Figure 5.

In our example we start at T4 and choose the value 8 with corresponding
position 11. Now we aim to determine which elements of T3 may occur in
LIS sequences that terminate at 8. To determine the first such element we
can compute Predecessor(T3, 8− 1), i.e., find the largest value in T3 that
is strictly smaller than 8. Likewise the last such element in P3 should be
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Predecessor(P3, 11 − 1), i.e., it must occur in a position strictly smaller
than 11. Recall that T3 is stored in decreasing order and P3 in increas-
ing order. Therefore these predecessors define the interval of valid element
choices for a LIS. In general the interval of interest for a given element
(i, p) of Tk+1 is between Predecessor(Tk, i − 1) and Predecessor(Pk,
p− 1). The Predecessor on Tk is obtained from the BST for Tk in O(log !)
time. The Predecessor on Pk is conceptual and it is enough to verify that
p′ < p, where p′ is the current position in Pk. We illustrate these opera-
tions with arrows in Figure 5. The dashed lines are used for Pk and the
filled lines for Tk. The figure also illustrates the interval for element 5 of
T3, i.e., Predecessor(T2,5 − 1) and Predecessor(P2,9 − 1). Moreover it
also shows the interval for element 4 of T2, i.e., Predecessor(T1,4− 1) and
Predecessor(P1,6 − 1). Therefore, iterating the Predecessor(Tk, i − 1)
operations, we can obtain the lexicographically largest LIS in O(λ log !). To
obtain the remaining LIS we traverse these intervals, yielding a new LIS for
each position that is visited. Algorithm 3 details this procedure.

The arguments for the RecursiveGetLIS are respectively, a stack S,
which starts empty, a value for k, a value i of L in Tk+1 and a corresponding
position p in Pk+1. The Predecessor operation is extended to return the
positions p, besides the i values. Since the operation is on Tk it returns
the smallest p for the corresponding i, in our example Predecessor(T1,
4 − 1) returns (2, 2) instead of (2, 12). If the corresponding Tk is empty
then it returns (−∞,+∞). Moreover for this algorithm we also use the Next
operation, which behaves as an iterator and returns an (i′, p′) pair. It returns
the next element, for example Next(P1), returns (2, 12), assuming it is the
first invocation after Predecessor(T1, 4 − 1). If there is no such element
it returns (+∞,+∞). Assume that Tk is represented as a BST and Pk is
divided into lists, each inside a node of the BST as shown in the middle of
Figure 5. The Next operation either moves to the next element in the current
list, or to the next node on the BST, when it reaches the end of the current
list. Note that by next on the BST we mean a smaller value of i, as the Tk

are stored in decreasing order. Moving to the next element on a list requires
constant time, but finding the next element on the BST may require O(log !)
time. Hence Algorithm 3 obtains each LIS in O(λ log !) time, which again
can be reduced to O(1+ λ log(!/λ)) by Jensen’s inequality. This finishes the
dynamic LIS contribution.

Theorem 1. It is possible to maintain a dynamic list with ! ≥ 2 num-
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Algorithm 3 GetLIS()

Require: L is not empty
1: RecursiveGetLIS(∅,λ, +∞, +∞)

2: procedure RecursiveGetLIS(S, k, i, p)
3: if k = 0 then

4: return S # Found a LIS
5: else

6: (i′, p′)← Predecessor(Tk , i− 1)
7: while p′ < p do

8: Push(S, p′)
9: RecursiveGetLIS(S,k − 1,i′,p′)
10: Pop(S)
11: (i′, p′)← Next(Pk)
12: end while

13: end if

14: end procedure

bers such that the Append operation can be computed in O(log !) time and
ExtractMin and GetLIS requires O(1 + λ log(!/λ)) time, for a longest in-
creasing sub-sequence, of size λ.

This result establishes some initial bounds of this data structure. However
these bounds are fairly non competitive for our goals. To determine an LTSS
we might generate a sequence with ! = O(n2) elements and perform O(!)
Append operations and n ExtractMin operations. This yields an O(n2 logn)
time algorithm. Let us improve the performance of the dynamic LIS data
structure. First we change the red-black BSTs to finger trees (D. Booth,
1996; HINZE and PATERSON, 2006; Guibas and Sedgewick, 1978). This
means that Split and Concatenate operations that involve the ti ≥ 2 tail
elements of Tk requires only O(log ti) amortized time, instead of O(log |Tk|)
time. Let us consider the overall algorithm, from the initial empty structure
to the final one. We will analyze the overall time that is used to process a
given list Tk. The following argument applies for any k but for simplicity
consider that we are analyzing Tλ. We have the following inequality:

n
∑

i=1

ti ≤ n + (λ− 1)n (4)
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The left term in the inequality counts the number of elements that are moved
from Tλ. The right side counts the number of elements that are removed
from the data structure. The term n counts the number of elements that
are actually removed from T1, one for each ExtractMin operation. The term
(λ − 1)n accounts for the elements that are dropped in the middle of the
data structure. In each ExtractMin operation at most (λ− 1) elements are
dropped, one for each Tk list, except for Tλ. Now the total time of these
operations is O(

∑n
i=1 log ti). We can obtain the such value, restricted to

Equation (4), by using Lagrange multipliers. We consider only one Lagrange
multiplier, represented by c, because we have only one restriction. Hence the
resulting Lagrangian expression is the following:

n
∑

i=1

log ti − c(
n
∑

i=1

ti − λn)

A derivative in order of ti yields the following condition:

1

ti
= c (5)

The derivative in order of c returns the original restriction:

n
∑

i=1

ti = λn (6)

Combining both equations we obtain that c = 1/λ and therefore log ti =
log(λ). If we use the same upper bound for all the other Tk lists we obtain
O(nλ logλ) total time for n ExtractMin operations. This yields an amor-
tized time of O(λ logλ) per operation, provided the final structure is empty.
This new bound for ExtractMin is not necessarily smaller than the previous
O(λ log(!/λ)), but the best of both applies.

Besides this bound for ExtractMin we also need a faster Append opera-
tion. Using the amortized performance of the finger tree data structure we
obtain an O(log λ) amortized bound for the Append operation. This per-
formance can be further improved by discarding the binary search process.
Instead do a simple linear scan from Tλ down to the desired position. How-
ever we do not always reset the search, only if necessary. A sequence of
decreasing numbers is therefore refereed to as a batch. During a batch the
position k is not reset. This means that processing a batch containing m
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Algorithm 4 AppendBatch(i)
Ensure: Updated threshold structure for L with i appended.
1: !← (!+ 1) # Increase size of L.
2: if Min[k] < i then # Value of k is maintained between calls.
3: k ← λ+ 1
4: end if

5: while k > 1 and Min[Tk−1] > i do
6: k ← k − 1
7: end while

8: Insert(Tk, i)
9: λ← max(λ, k)

numbers requires only O(m+λ) time. Note that this is O(1) amortized time
per number, when the batch contains at least λ numbers.

A detailed description of the AppendBatch procedure is shown in Algo-
rithm 4, where line 8 is computed in O(1) amortized time with the finger
tree data structure and line 5 accumulates to O(λ) in a decreasing sequence.
Note that the local variable k preserves its value among successive calls.

We can now summarize our dynamic LIS data structure in the following
theorem:

Theorem 2. It is possible to maintain information about the Longest In-
creasing Sub-Sequence of a dynamic list of numbers, which starts and fin-
ishes empty. Assuming that in total ! elements are inserted into the struc-
ture, in d batches of decreasing sequences and also that the ExtractMin

operation is executed e times in total, then the overall time is bounded by
O(eλ(1 + log(min{λ, !/λ})) + ! + dλ), where λ ≥ 1 is the size of the largest
overall LIS. At anytime the size of the current LIS can be obtained in O(1)
time.

We can now combine the results of Theorem 1 and 2 to obtain our bounds
for the decremental string comparison problem.

Theorem 3. Given strings P and S there exists a data structure and can be
used to obtain λ ≥ 2, the size of LCSS between these strings. This structure
requires O(!) space, where ! is the number of matches between P and S. This
structure can be updated for the strings P.c and S in O(λ+ |S|) time, where c
is any letter. It can also be updated for the strings P and S ′, where S = c.S ′,
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in O(λ(1 + log(!/λ))) time. A sequence of operations that starts with an
empty string and inserts letters to form the string P requires O(|P |λ + !)
time. A sequence of operations that decrements S until it becomes empty
requires O(min{|S|, !}λ(1 + log(min{λ, !/λ})) + |S|) time.

The amortized complexities follow from Theorem 2, and the extra min
that appears is a bound on the number of ExtractMin operations, e in The-
orem 2. This number of operations is bounded simultaneously by |S| and by
!, because we cannot remove more points than the ones that exist inside the
structure. However in the case where e < |S| it is necessary to add an O(|S|)
term. This corresponds to the case where the letter c that is being removed
from S has no occurrences in P . In this case there is no call to ExtractMin
operation but this verification still needs to be performed, which requires
O(1) time and must be accounted for.

Our application of computing the LTSS now follows from Theorem 3.
The total amount of time the LTSS algorithm is therefore O(min{n, !}λ(1+
log(min{λ, !/λ})) + n+ !), where λ ≥ 2 is the size of the LTSS and ! ≥ 2 is
the number of pairs of positions in F that contain the same letter.

5. Related work

An initial efficient algorithm to compute the LTSS, for the simple case of
only one string F , was given by Kosowski (2004). This algorithm required
optimal O(n2) time and O(n) space. Tiskin (2008, Section 5.6) presented
an algorithm which obtains the smallest worst case bound by exploring the
Monge properties of the respective distance matrices. This property de-
pends on the fact that the graph underlying the D table of two strings is
planar. The resulting algorithm obtains the overall worst case time bound
of O(n2(log log n)2/(log n)2).

The work on incremental string comparison was initiated by Landau, Myers and Schmidt
(1998), which obtained an O(n) time algorithm to obtain D′ from D. A sim-
pler version, with the same performance was presented by Kim and Park
(2000), which is simultaneously incremental and decremental. This is the
first instance of the decremental variation of the problem. This solution
was presented for the edit distance. Ishida, Inenaga, Shinohara and Takeda
(2005) presented an algorithm which reduced the time complexity from O(n)
to O(λ) and was fully incremental. The algorithm was presented for the
LCSS and they also reduced the space requirements from O(n2) to O(nλ).
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Landau, Myers and Ziv-Ukelson (2004) studied the problem of consecu-
tive suffix alignment problem, which obtained the size of the LCSS between
all the suffixes of a string A and a string B, the final version of the paper
appeared in (2007). The authors presented two algorithms for this problem,
which required O(nλ) and O(nλ + n log σ) time, where σ is the size of the
alphabet of the underlying strings. Their approach uses a structure similar
to the Tk lists from the Hunt-Szymanski algorithm, but contrary to our ap-
proach of Section 4 the elements are prepended to a variation of the Tk lists.
Moreover their structure is not decremental. Because of these nuances the
relation to LTSS is not immediate which justifies the algorithm of Kosowski
(2004), in the same year.

A corner stone of all these results is the algorithm from Hunt and Szymanski
(1977), whose crucial idea was the reduction from the

LCSS to the LIS, although this was not immediately clear in the original
presentation. It was partially identified by Apostolico (1986), Apostolico and Guerra
(1987) and made explicit by Jacobson and Vo (1992) and independently
by Pevzner and Waterman (1992). Interestingly the original presentation
of Hunt and Szymanski (1977) reported an O((n+!) log !) time bound, where
! is the size of the sequence L. This is a significant improvement over the
plain dynamic programming algorithm, which always requires O(n2) time.
Although in the worst case ! may be O(n2), in general it may be significantly
smaller. The original complexity was not always faster than the plain algo-
rithm, because ! may be Ω(n/ log n). This issue was addressed by Apostolico
(1986) which obtained O(n2) time worst case guarantees. Their algorithm al-
ready considered using finger trees to represent the Tk lists. Improvements of
the Hunt-Szymanski algorithm based on bitwise operations where proposed
by Crochemore, Iliopoulous and Pinzon (2003).

A data structure that supports dynamic longest increasing sub-sequences
was presented by Chen, Chu and Pinsker (2013). The focus is in supporting
insertions anywhere in the sequence, which is achieved in O(1 + λ log(!/λ))
time. The authors obtain one corresponding LIS in O(λ+log !) time. This is
more efficient than the procedure we explain before Theorem 1, however our
procedure can be used to obtain all the sub-sequences, whereas their approach
obtains only one. Their data structure is similar to the one we present,
which is expected as both are related to the Hunt-Szymanski algorithm.
Chen et al. (2013) use level key lists Lk, which are similar to our Tk lists, but
store index value pairs and are sorted by increasing index. This is similar
to the structure we use for the GetLIS operation, but the lists are flattened,
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instead of storing the indexes in a second structure. Moreover they also
use red-black trees to split and concatenate lists and also mention exploring
fingering properties of the structure. The presentation mentions deletions
but the focus is on insertions. It seems plausible their representation could
also support deletions efficiently.

The most recent approach for computing the LTSS was proposed by Inoue, Inenaga and Bannai
(2020). Their algorithm is very similar to the one we present in this pa-
per. They also reduce the problem to a dynamic LIS problem and used the
data structure of Chen, Chu and Pinsker (2013) to obtain a complexity of
O(min{n, !}λ(1 + log(!/λ)) + n + ! log n). In the next section we explain
how our algorithm improves upon their result and discuss future possible
improvements.

6. Conclusions

In this section we recall and discuss the contributions of the paper in con-
text. In this paper we presented a new algorithm to determine the longest
tandem scattered sub-sequence of a string F . In the process we introduced
the decremental string comparison problem and provided new data struc-
tures to support dynamic LIS sequences. We studied a dynamic version of the
Hunt-Szymanski algorithm, which yielded several interesting results. Consid-
ering the LTSS problem itself the strongest work case bounds where obtained
by Tiskin (2008) with an O(n2(log logn)2/(logn)2) time bound. Both this
algorithm and one by Kosowski (2004) seem to have the average case with the
same bound as the worst case. The algorithm we obtain as a consequence of
Theorem 2 obtains O(min{n, !}λ(1+ log(min{λ, !/λ}))+ n+ !) time, where
λ ≥ 2 is the size of the LTSS and ! ≥ 2 is the number of pairs of positions
in F that contain the same letter. Hence when ! = o(n2(log logn)2/(logn)2)
and λ = o(n(log logn)2/((log(min{λ, !/λ}))(logn)2)) our algorithm becomes
more efficient. Hence our algorithm is most efficient when the size of the
LTSS is small, the extreme case in favor of our algorithm occurs when all the
letters in F are distinct. In this case our algorithm is actually linear, i.e.,
O(n) time and space. This particular case is trivial but a similar situation
occurs when the alphabet size is large, i.e., polylog. This is also the case
were the original Hunt-Szymanski algorithm obtains its best performance.

One important contribution of this work is the relation between the LTSS
and the decremental and incremental string comparison algorithms. This
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relation is straightforward but seems to have remained unnoticed2, as the
algorithm of Ishida et al. (2005) also depends on λ and could thus be used to
compute the LTSS, if the structure was also decremental. On the other hand
the structure of Kim and Park (2000) is decremental but does not depend
on λ. This relation was indeed explored in the work of Tiskin (2008), but as
mentioned above the resulting algorithm is also not dependent on λ. Hence
for the case of a single string the algorithm we presented in Section 4 yields
competitive results. In fact it is very interesting to compare the Tk lists of the
Hunt-Szymanski algorithm to the incremental data structure of Ishida et al.
(2005). In essence their structure consists in expanded Tk lists, where each
element is repeated several times so that the list becomes size n. This in-
creases the space requirements but makes navigating the lists and across lists
more convenient. Also it forces one of the operations be O(n) and thus the
overall bound is always O(n2) instead of O(nλ).

The recent work by Inoue, Inenaga and Bannai (2020) follows essentially
the same approach as this paper. It solves the LTSS problem by resort-
ing to the same decremental string comparison approach and solves this
problem using the Hunt-Szymanski reduction to a LIS problem. A dynamic
version of the LIS problem that supports the ExtractMin operation is also
considered. In fact we were unaware of the similarity of their approach un-
til recently. Still our approach contains several key insights which allow
us to obtain a result that is competitive against their O(min{n, !}λ(1 +
log(!/λ)) + n + ! logn) time bound3. They use essentially the dynamic LIS
structure of Chen, Chu and Pinsker (2013) and propose only one improve-
ment, batched ExtractMin operations. This means that they obtain better
performance for a sequence of ExtractMin operations. We obtain the same
improvement by using our duplicate discarding approach. This means that a
single ExtractMin operation on our data structure corresponds to several on
theirs, because their ExtractMin operation removes one duplicate at a time
whereas ours removes all. Hence our ExtractMin operation requires the same
time as their batch of ExtractMin. One very important optimization of our
approach are the finger trees to represent the Tk lists which lead to the im-
proved performance of the AppendBatch operation, Algorithm 4. This implies

2It was also recently pointed out by Inoue, Inenaga and Bannai (2020).
3Note that we added an O(n) term to their complexity result, because in the case that

we considered when all the letters of F are distinct we have ! = λ = 0, but their algorithm
still requires O(n) time, as does ours.
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that there is no O(logn) factor associated to the ! term in our complexity.
This term is most likely to dominate the overall complexity in several inter-
esting cases and in our algorithm it is O(!) whereas in theirs it is O(! logn).
However this is a tradeoff as we obtain an extra O(nλ) term, whereas theirs is
only O(n). Hence ignoring the first term the resulting comparison is between
O(n + ! logn) for their algorithm and O(nλ + !) for ours. Hence our algo-
rithm obtains better performance provided that ! = Ω(n(λ−1)/((logn)−1))
and n ≤ ! because of the first term. Let us consider a very simple example
where this is likely to happen. Assume that the letters of F are obtained
independently and uniformly at random from an alphabet of size σ. In this
case ! is expected to be (n/σ)2 and the distribution is highly concentrated
around this value. Hence in order for our algorithm to obtain the best theo-
retical bound it is necessary to have an alphabet size σ that is smaller than
√

(n((log n)− 1))/(λ− 1). This is actually a very loose bound, much larger
than poly logarithmic alphabets. Hence our algorithm’s theoretical bound
yields the best performance for most alphabets, except for exceedingly large
ones. Even in extremely large alphabets there is the mitigating expectation
that σ and λ have an inverse relation, meaning that larger values of σ should
yield smaller values of λ.

The final improvement on the work of Inoue, Inenaga and Bannai (2020)
is the analysis with Lagrange multipliers that yields the log(min{λ, !/λ})
bound that improves on the previous log(!/λ) complexity. Also we be-
lieve that future research on these data structures will focus precisely on
this factor. One approach that seems promising is to store the Tk lists in
a data structure that supports the dynamic fractional cascading technique
of Chazelle and Guibas (1986), potentially reducing this factor toO(log log n).

The final contribution of this paper is the data structure to maintain
a dynamic LIS. Our approach uses a couple of nuances that allow us to
obtain Theorem 2. Using the AppendBatch of Algorithm 4 the complexity
of the original Hunt-Szymanski algorithm drops to O(!+nλ), which is never
more than O(n2) and sometimes much better. Given the importance of this
algorithm, similar improvements have already been proposed by Apostolico
(1986). Still our work provides a fairly simple alternative.
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