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We discuss several two-dimensional generalizations of the familiar Lyndon–Schützenberger 
periodicity theorem for words. We consider the notion of primitive array (as one that 
cannot be expressed as the repetition of smaller arrays). We count the number of m × n
arrays that are primitive. Finally, we show that one can test primitivity and compute the 
primitive root of an array in linear time.
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1. Introduction

Let � be a finite alphabet. One very general version of 
the famous Lyndon–Schützenberger theorem [18] can be 
stated as follows:

Theorem 1. Let x, y ∈ �+ . Then the following five conditions 
are equivalent:

(1) xy = yx;
(2) There exist z ∈ �+ and integers k, � > 0 such that x = zk

and y = z�;
(3) There exist integers i, j > 0 such that xi = y j ;
(4) There exist integers r, s > 0 such that xr ys = ysxr ;
(5) x{x, y}∗ ∩ y{x, y}∗ �= ∅.

Proof. For a proof of the equivalence of (1), (2), and (3), 
see, for example [23, Theorem 2.3.3].

Condition (5) is essentially the “defect theorem”; see, 
for example, [17, Cor. 1.2.6].
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For completeness, we now demonstrate the equivalence 
of (4) and (5) to each other and to conditions (1)–(3):

(3) =⇒ (4): If xi = y j , then we immediately have xr ys =
ysxr with r = i and s = j.

(4) =⇒ (5): Let z = xr ys . Then by (4) we have z = ysxr . 
So z = xxr−1 ys and z = yys−1xr . Thus z ∈ x{x, y}∗ and z ∈
y{x, y}∗ . So x{x, y}∗ ∩ y{x, y}∗ �= ∅.

(5) =⇒ (1): By induction on the length of |xy|. The base 
case is |xy| = 2. More generally, if |x| = |y| then clearly (5) 
implies x = y and so (1) holds. Otherwise without loss of 
generality |x| < |y|. Suppose z ∈ x{x, y}∗ and z ∈ y{x, y}∗ . 
Then x is a proper prefix of y, so write y = xw for a 
nonempty word w . Then z has prefix xx and also prefix 
xw . Thus x−1z ∈ x{x, w}∗ and x−1z ∈ w{x, w}∗ , where by 
x−1z we mean remove the prefix x from z. So x{x, w}∗ ∩
w{x, w}∗ �= ∅, so by induction (1) holds for x and w , so 
xw = wx. Then yx = (xw)x = x(wx) = xy. �

A nonempty word z is primitive if it cannot be written 
in the form z = we for a word w and an integer e ≥ 2. We 
will need the following fact (e.g., [17, Prop. 1.3.1] or [23, 
Thm. 2.3.4]):

http://dx.doi.org/10.1016/j.ipl.2016.09.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:guilhem.gamard@lirmm.fr
mailto:gwenael.richomme@lirmm.fr
mailto:shallit@cs.uwaterloo.ca
mailto:tj2smith@uwaterloo.ca
http://dx.doi.org/10.1016/j.ipl.2016.09.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.09.011&domain=pdf


G. Gamard et al. / Information Processing Letters 118 (2017) 58–63 59
Fact 2. Given a nonempty word x, the shortest word z such 
that x = zi for some integer i ≥ 1 is primitive. It is called 
the primitive root of x, and is unique.

In this paper we consider generalizations of the Lyndon–
Schützenberger theorem and the notion of primitivity to 
two-dimensional rectangular arrays (sometimes called pic-
tures in the literature). For more about basic operations on 
these arrays, see, for example, [11].

2. Rectangular arrays

By �m×n we mean the set of all m × n rectangular ar-
rays A of elements chosen from the alphabet �. Our arrays 
are indexed starting at position 0, so that A[0, 0] is the 
element in the upper left corner of the array A. We use 
the notation A[i.. j, k..�] to denote the rectangular subar-
ray with rows i through j and columns k through �. If 
A ∈ �m×n , then |A| = mn is the number of entries in A.

We also generalize the notion of powers as follows. If 
A ∈ �m×n then by Ap×q we mean the array constructed 
by repeating A pq times, in p rows and q columns. More 
formally Ap×q is the pm × qn array B satisfying B[i, j] =
A[i mod m, j mod n] for 0 ≤ i < pm and 0 ≤ j < qn. For 
example, if

A =
[
a b c
d e f

]
,

then

A2×3 =

⎡
⎢⎢⎣
a b c a b c a b c
d e f d e f d e f
a b c a b c a b c
d e f d e f d e f

⎤
⎥⎥⎦ .

We can also generalize the notation of concatenation of 
arrays, but now there are two annoyances: first, we need 
to decide if we are concatenating horizontally or vertically, 
and second, to obtain a rectangular array, we need to insist 
on a matching of dimensions.

If A is an m × n1 array and B is an m × n2 array, then 
by A � B we mean the m × (n1 + n2) array obtained by 
placing B to the right of A.

If A is an m1 × n array and B is an m2 × n array, then 
by A 
 B we mean the (m1 + m2) × n array obtained by 
placing B underneath A.

3. Generalizing the Lyndon–Schützenberger theorem

We now state our first generalization of the Lyndon–
Schützenberger theorem to two-dimensional arrays, which 
generalizes claims (2), (3), and (4) of Theorem 1.

Theorem 3. Let A and B be nonempty arrays. Then the follow-
ing three conditions are equivalent:

(a) There exist positive integers p1, p2, q1, q2 such that 
Ap1×q1 = B p2×q2 .

(b) There exist a nonempty array C and positive integers 
r1, r2, s1, s2 such that A = Cr1×s1 and B = Cr2×s2 .

(c) There exist positive integers t1, t2, u1, u2 such that 
At1×u1 ◦ Bt2×u2 = Bt2×u2 ◦ At1×u1 where ◦ can be either �

or 
.
Proof.
(a) =⇒ (b). Let A be an array in �m1×n1 and B be an ar-
ray in �m2×n2 such that Ap1×q1 = B p2×q2 . By dimensional 
considerations we have m1 p1 = m2 p2 and n1q1 = n2q2. De-
fine P = Ap1×1 and Q = B p2×1. We have P 1×q1 = Q 1×q2 . 
Viewing P and Q as words over �m1 p1×1 and considering 
horizontal concatenation, this can be written P q1 = Q q2 . 
By Theorem 1 there exist a word R over �m1 p1×1 and in-
tegers s1, s2 such that P = R1×s1 and Q = R1×s2 . Let r de-
note the number of columns of R and let S = A[0 . . .m1 −
1, 0 . . . r − 1] and T = B[0 . . .m2 − 1, 0 . . . r − 1]. Observe 
A = S1×s1 and B = T 1×s2 . Considering the r first columns 
of P and Q , we have S p1×1 = T p2×1. Viewing S and T as 
words over �1×r and considering vertical concatenation, 
we can rewrite S p1 = T p2 . By Theorem 1 again, there exist 
a word C over �1×r and integers r1, r2 such that S = Cr1×1

and T = Cr2×1. Therefore, A = Cr1×s1 and B = Cr2×s2 .

(b) =⇒ (c). Without loss of generality, assume that the 
concatenation operation is �. Let us recall that A = Cr1×s1

and B = Cr2×s2 . Take t1 = r2 and t2 = r1 and u1 = s2 and 
u2 = s1. Then we have

At1×u1 � Bt2×u2

= Cr1t1×s1u1 � Cr2t2×s2u2

= Cr1t1×(s1u1+s2u2) (Observe that r1t1 = r2t2)

= Cr2t2×s2u2 � Cr1t1×s1u1

= Bt2×u2 � At1×u1 .

(c) =⇒ (a). Without loss of generality, assume that the 
concatenation operation is �. Assume the existence of 
positive integers t1, t2, u1, u2 such that

At1×u1 � Bt2×u2 = Bt2×u2 � At1×u1 .

An immediate induction allows to prove that for all posi-
tive integers i and j,

At1×iu1 � Bt2× ju2 = Bt2× ju2 � At1×iu1 . (1)

Assume that A is in �m1×n1 and B is in �m2×n2 . For 
i = n2u2 and j = n1u1, we get iu1n1 = ju2n2. Then, by con-
sidering the first iu1n1 columns of the array defined in (1), 
we get At1×iu1 = Bt2× ju2 . �

Note that generalizing condition (1) of Theorem 1 re-
quires considering arrays with the same number of rows 
or same number of columns. Hence the next result is a di-
rect consequence of the previous theorem.

Corollary 4. Let A, B be nonempty rectangular arrays. Then
(a) if A and B have the same number of rows, A � B = B � A if 
and only if there exist a nonempty array C and integers e, f ≥ 1
such that A = C1×e and B = C1× f ;
(b) if A and B have the same number of columns, A 
 B = B 
 A
if and only if there exist a nonempty array C and integers 
e, f ≥ 1 such that A = Ce×1 and B = C f ×1 .
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Fig. 1. A typical plane figure (from [13,14]).

Fig. 2. Tiling of Fig. 1.

4. Labeled plane figures

We can generalize condition (5) of Theorem 1. We be-
gin with the following lemma. As in the case of Corollary 4, 
we need conditions on the dimensions.

Lemma 5. Let X and Y be rectangular arrays having same num-
ber of rows or same numbers of columns. In the former case set 
◦ = �. In the latter case set ◦ = 
. If

X ◦ W1 ◦ W2 ◦ · · · ◦ W i = Y ◦ Z1 ◦ Z2 ◦ · · · ◦ Z j (2)

holds, where W1, W2, . . . , W i, Z1, Z2, . . . , Z j ∈ {X, Y } for 
i, j ≥ 0, then X and Y are powers of a third array T .

Proof. Without loss of generality we can assume that X
and Y have the same number r of rows. Then the lemma 
is just a rephrasing of part (5) =⇒ (2) in Theorem 1, con-
sidering X and Y as words over �r×1. �

Now we can give our maximal generalization of (5) =⇒
(3) in Theorem 1. To do so, we need the concept of labeled 
plane figure (also called “labeled polyomino”).

A labeled plane figure is a finite union of labeled cells 
in the plane lattice, that is, a map from a finite subset of 
Z×Z to a finite alphabet �. A sample plane figure is de-
picted in Fig. 1. Notice that such a figure does not need to 
be connected or convex.

Let S denote a finite set of rectangular arrays. A tiling
of a labeled plane figure F is an arrangement of translates 
of the arrays in S so that the label of every cell of F is 
covered by an identical entry of an element of S , and no 
cell of F is covered by more than one entry of an element 
of S . For example, Fig. 2 depicts a tiling of the labeled 

plane figure in Fig. 1 by the arrays [c b a], 
⎡
⎣ a

b
c

⎤
⎦, and 

⎡
⎣ a c b a

b a c b
c b a c

⎤
⎦.

Theorem 6. Let F be a labeled plane figure, and suppose F has 
two different tilings U and V by two nonempty rectangular ar-
rays A and B. Then both A and B are powers of a third array C .
Proof. Assume that F has two different tilings by rectan-
gular arrays, but A and B are not powers of a third array C . 
Without loss of generality also assume that F is the small-
est such figure (with the fewest cells) and also that A and 
B are arrays with the fewest total entries that tile F , but 
are not powers of a third array.

Consider the leftmost cell L in the top row of F . If this 
cell is covered by the same array, in the same orientation, 
in both tilings U and V , remove the array from U and V , 
obtaining a smaller plane figure F ′ with the same property. 
This is a contradiction, since F was assumed minimal. So F
must have a different array in U and V at this cell. Assume 
U has A in its tiling and V has B .

Without loss of generality, assume that the number of 
rows of A is equal to or larger than r, the number of rows 
of B . Truncate A at the first r rows and call it A′ . Consider 
the topmost row of F . Since it is topmost and contains L
at the left, there must be nothing above L. Hence the top-
most row of F must be tiled with the topmost rows of A
and B from left to right, aligned at this topmost row, un-
til either the right end of the figure or an unlabeled cell 
is reached. Restricting our attention to the r rows under-
neath this topmost row, we get a rectangular tiling of these 
r rows by arrays A′ and B in both cases, but the tiling of U
begins with A′ and the tiling of V begins with B .

Now apply Lemma 5 to these r rows (with ◦ = �). 
We get that A′ and B are both expressible as powers of 
some third array T . Then we can write A as a concate-
nation of some copies of T and the remaining rows of A
(call the remaining rows C ). Thus we get two tilings of F
in terms of T and C . Since A and B were assumed to be 
the smallest nonempty tiles that could tile F , and |T | ≤ |B|
and |C | < |A|, the only remaining possibility is that T = B
and C is empty. But then A = A′ and so both A and B are 
expressible as powers of T . �
Remark 7. The papers [21,22] claim a proof of Theorem 6, 
but the partial proof provided is incorrect in some details 
and missing others.

Remark 8. As shown by Huova [13,14], Theorem 6 is not 
true for three rectangular arrays. For example, the plane 
figure in Fig. 1 has the tiling in Fig. 2 and also another 
one.

5. Primitive arrays

In analogy with the case of ordinary words, we can de-
fine the notion of primitive array. An array M is said to 
be primitive if the equation M = Ap×q for p, q > 0 implies 
that p = q = 1. For example, the array[

1 2
2 1

]
is primitive, but[

1 1
1 1

]
and

[
1 2
1 2

]

are not, as they can be written in the form [1]2×2 or 
[1 2]2×1 respectively.
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Table 1

1 2 3 4 5 6 7

1 2 2 6 12 30 54 126
2 2 10 54 228 990 3966 16254
3 6 54 498 4020 32730 261522 2097018
4 12 228 4020 65040 1047540 16768860 268419060
5 30 990 32730 1047540 33554370 1073708010 34359738210
6 54 3966 261522 16768860 1073708010 68718945018 4398044397642
7 126 16254 2097018 268419060 34359738210 4398044397642 562949953421058
As a consequence of Theorem 3 we get another proof 
of Lemma 3.3 in [10].

Corollary 9. Let A be a nonempty array. Then there exist a 
unique primitive array C and positive integers i, j such that 
A = C i× j .

Proof. Choose i as large as possible such that there ex-
ist an integer k and an array D such that A = Di×k . Now 
choose j as large as possible such that there exists an in-
teger j and an array C such that A = C i× j . We claim that 
C is primitive. For if not, then there exists an array B such 
that C = Bi′× j′ for positive integers i, j, not both 1. Then 
A = C i× j = Bii′× j j′ , contradicting either the maximality of i
or the maximality of j.

For uniqueness, assume A = C i1× j1 = Di2× j2 where C
and D are both primitive. Then by Theorem 3 there exists 
an array E such that C = E p1×q1 and D = E p2×q2 . Since C
and D are primitive, we must have p1 = q1 = 1 and p2 =
q2 = 1. Hence C = D . �
Remark 10. In contrast, as Bacquey [4] has recently shown, 
two-dimensional biperiodic infinite arrays can have two 
distinct primitive roots.

6. Counting the number of primitive arrays

There is a well-known formula for the number of prim-
itive words of length n over a k-letter alphabet (see e.g. 
[17, p. 9]):

ψk(n) =
∑
d|n

μ(d)kn/d, (3)

where μ is the well-known Möbius function, defined as 
follows:

μ(n) =

⎧⎪⎨
⎪⎩

(−1)t , if n is squarefree and the product

of t distinct primes;

0, if n is divisible by a square > 1.

We recall the following well-known property of the sum 
of the Möbius function μ(d) (see, e.g., [12, Thm. 263]):

Lemma 11.

∑
d|n

μ(d) =
{

1, if n = 1;
0, if n > 1.

In this section we generalize Eq. (3) to two-dimensional 
primitive arrays:
Theorem 12. There are

ψk(m,n) =
∑
d1|m

∑
d2|n

μ(d1)μ(d2)k
mn/(d1d2)

primitive arrays of dimension m × n over a k-letter alphabet.

Proof. We will use Lemma 11 to prove our generalized for-
mula, which we obtain via Möbius inversion.

Define g(m, n) := kmn; this counts the number of 
m × n arrays over a k-letter alphabet. Each such array 
has, by Corollary 9, a unique primitive root of dimen-
sion d1 × d2, where evidently d1 | m and d2 | n. So 
g(m, n) = ∑

d1|m
d2|n

ψk(d1, d2). Then

∑
d1|m
d2|n

μ(d1)μ(d2) g

(
m

d1
,

n

d2

)

=
∑
d1|m

μ(d1)
∑
d2|n

μ(d2) g

(
m

d1
,

n

d2

)

=
∑
d1|m

μ(d1)
∑
d2|n

μ(d2)
∑

c1|m/d1
c2|n/d2

ψk(c1, c2)

=
∑

c1d1|m
μ(d1)

∑
c2d2|n

μ(d2) ψk(c1, c2)

=
∑
c1|m

∑
c2|n

ψk(c1, c2)
∑

d1|m/c1
d2|n/c2

μ(d1)μ(d2).

Let r = m/c1 and s = n/c2. By Lemma 11, the last sum in 
the above expression is 1 if r = 1 and s = 1; that is, if 
c1 = m and c2 = n. Otherwise, the last sum is 0. Thus, the 
sum reduces to ψk(m, n) as required. �

Table 1 gives the first few values of the function 
ψ2(m, n):

Remark 13. As a curiosity, we note that ψ2(2, n) also 
counts the number of pedal triangles with period exactly n. 
See [24,15].

7. Checking primitivity in linear time

In this section we give an algorithm to test primitivity 
of two-dimensional arrays. We start with a useful lemma.

Lemma 14. Let A be an m × n array. Let the primitive root of 
row i of A be ri and the primitive root of column j of A be c j . 
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Then the primitive root of A has dimension p × q, where q =
lcm(|r0|, |r1|, . . . , |rm−1|) and p = lcm(|c0|, |c1|, . . . , |cn−1|).

Proof. Let P be the primitive root of the array A, of di-
mension m′ × n′ . Then the row A[i, 0..n − 1] is periodic 
with period n′ . But since the primitive root of A[i, 0..n − 1]
is of length ri , we know that |ri| divides n′ . It follows 
that q |n′ , where q = lcm(|r0|, |r1|, . . . , |rm−1|). Now sup-
pose n′ �= q. Then since q |n′ we must have n′/q > 1. Define 
Q := P [0..m′ − 1, 0..q − 1]. Then Q 1×(n′/q) = P , contra-
dicting our hypothesis that P is primitive. It follows that 
n′ = q, as claimed.

Applying the same argument to the columns proves the 
claim about p. �

Now we state the main result of this section.

Theorem 15. We can check primitivity of an m × n array and 
compute the primitive root in O (mn) time, for fixed alphabet 
size.

Proof. As is well known, a word u is primitive if and only 
if u is not an interior factor of its square uu [7]; that is, 
u is not a factor of the word uF uL , where uF is u with 
the first letter removed and uL is u with the last letter 
removed. We can test whether u is a factor of uF uL us-
ing a linear-time string matching algorithm, such as the 
Knuth–Morris–Pratt algorithm [16]. If the algorithm re-
turns no match, then u is indeed primitive. Furthermore, if 
u is not primitive, the length of its primitive root is given 
by the index (starting with position 1) of the first match 
of u in uF uL . We assume that there exists an algorithm 
1DPrimitiveRoot to obtain the primitive root of a given 
word in this manner.

We use Lemma 14 as our basis for the following al-
gorithm to compute the primitive root of a rectangular 
array. This algorithm takes as input an array A of dimen-
sion m × n and produces as output the primitive root C
of A and its dimensions.

Algorithm 1 Computing the primitive root of A.
1: procedure 2DPrimitiveRoot(A, m, n)
2: for 0 ≤ i < m do  compute primitive root of each row
3: ri ← 1DPrimitiveRoot(A[i, 0..n − 1])
4: q ← lcm(|r0|, |r1|, . . . , |rm−1|)  compute lcm of lengths of 

primitive roots of rows
5: for 0 ≤ j < n do  compute primitive root of each column
6: c j ← 1DPrimitiveRoot(A[0..m − 1, j])
7: p ← lcm(|c0|, |c1|, . . . , |cn−1|)  compute lcm of lengths of 

primitive roots of columns
8: for 0 ≤ i < p do
9: for 0 ≤ j < q do

10: C[i, j] ← A[i, j]
11: return (C, p, q)

The correctness follows immediately from Lemma 14, 
and the running time is evidently O (mn). �
Remark 16. The literature features a good deal of previ-
ous work on pattern matching in two-dimensional arrays. 
The problem of finding every occurrence of a fixed rect-
angular pattern in a rectangular array was first solved in-
dependently by Bird [6] and by Baker [5]. Amir and Ben-
son later introduced the notion of two-dimensional peri-
odicity in a series of papers [2,1,3]. Mignosi, Restivo, and 
Silva [20] considered two-dimensional generalizations of 
the Fine–Wilf theorem. A survey of algorithms for two-
dimensional pattern matching may be found in Chapter 12 
of Crochemore and Rytter’s text [9]. Marcus and Sokol [19]
considered two-dimensional Lyndon words. Crochemore, 
Iliopoulos, and Korda [8] and, more recently, Gamard and 
Richomme [10], considered quasiperiodicity in two dimen-
sions. However, with the exception of this latter paper, 
where Corollary 9 can be found, none of this work is di-
rectly related to the problems we consider in this paper.

Remark 17. One might suspect that it is easy to reduce 
2-dimensional primitivity to 1-dimensional primitivity by 
considering the array A as a 1-dimensional word, and 
taking the elements in row-major or column-major or-
der. However, the natural conjectures that A is primitive 
if and only if (a) either its corresponding row-majorized or 
column-majorized word is primitive, or (b) both its row-
majorized or column-majorized words are primitive, both 
fail. For example, assertion (a) fails because[
a a
b b

]

is not primitive, while its row-majorized word aabb is 
primitive. Assertion (b) fails because[
a b a
b a b

]

is 2-dimensional primitive, but its row-majorized word 
ababab is not.
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