
Information Processing Letters 118 (2017) 58–63
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Periodicity in rectangular arrays

Guilhem Gamard a, Gwenaël Richomme a,b, Jeffrey Shallit c,∗, Taylor J. Smith c

a LIRMM, CNRS, Univ. Montpellier, UMR 5506, CC 477, 161 rue Ada, 34095 Montpellier Cedex 5, France
b Univ. Paul-Valéry Montpellier 3, Route de Mende, 34199 Montpellier Cedex 5, France
c School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 February 2016
Received in revised form 1 July 2016
Accepted 21 September 2016
Available online 30 September 2016
Communicated by M. Chrobak

Keywords:
Formal languages
Theory of computation
Algorithms

We discuss several two-dimensional generalizations of the familiar Lyndon–Schützenberger
periodicity theorem for words. We consider the notion of primitive array (as one that
cannot be expressed as the repetition of smaller arrays). We count the number of m × n
arrays that are primitive. Finally, we show that one can test primitivity and compute the
primitive root of an array in linear time.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Let � be a finite alphabet. One very general version of
the famous Lyndon–Schützenberger theorem [18] can be
stated as follows:

Theorem 1. Let x, y ∈ �+ . Then the following five conditions
are equivalent:

(1) xy = yx;
(2) There exist z ∈ �+ and integers k, � > 0 such that x = zk

and y = z�;
(3) There exist integers i, j > 0 such that xi = y j ;
(4) There exist integers r, s > 0 such that xr ys = ysxr ;
(5) x{x, y}∗ ∩ y{x, y}∗ �= ∅.

Proof. For a proof of the equivalence of (1), (2), and (3),
see, for example [23, Theorem 2.3.3].

Condition (5) is essentially the “defect theorem”; see,
for example, [17, Cor. 1.2.6].

* Corresponding author.
E-mail addresses: guilhem.gamard@lirmm.fr (G. Gamard),

gwenael.richomme@lirmm.fr (G. Richomme), shallit@cs.uwaterloo.ca
(J. Shallit), tj2smith@uwaterloo.ca (T.J. Smith).
http://dx.doi.org/10.1016/j.ipl.2016.09.011
0020-0190/© 2016 Elsevier B.V. All rights reserved.
For completeness, we now demonstrate the equivalence
of (4) and (5) to each other and to conditions (1)–(3):

(3) =⇒ (4): If xi = y j , then we immediately have xr ys =
ysxr with r = i and s = j.

(4) =⇒ (5): Let z = xr ys . Then by (4) we have z = ysxr .
So z = xxr−1 ys and z = yys−1xr . Thus z ∈ x{x, y}∗ and z ∈
y{x, y}∗ . So x{x, y}∗ ∩ y{x, y}∗ �= ∅.

(5) =⇒ (1): By induction on the length of |xy|. The base
case is |xy| = 2. More generally, if |x| = |y| then clearly (5)
implies x = y and so (1) holds. Otherwise without loss of
generality |x| < |y|. Suppose z ∈ x{x, y}∗ and z ∈ y{x, y}∗ .
Then x is a proper prefix of y, so write y = xw for a
nonempty word w . Then z has prefix xx and also prefix
xw . Thus x−1z ∈ x{x, w}∗ and x−1z ∈ w{x, w}∗ , where by
x−1z we mean remove the prefix x from z. So x{x, w}∗ ∩
w{x, w}∗ �= ∅, so by induction (1) holds for x and w , so
xw = wx. Then yx = (xw)x = x(wx) = xy. �

A nonempty word z is primitive if it cannot be written
in the form z = we for a word w and an integer e ≥ 2. We
will need the following fact (e.g., [17, Prop. 1.3.1] or [23,
Thm. 2.3.4]):

http://dx.doi.org/10.1016/j.ipl.2016.09.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:guilhem.gamard@lirmm.fr
mailto:gwenael.richomme@lirmm.fr
mailto:shallit@cs.uwaterloo.ca
mailto:tj2smith@uwaterloo.ca
http://dx.doi.org/10.1016/j.ipl.2016.09.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.09.011&domain=pdf

G. Gamard et al. / Information Processing Letters 118 (2017) 58–63 59
Fact 2. Given a nonempty word x, the shortest word z such
that x = zi for some integer i ≥ 1 is primitive. It is called
the primitive root of x, and is unique.

In this paper we consider generalizations of the Lyndon–
Schützenberger theorem and the notion of primitivity to
two-dimensional rectangular arrays (sometimes called pic-
tures in the literature). For more about basic operations on
these arrays, see, for example, [11].

2. Rectangular arrays

By �m×n we mean the set of all m × n rectangular ar-
rays A of elements chosen from the alphabet �. Our arrays
are indexed starting at position 0, so that A[0, 0] is the
element in the upper left corner of the array A. We use
the notation A[i.. j, k..�] to denote the rectangular subar-
ray with rows i through j and columns k through �. If
A ∈ �m×n , then |A| = mn is the number of entries in A.

We also generalize the notion of powers as follows. If
A ∈ �m×n then by Ap×q we mean the array constructed
by repeating A pq times, in p rows and q columns. More
formally Ap×q is the pm × qn array B satisfying B[i, j] =
A[i mod m, j mod n] for 0 ≤ i < pm and 0 ≤ j < qn. For
example, if

A =
[
a b c
d e f

]
,

then

A2×3 =

⎡
⎢⎢⎣
a b c a b c a b c
d e f d e f d e f
a b c a b c a b c
d e f d e f d e f

⎤
⎥⎥⎦ .

We can also generalize the notation of concatenation of
arrays, but now there are two annoyances: first, we need
to decide if we are concatenating horizontally or vertically,
and second, to obtain a rectangular array, we need to insist
on a matching of dimensions.

If A is an m × n1 array and B is an m × n2 array, then
by A � B we mean the m × (n1 + n2) array obtained by
placing B to the right of A.

If A is an m1 × n array and B is an m2 × n array, then
by A
 B we mean the (m1 + m2) × n array obtained by
placing B underneath A.

3. Generalizing the Lyndon–Schützenberger theorem

We now state our first generalization of the Lyndon–
Schützenberger theorem to two-dimensional arrays, which
generalizes claims (2), (3), and (4) of Theorem 1.

Theorem 3. Let A and B be nonempty arrays. Then the follow-
ing three conditions are equivalent:

(a) There exist positive integers p1, p2, q1, q2 such that
Ap1×q1 = B p2×q2 .

(b) There exist a nonempty array C and positive integers
r1, r2, s1, s2 such that A = Cr1×s1 and B = Cr2×s2 .

(c) There exist positive integers t1, t2, u1, u2 such that
At1×u1 ◦ Bt2×u2 = Bt2×u2 ◦ At1×u1 where ◦ can be either �

or
.
Proof.
(a) =⇒ (b). Let A be an array in �m1×n1 and B be an ar-
ray in �m2×n2 such that Ap1×q1 = B p2×q2 . By dimensional
considerations we have m1 p1 = m2 p2 and n1q1 = n2q2. De-
fine P = Ap1×1 and Q = B p2×1. We have P 1×q1 = Q 1×q2 .
Viewing P and Q as words over �m1 p1×1 and considering
horizontal concatenation, this can be written P q1 = Q q2 .
By Theorem 1 there exist a word R over �m1 p1×1 and in-
tegers s1, s2 such that P = R1×s1 and Q = R1×s2 . Let r de-
note the number of columns of R and let S = A[0 . . .m1 −
1, 0 . . . r − 1] and T = B[0 . . .m2 − 1, 0 . . . r − 1]. Observe
A = S1×s1 and B = T 1×s2 . Considering the r first columns
of P and Q , we have S p1×1 = T p2×1. Viewing S and T as
words over �1×r and considering vertical concatenation,
we can rewrite S p1 = T p2 . By Theorem 1 again, there exist
a word C over �1×r and integers r1, r2 such that S = Cr1×1

and T = Cr2×1. Therefore, A = Cr1×s1 and B = Cr2×s2 .

(b) =⇒ (c). Without loss of generality, assume that the
concatenation operation is �. Let us recall that A = Cr1×s1

and B = Cr2×s2 . Take t1 = r2 and t2 = r1 and u1 = s2 and
u2 = s1. Then we have

At1×u1 � Bt2×u2

= Cr1t1×s1u1 � Cr2t2×s2u2

= Cr1t1×(s1u1+s2u2) (Observe that r1t1 = r2t2)

= Cr2t2×s2u2 � Cr1t1×s1u1

= Bt2×u2 � At1×u1 .

(c) =⇒ (a). Without loss of generality, assume that the
concatenation operation is �. Assume the existence of
positive integers t1, t2, u1, u2 such that

At1×u1 � Bt2×u2 = Bt2×u2 � At1×u1 .

An immediate induction allows to prove that for all posi-
tive integers i and j,

At1×iu1 � Bt2× ju2 = Bt2× ju2 � At1×iu1 . (1)

Assume that A is in �m1×n1 and B is in �m2×n2 . For
i = n2u2 and j = n1u1, we get iu1n1 = ju2n2. Then, by con-
sidering the first iu1n1 columns of the array defined in (1),
we get At1×iu1 = Bt2× ju2 . �

Note that generalizing condition (1) of Theorem 1 re-
quires considering arrays with the same number of rows
or same number of columns. Hence the next result is a di-
rect consequence of the previous theorem.

Corollary 4. Let A, B be nonempty rectangular arrays. Then
(a) if A and B have the same number of rows, A � B = B � A if
and only if there exist a nonempty array C and integers e, f ≥ 1
such that A = C1×e and B = C1× f ;
(b) if A and B have the same number of columns, A
 B = B
 A
if and only if there exist a nonempty array C and integers
e, f ≥ 1 such that A = Ce×1 and B = C f ×1 .

60 G. Gamard et al. / Information Processing Letters 118 (2017) 58–63
Fig. 1. A typical plane figure (from [13,14]).

Fig. 2. Tiling of Fig. 1.

4. Labeled plane figures

We can generalize condition (5) of Theorem 1. We be-
gin with the following lemma. As in the case of Corollary 4,
we need conditions on the dimensions.

Lemma 5. Let X and Y be rectangular arrays having same num-
ber of rows or same numbers of columns. In the former case set
◦ = �. In the latter case set ◦ =
. If

X ◦ W1 ◦ W2 ◦ · · · ◦ W i = Y ◦ Z1 ◦ Z2 ◦ · · · ◦ Z j (2)

holds, where W1, W2, . . . , W i, Z1, Z2, . . . , Z j ∈ {X, Y } for
i, j ≥ 0, then X and Y are powers of a third array T .

Proof. Without loss of generality we can assume that X
and Y have the same number r of rows. Then the lemma
is just a rephrasing of part (5) =⇒ (2) in Theorem 1, con-
sidering X and Y as words over �r×1. �

Now we can give our maximal generalization of (5) =⇒
(3) in Theorem 1. To do so, we need the concept of labeled
plane figure (also called “labeled polyomino”).

A labeled plane figure is a finite union of labeled cells
in the plane lattice, that is, a map from a finite subset of
Z×Z to a finite alphabet �. A sample plane figure is de-
picted in Fig. 1. Notice that such a figure does not need to
be connected or convex.

Let S denote a finite set of rectangular arrays. A tiling
of a labeled plane figure F is an arrangement of translates
of the arrays in S so that the label of every cell of F is
covered by an identical entry of an element of S , and no
cell of F is covered by more than one entry of an element
of S . For example, Fig. 2 depicts a tiling of the labeled

plane figure in Fig. 1 by the arrays [c b a],
⎡
⎣ a

b
c

⎤
⎦, and

⎡
⎣ a c b a

b a c b
c b a c

⎤
⎦.

Theorem 6. Let F be a labeled plane figure, and suppose F has
two different tilings U and V by two nonempty rectangular ar-
rays A and B. Then both A and B are powers of a third array C .
Proof. Assume that F has two different tilings by rectan-
gular arrays, but A and B are not powers of a third array C .
Without loss of generality also assume that F is the small-
est such figure (with the fewest cells) and also that A and
B are arrays with the fewest total entries that tile F , but
are not powers of a third array.

Consider the leftmost cell L in the top row of F . If this
cell is covered by the same array, in the same orientation,
in both tilings U and V , remove the array from U and V ,
obtaining a smaller plane figure F ′ with the same property.
This is a contradiction, since F was assumed minimal. So F
must have a different array in U and V at this cell. Assume
U has A in its tiling and V has B .

Without loss of generality, assume that the number of
rows of A is equal to or larger than r, the number of rows
of B . Truncate A at the first r rows and call it A′ . Consider
the topmost row of F . Since it is topmost and contains L
at the left, there must be nothing above L. Hence the top-
most row of F must be tiled with the topmost rows of A
and B from left to right, aligned at this topmost row, un-
til either the right end of the figure or an unlabeled cell
is reached. Restricting our attention to the r rows under-
neath this topmost row, we get a rectangular tiling of these
r rows by arrays A′ and B in both cases, but the tiling of U
begins with A′ and the tiling of V begins with B .

Now apply Lemma 5 to these r rows (with ◦ = �).
We get that A′ and B are both expressible as powers of
some third array T . Then we can write A as a concate-
nation of some copies of T and the remaining rows of A
(call the remaining rows C). Thus we get two tilings of F
in terms of T and C . Since A and B were assumed to be
the smallest nonempty tiles that could tile F , and |T | ≤ |B|
and |C | < |A|, the only remaining possibility is that T = B
and C is empty. But then A = A′ and so both A and B are
expressible as powers of T . �
Remark 7. The papers [21,22] claim a proof of Theorem 6,
but the partial proof provided is incorrect in some details
and missing others.

Remark 8. As shown by Huova [13,14], Theorem 6 is not
true for three rectangular arrays. For example, the plane
figure in Fig. 1 has the tiling in Fig. 2 and also another
one.

5. Primitive arrays

In analogy with the case of ordinary words, we can de-
fine the notion of primitive array. An array M is said to
be primitive if the equation M = Ap×q for p, q > 0 implies
that p = q = 1. For example, the array[

1 2
2 1

]
is primitive, but[

1 1
1 1

]
and

[
1 2
1 2

]

are not, as they can be written in the form [1]2×2 or
[1 2]2×1 respectively.

G. Gamard et al. / Information Processing Letters 118 (2017) 58–63 61
Table 1

1 2 3 4 5 6 7

1 2 2 6 12 30 54 126
2 2 10 54 228 990 3966 16254
3 6 54 498 4020 32730 261522 2097018
4 12 228 4020 65040 1047540 16768860 268419060
5 30 990 32730 1047540 33554370 1073708010 34359738210
6 54 3966 261522 16768860 1073708010 68718945018 4398044397642
7 126 16254 2097018 268419060 34359738210 4398044397642 562949953421058
As a consequence of Theorem 3 we get another proof
of Lemma 3.3 in [10].

Corollary 9. Let A be a nonempty array. Then there exist a
unique primitive array C and positive integers i, j such that
A = C i× j .

Proof. Choose i as large as possible such that there ex-
ist an integer k and an array D such that A = Di×k . Now
choose j as large as possible such that there exists an in-
teger j and an array C such that A = C i× j . We claim that
C is primitive. For if not, then there exists an array B such
that C = Bi′× j′ for positive integers i, j, not both 1. Then
A = C i× j = Bii′× j j′ , contradicting either the maximality of i
or the maximality of j.

For uniqueness, assume A = C i1× j1 = Di2× j2 where C
and D are both primitive. Then by Theorem 3 there exists
an array E such that C = E p1×q1 and D = E p2×q2 . Since C
and D are primitive, we must have p1 = q1 = 1 and p2 =
q2 = 1. Hence C = D . �
Remark 10. In contrast, as Bacquey [4] has recently shown,
two-dimensional biperiodic infinite arrays can have two
distinct primitive roots.

6. Counting the number of primitive arrays

There is a well-known formula for the number of prim-
itive words of length n over a k-letter alphabet (see e.g.
[17, p. 9]):

ψk(n) =
∑
d|n

μ(d)kn/d, (3)

where μ is the well-known Möbius function, defined as
follows:

μ(n) =

⎧⎪⎨
⎪⎩

(−1)t , if n is squarefree and the product

of t distinct primes;

0, if n is divisible by a square > 1.

We recall the following well-known property of the sum
of the Möbius function μ(d) (see, e.g., [12, Thm. 263]):

Lemma 11.

∑
d|n

μ(d) =
{

1, if n = 1;
0, if n > 1.

In this section we generalize Eq. (3) to two-dimensional
primitive arrays:
Theorem 12. There are

ψk(m,n) =
∑
d1|m

∑
d2|n

μ(d1)μ(d2)k
mn/(d1d2)

primitive arrays of dimension m × n over a k-letter alphabet.

Proof. We will use Lemma 11 to prove our generalized for-
mula, which we obtain via Möbius inversion.

Define g(m, n) := kmn; this counts the number of
m × n arrays over a k-letter alphabet. Each such array
has, by Corollary 9, a unique primitive root of dimen-
sion d1 × d2, where evidently d1 | m and d2 | n. So
g(m, n) = ∑

d1|m
d2|n

ψk(d1, d2). Then

∑
d1|m
d2|n

μ(d1)μ(d2) g

(
m

d1
,

n

d2

)

=
∑
d1|m

μ(d1)
∑
d2|n

μ(d2) g

(
m

d1
,

n

d2

)

=
∑
d1|m

μ(d1)
∑
d2|n

μ(d2)
∑

c1|m/d1
c2|n/d2

ψk(c1, c2)

=
∑

c1d1|m
μ(d1)

∑
c2d2|n

μ(d2) ψk(c1, c2)

=
∑
c1|m

∑
c2|n

ψk(c1, c2)
∑

d1|m/c1
d2|n/c2

μ(d1)μ(d2).

Let r = m/c1 and s = n/c2. By Lemma 11, the last sum in
the above expression is 1 if r = 1 and s = 1; that is, if
c1 = m and c2 = n. Otherwise, the last sum is 0. Thus, the
sum reduces to ψk(m, n) as required. �

Table 1 gives the first few values of the function
ψ2(m, n):

Remark 13. As a curiosity, we note that ψ2(2, n) also
counts the number of pedal triangles with period exactly n.
See [24,15].

7. Checking primitivity in linear time

In this section we give an algorithm to test primitivity
of two-dimensional arrays. We start with a useful lemma.

Lemma 14. Let A be an m × n array. Let the primitive root of
row i of A be ri and the primitive root of column j of A be c j .

62 G. Gamard et al. / Information Processing Letters 118 (2017) 58–63
Then the primitive root of A has dimension p × q, where q =
lcm(|r0|, |r1|, . . . , |rm−1|) and p = lcm(|c0|, |c1|, . . . , |cn−1|).

Proof. Let P be the primitive root of the array A, of di-
mension m′ × n′ . Then the row A[i, 0..n − 1] is periodic
with period n′ . But since the primitive root of A[i, 0..n − 1]
is of length ri , we know that |ri| divides n′ . It follows
that q |n′ , where q = lcm(|r0|, |r1|, . . . , |rm−1|). Now sup-
pose n′ �= q. Then since q |n′ we must have n′/q > 1. Define
Q := P [0..m′ − 1, 0..q − 1]. Then Q 1×(n′/q) = P , contra-
dicting our hypothesis that P is primitive. It follows that
n′ = q, as claimed.

Applying the same argument to the columns proves the
claim about p. �

Now we state the main result of this section.

Theorem 15. We can check primitivity of an m × n array and
compute the primitive root in O (mn) time, for fixed alphabet
size.

Proof. As is well known, a word u is primitive if and only
if u is not an interior factor of its square uu [7]; that is,
u is not a factor of the word uF uL , where uF is u with
the first letter removed and uL is u with the last letter
removed. We can test whether u is a factor of uF uL us-
ing a linear-time string matching algorithm, such as the
Knuth–Morris–Pratt algorithm [16]. If the algorithm re-
turns no match, then u is indeed primitive. Furthermore, if
u is not primitive, the length of its primitive root is given
by the index (starting with position 1) of the first match
of u in uF uL . We assume that there exists an algorithm
1DPrimitiveRoot to obtain the primitive root of a given
word in this manner.

We use Lemma 14 as our basis for the following al-
gorithm to compute the primitive root of a rectangular
array. This algorithm takes as input an array A of dimen-
sion m × n and produces as output the primitive root C
of A and its dimensions.

Algorithm 1 Computing the primitive root of A.
1: procedure 2DPrimitiveRoot(A, m, n)
2: for 0 ≤ i < m do compute primitive root of each row
3: ri ← 1DPrimitiveRoot(A[i, 0..n − 1])
4: q ← lcm(|r0|, |r1|, . . . , |rm−1|) compute lcm of lengths of

primitive roots of rows
5: for 0 ≤ j < n do compute primitive root of each column
6: c j ← 1DPrimitiveRoot(A[0..m − 1, j])
7: p ← lcm(|c0|, |c1|, . . . , |cn−1|) compute lcm of lengths of

primitive roots of columns
8: for 0 ≤ i < p do
9: for 0 ≤ j < q do

10: C[i, j] ← A[i, j]
11: return (C, p, q)

The correctness follows immediately from Lemma 14,
and the running time is evidently O (mn). �
Remark 16. The literature features a good deal of previ-
ous work on pattern matching in two-dimensional arrays.
The problem of finding every occurrence of a fixed rect-
angular pattern in a rectangular array was first solved in-
dependently by Bird [6] and by Baker [5]. Amir and Ben-
son later introduced the notion of two-dimensional peri-
odicity in a series of papers [2,1,3]. Mignosi, Restivo, and
Silva [20] considered two-dimensional generalizations of
the Fine–Wilf theorem. A survey of algorithms for two-
dimensional pattern matching may be found in Chapter 12
of Crochemore and Rytter’s text [9]. Marcus and Sokol [19]
considered two-dimensional Lyndon words. Crochemore,
Iliopoulos, and Korda [8] and, more recently, Gamard and
Richomme [10], considered quasiperiodicity in two dimen-
sions. However, with the exception of this latter paper,
where Corollary 9 can be found, none of this work is di-
rectly related to the problems we consider in this paper.

Remark 17. One might suspect that it is easy to reduce
2-dimensional primitivity to 1-dimensional primitivity by
considering the array A as a 1-dimensional word, and
taking the elements in row-major or column-major or-
der. However, the natural conjectures that A is primitive
if and only if (a) either its corresponding row-majorized or
column-majorized word is primitive, or (b) both its row-
majorized or column-majorized words are primitive, both
fail. For example, assertion (a) fails because[
a a
b b

]

is not primitive, while its row-majorized word aabb is
primitive. Assertion (b) fails because[
a b a
b a b

]

is 2-dimensional primitive, but its row-majorized word
ababab is not.

Acknowledgements

Funded in part by grant RGPIN-105829-2013 from
NSERC. We are grateful to the referees for several sugges-
tions.

References

[1] A. Amir, G.E. Benson, Two-dimensional periodicity and its appli-
cations, in: Proc. 3rd Ann. ACM-SIAM Symp. Discrete Algorithms
(SODA ’92), 1992, pp. 440–452.

[2] A. Amir, G.E. Benson, Alphabet independent two-dimensional pat-
tern matching, in: Proc. 24th Ann. ACM Symp. Theory of Computing
(STOC ’92), 1992, pp. 59–68.

[3] A. Amir, G.E. Benson, Two-dimensional periodicity in rectangular ar-
rays, SIAM J. Comput. 27 (1) (1998) 90–106.

[4] N. Bacquey, Primitive roots of bi-periodic infinite pictures, in:
F. Manea, D. Nowotka (Eds.), WORDS 2015 Conference, Local Pro-
ceedings, in: Kiel Comput. Sci. Ser., vol. 2015/5, 2015, pp. 1–16. Avail-
able at https://hal.archives-ouvertes.fr/hal-01178256.

[5] T.P. Baker, A technique for extending rapid exact-match string match-
ing to arrays of more than one dimension, SIAM J. Comput. 7 (4)
(1978) 533–541.

[6] R.S. Bird, Two-dimensional pattern matching, Inf. Process. Lett. 6 (5)
(1977) 168–170.

http://refhub.elsevier.com/S0020-0190(16)30138-7/bib416D697242656E736F6E313939323244506572696F646963697479s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib416D697242656E736F6E313939323244506572696F646963697479s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib416D697242656E736F6E313939323244506572696F646963697479s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib416D697242656E736F6E31393932416C706861626574496E646570656E64656E74s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib416D697242656E736F6E31393932416C706861626574496E646570656E64656E74s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib416D697242656E736F6E31393932416C706861626574496E646570656E64656E74s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib416D697242656E736F6E313939383244506572696F646963697479s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib416D697242656E736F6E313939383244506572696F646963697479s1
https://hal.archives-ouvertes.fr/hal-01178256
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib42616B657231393738537472696E674D61746368696E67s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib42616B657231393738537472696E674D61746368696E67s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib42616B657231393738537472696E674D61746368696E67s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib42697264313937375061747465726E4D61746368696E67s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib42697264313937375061747465726E4D61746368696E67s1

G. Gamard et al. / Information Processing Letters 118 (2017) 58–63 63
[7] C. Choffrut, J. Karhumäki, Combinatorics of words, in: A. Salomaa,
G. Rozenberg (Eds.), Handbook of Formal Languages, vol. 1, Springer-
Verlag, 1997, pp. 329–438.

[8] M. Crochemore, C.S. Iliopoulos, M. Korda, Two-dimensional prefix
string matching and covering on square matrices, Algorithmica 20
(1998) 353–373.

[9] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press,
1994.

[10] G. Gamard, G. Richomme, Coverability in two dimensions, in:
A.-H. Dediu, E. Formenti, C. Martín-Vide, B. Truthe (Eds.), LATA
2015, in: Lect. Notes Comput. Sci., vol. 8977, Springer-Verlag, 2015,
pp. 402–413. Also see http://arxiv.org/abs/1506.08375.

[11] D. Giammarresi, A. Restivo, Two-dimensional languages, in: A. Sa-
lomaa, G. Rozenberg (Eds.), Handbook of Formal Languages, vol. 3,
Springer-Verlag, 1997, pp. 215–267.

[12] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers,
6th edition, Oxford University Press, 2008.

[13] M. Huova, A note on defect theorems for 2-dimensional words and
trees, J. Autom. Lang. Comb. 14 (2009) 203–209.

[14] M. Huova, Combinatorics on words: new aspects on avoidability,
defect effect, equations and palindromes, PhD thesis, Turku Centre
for Computer Science, Finland, April 2014, TUCS Dissertations No.
172.
[15] J.G. Kingston, J.L. Synge, The sequence of pedal triangles, Am. Math.
Mon. 95 (1988) 609–620.

[16] D.E. Knuth, J.H. Morris, V.R. Pratt, Fast pattern matching in strings,
SIAM J. Comput. 6 (2) (1977) 323–350.

[17] M. Lothaire, Combinatorics on Words, Encycl. Math. Appl., vol. 17,
Addison–Wesley, 1983.

[18] R.C. Lyndon, M.P. Schützenberger, The equation aM = bN c P in a free
group, Mich. Math. J. 9 (1962) 289–298.

[19] S. Marcus, D. Sokol, On two-dimensional Lyndon words, in: O. Kur-
land, M. Lewenstein, E. Porat (Eds.), SPIRE 2013, in: Lect. Notes
Comput. Sci., vol. 8214, Springer-Verlag, 2013, pp. 206–217.

[20] F. Mignosi, A. Restivo, P.V. Silva, On Fine and Wilf’s theorem for
bidimensional words, Theor. Comput. Sci. 292 (2003) 245–262.

[21] M. Moczurad, W. Moczurad, Some open problems in decidabil-
ity of brick (labelled polyomino) codes, in: K.-Y. Chwa, J.I. Munro
(Eds.), COCOON 2004, in: Lect. Notes Comput. Sci., vol. 3106,
Springer-Verlag, 2004, pp. 72–81.

[22] W. Moczurad, Defect theorem in the plane, RAIRO Theor. Inform.
Appl. 41 (2007) 403–409.

[23] J. Shallit, A Second Course in Formal Languages and Automata
Theory, Cambridge University Press, 2009.

[24] J. Vályi, Über die Fußpunktdreiecke, Monatshefte Math. 14 (1903)
243–252.

http://refhub.elsevier.com/S0020-0190(16)30138-7/bib43686F66667275744B617268756D616B6931393937436F6D62696E61746F72696373s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib43686F66667275744B617268756D616B6931393937436F6D62696E61746F72696373s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib43686F66667275744B617268756D616B6931393937436F6D62696E61746F72696373s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib43726F6368656D6F726526496C696F706F756C6F73264B6F7264613A31393938s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib43726F6368656D6F726526496C696F706F756C6F73264B6F7264613A31393938s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib43726F6368656D6F726526496C696F706F756C6F73264B6F7264613A31393938s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib43726F6368656D6F72655279747465723139393454657874416C676F726974686D73s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib43726F6368656D6F72655279747465723139393454657874416C676F726974686D73s1
http://arxiv.org/abs/1506.08375
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4769616D6D617272657369265265737469766F3A31393937s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4769616D6D617272657369265265737469766F3A31393937s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4769616D6D617272657369265265737469766F3A31393937s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4861726479265772696768743A32303038s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4861726479265772696768743A32303038s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib48756F76613A32303039s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib48756F76613A32303039s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib48756F76613A32303134s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib48756F76613A32303134s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib48756F76613A32303134s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib48756F76613A32303134s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4B696E6773746F6E2653796E67653A31393838s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4B696E6773746F6E2653796E67653A31393838s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4B6E7574684D6F72726973507261747431393737466173745061747465726E4D61746368696E67s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4B6E7574684D6F72726973507261747431393737466173745061747465726E4D61746368696E67s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4C6F7468616972653A31393833s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4C6F7468616972653A31393833s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4C796E646F6E2653636875747A656E6265726765723A31393632s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4C796E646F6E2653636875747A656E6265726765723A31393632s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4D617263757326536F6B6F6C3A32303133s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4D617263757326536F6B6F6C3A32303133s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4D617263757326536F6B6F6C3A32303133s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4D69676E6F7369265265737469766F2653696C76613A32303033s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4D69676E6F7369265265737469766F2653696C76613A32303033s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4D6F637A75726164264D6F637A757261643A32303034s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4D6F637A75726164264D6F637A757261643A32303034s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4D6F637A75726164264D6F637A757261643A32303034s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4D6F637A75726164264D6F637A757261643A32303034s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4D6F637A757261643A32303037s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib4D6F637A757261643A32303037s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib5368616C6C69743A32303039s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib5368616C6C69743A32303039s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib56616C79693A31393033s1
http://refhub.elsevier.com/S0020-0190(16)30138-7/bib56616C79693A31393033s1

	Periodicity in rectangular arrays
	1 Introduction
	2 Rectangular arrays
	3 Generalizing the Lyndon-Schützenberger theorem
	4 Labeled plane ﬁgures
	5 Primitive arrays
	6 Counting the number of primitive arrays
	7 Checking primitivity in linear time
	Acknowledgements
	References

