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1. Introduction

Let ¥ be a finite alphabet. One very general version of
the famous Lyndon-Schiitzenberger theorem [18] can be
stated as follows:

Theorem 1. Let x, y € 7. Then the following five conditions
are equivalent:

(Dxy=yx;

(2) There exist z € =T and integers k, £ > 0 such that x = z¥
and y =z%;

(3) There exist integers i, j > 0 such that x' = yJ;

(4) There exist integers r, s > 0 such that X" y* = y5x";

(5) x{x, y}* N y{x, y}* #0.

Proof. For a proof of the equivalence of (1), (2), and (3),
see, for example [23, Theorem 2.3.3].

Condition (5) is essentially the “defect theorem”; see,
for example, [17, Cor. 1.2.6].
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For completeness, we now demonstrate the equivalence
of (4) and (5) to each other and to conditions (1)-(3):

(3) = (4): If x' = yJ, then we immediately have x"ys =
y5x" with r=i and s = j.

(4) = (5): Let z=x"y5. Then by (4) we have z = ySx".
Soz=xx""1y* and z=yy*~'x'. Thus z e x{x, y}* and z €
yix, y*. So x{x, y}* N y{x, yy* #0.

(5) = (1): By induction on the length of |xy|. The base
case is |xy| = 2. More generally, if |x| = |y| then clearly (5)
implies x = y and so (1) holds. Otherwise without loss of
generality |x| < |y|. Suppose z € x{x, y}* and z € y{x, y}*.
Then x is a proper prefix of y, so write y = xw for a
nonempty word w. Then z has prefix xx and also prefix
xw. Thus x~1z € x{x, w}* and x~'z € w{x, w}*, where by
x~1z we mean remove the prefix x from z. So x{x, w}* N
w{x, w}* # @, so by induction (1) holds for x and w, so
xw = wx. Then yx = (xw)x=x(wx) =xy. O

A nonempty word z is primitive if it cannot be written
in the form z = w® for a word w and an integer e > 2. We
will need the following fact (e.g., [17, Prop. 1.3.1] or [23,
Thm. 2.3.4]):
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Fact 2. Given a nonempty word x, the shortest word z such
that x = Z' for some integer i > 1 is primitive. It is called
the primitive root of x, and is unique.

In this paper we consider generalizations of the Lyndon-
Schiitzenberger theorem and the notion of primitivity to
two-dimensional rectangular arrays (sometimes called pic-
tures in the literature). For more about basic operations on
these arrays, see, for example, [11].

2. Rectangular arrays

By X™*" we mean the set of all m x n rectangular ar-
rays A of elements chosen from the alphabet X. Our arrays
are indexed starting at position 0, so that A[O0, 0] is the
element in the upper left corner of the array A. We use
the notation A[i..j, k..£] to denote the rectangular subar-
ray with rows i through j and columns k through ¢. If
A € ™" then |A| =mn is the number of entries in A.

We also generalize the notion of powers as follows. If
A € T™M then by AP we mean the array constructed
by repeating A pq times, in p rows and g columns. More
formally AP*Y is the pm x qn array B satisfying BI[i, j] =
Ali mod m, j mod n] for 0 <i < pm and 0 < j < gn. For
example, if

a b c
A_|:d e fi|’
then
a b cabc abc
A2X3 d e £ de £ d e £
“"la b c abocaboc
d e £f de f de £

We can also generalize the notation of concatenation of
arrays, but now there are two annoyances: first, we need
to decide if we are concatenating horizontally or vertically,
and second, to obtain a rectangular array, we need to insist
on a matching of dimensions.

If Ais an m x ny array and B is an m x ny array, then
by A ® B we mean the m x (ny + ny) array obtained by
placing B to the right of A.

If A is an my; x n array and B is an my x n array, then
by A © B we mean the (mj + my) x n array obtained by
placing B underneath A.

3. Generalizing the Lyndon-Schiitzenberger theorem

We now state our first generalization of the Lyndon-
Schiitzenberger theorem to two-dimensional arrays, which
generalizes claims (2), (3), and (4) of Theorem 1.

Theorem 3. Let A and B be nonempty arrays. Then the follow-
ing three conditions are equivalent:

(a) There exist positive integers p1, p2,q1,q2 such that
AP1xd1 — BP2xq2

(b) There exist a nonempty array C and positive integers
1,12, 51,52 such that A = C">51 and B = C"2%52,

(c) There exist positive integers ty,ty,uq1,uy such that
Alixth o Blaxta — Blaxta o ALXUL where o can be either
ore.

Proof.

(a) = (b). Let A be an array in ™" and B be an ar-
ray in ¥™2*" sych that AP1*91 = BP2*42_ By dimensional
considerations we have mip; = myp, and n1qq = naqz. De-
fine P = AP1*! and Q = BP2*!, We have P1*91 = Q 1x4z,
Viewing P and Q as words over £™P1x1 and considering
horizontal concatenation, this can be written P91 = Q2.
By Theorem 1 there exist a word R over =™P1x1 and in-
tegers s1, sy such that P = R'51 and Q = R1*%2. Let r de-
note the number of columns of R and let S = A[0...m; —
1,0...r—1) and T = B[0...my — 1,0...r — 1]. Observe
A =511 and B = T'*%2, Considering the r first columns
of P and Q, we have SP1*1 = TP2x1 Viewing S and T as
words over £ and considering vertical concatenation,
we can rewrite SP1 = TPz, By Theorem 1 again, there exist
a word C over ' and integers ry, r such that S = ¢!
and T = C2*1, Therefore, A= C"*1 and B = C"2%%2,

(b) = (c). Without loss of generality, assume that the
concatenation operation is . Let us recall that A = C"1*51
and B =C"*%%2, Take t1 =ry and t; =ry and u; = sy and
Uy = sq1. Then we have

At1><Ll] @ Btzxuz
— Cr1t1 XS1Uq 0) Crztz XSaUy

= Cnifix(s1ur+syuz) (Observe that rit; = raty)

— Crzl’z XSoUy 0) CT][] XS1Uq

— Bthle D Af1><U1.

(c) = (a). Without loss of generality, assume that the
concatenation operation is (0. Assume the existence of
positive integers t1, ta, Uy, Uy such that

AﬁXLl] @ Bl’zXle — Bl’zqu @ Af1><u1'

An immediate induction allows to prove that for all posi-
tive integers i and j,

At1><iu1 CD B[zxjuz — Btz)(juz CD At] ><iu1. (1)

Assume that A is in ¥™>*™ and B is in X™*™, For
i =nyuy and j =nquq, we get iuyny = juyny. Then, by con-
sidering the first iuin; columns of the array defined in (1),
we get Alixit1 = ptaxjiz

Note that generalizing condition (1) of Theorem 1 re-
quires considering arrays with the same number of rows
or same number of columns. Hence the next result is a di-
rect consequence of the previous theorem.

Corollary 4. Let A, B be nonempty rectangular arrays. Then

(a)if A and B have the same number of rows, AODB=B QA if
and only if there exist a nonempty array C and integerse, f > 1
such that A= C'*¢ and B = C'*/;

(b)if A and B have the same number of columns, A©OB =B6 A
if and only if there exist a nonempty array C and integers
e, f > 1such that A= C®! and B = Cf*1.
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bl la ¢ b a
cl|b a ¢ b
b a c

Fig. 2. Tiling of Fig. 1.

4. Labeled plane figures

We can generalize condition (5) of Theorem 1. We be-
gin with the following lemma. As in the case of Corollary 4,
we need conditions on the dimensions.

Lemma 5. Let X and Y be rectangular arrays having same num-
ber of rows or same numbers of columns. In the former case set
o = (. In the latter case set o = ©. If

XoWjoWzo---oW;j=YoZioZyo - -0Zj (2)

holds, where W1, W>,...,W;,Z1,Z3,...,Z; € {X,Y} for
i, j >0, then X and Y are powers of a third array T.

Proof. Without loss of generality we can assume that X
and Y have the same number r of rows. Then the lemma
is just a rephrasing of part (5) = (2) in Theorem 1, con-
sidering X and Y as words over "1, O

Now we can give our maximal generalization of (5) —
(3) in Theorem 1. To do so, we need the concept of labeled
plane figure (also called “labeled polyomino”).

A labeled plane figure is a finite union of labeled cells
in the plane lattice, that is, a map from a finite subset of
7Z x 7 to a finite alphabet . A sample plane figure is de-
picted in Fig. 1. Notice that such a figure does not need to
be connected or convex.

Let S denote a finite set of rectangular arrays. A tiling
of a labeled plane figure F is an arrangement of translates
of the arrays in S so that the label of every cell of F is
covered by an identical entry of an element of S, and no
cell of F is covered by more than one entry of an element
of S. For example, Fig. 2 depicts a tiling of the labeled

a
plane figure in Fig. 1 by the arrays [c b a], | b |, and
c
a c b a
b a c b
c b ac

Theorem 6. Let F be a labeled plane figure, and suppose F has
two different tilings U and V by two nonempty rectangular ar-
rays A and B. Then both A and B are powers of a third array C.

Proof. Assume that F has two different tilings by rectan-
gular arrays, but A and B are not powers of a third array C.
Without loss of generality also assume that F is the small-
est such figure (with the fewest cells) and also that A and
B are arrays with the fewest total entries that tile F, but
are not powers of a third array.

Consider the leftmost cell L in the top row of F. If this
cell is covered by the same array, in the same orientation,
in both tilings U and V, remove the array from U and V,
obtaining a smaller plane figure F’ with the same property.
This is a contradiction, since F was assumed minimal. So F
must have a different array in U and V at this cell. Assume
U has A in its tiling and V has B.

Without loss of generality, assume that the number of
rows of A is equal to or larger than r, the number of rows
of B. Truncate A at the first r rows and call it A’. Consider
the topmost row of F. Since it is topmost and contains L
at the left, there must be nothing above L. Hence the top-
most row of F must be tiled with the topmost rows of A
and B from left to right, aligned at this topmost row, un-
til either the right end of the figure or an unlabeled cell
is reached. Restricting our attention to the r rows under-
neath this topmost row, we get a rectangular tiling of these
r rows by arrays A’ and B in both cases, but the tiling of U
begins with A’ and the tiling of V begins with B.

Now apply Lemma 5 to these r rows (with o = Q).
We get that A’ and B are both expressible as powers of
some third array T. Then we can write A as a concate-
nation of some copies of T and the remaining rows of A
(call the remaining rows C). Thus we get two tilings of F
in terms of T and C. Since A and B were assumed to be
the smallest nonempty tiles that could tile F, and |T| < |B|
and |C| < |A|, the only remaining possibility is that T = B
and C is empty. But then A= A’ and so both A and B are
expressible as powers of T. O

Remark 7. The papers [21,22] claim a proof of Theorem 6,
but the partial proof provided is incorrect in some details
and missing others.

Remark 8. As shown by Huova [13,14], Theorem 6 is not
true for three rectangular arrays. For example, the plane
figure in Fig. 1 has the tiling in Fig. 2 and also another
one.

5. Primitive arrays

In analogy with the case of ordinary words, we can de-
fine the notion of primitive array. An array M is said to
be primitive if the equation M = AP*4 for p,q > O implies
that p =q = 1. For example, the array

1 2

2 1
is primitive, but

11 1 2
[ aJeed 2]

are not, as they can be written in the form [1]?*2 or
[12]1%1 respectively.
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Table 1
1 2 3 4 5 6 7
1 2 2 6 12 30 54 126
2 2 10 54 228 990 3966 16254
3 6 54 498 4020 32730 261522 2097018
4 12 228 4020 65040 1047540 16768860 268419060
5 30 990 32730 1047540 33554370 1073708010 34359738210
6 54 3966 261522 16768860 1073708010 68718945018 4398044397642
7 126 16254 2097018 268419060 34359738210 4398044397642 562949953421058

As a consequence of Theorem 3 we get another proof
of Lemma 3.3 in [10].

Corollary 9. Let A be a nonempty array. Then there exist a
unique primitive array C and positive integers i, j such that
A=C",

Proof. Choose i as large as possible such that there ex-
ist an integer k and an array D such that A = D™*¥. Now
choose j as large as possible such that there exists an in-
teger j and an array C such that A = C!*J. We claim that
C is primitive. For if not, then there exists an array B such
that C = B'*J" for positive integers i, j, not both 1. Then
A=Cixi = pii'xif| contradicting either the maximality of i
or the maximality of j.

For uniqueness, assume A = Ci1*Jj1 = pi2XJ2 where C
and D are both primitive. Then by Theorem 3 there exists
an array E such that C = EP1>*%" and D = EP2*%2, Since C
and D are primitive, we must have p; =q; =1 and p; =
g2 =1.Hence C=D. O

Remark 10. In contrast, as Bacquey [4] has recently shown,
two-dimensional biperiodic infinite arrays can have two
distinct primitive roots.

6. Counting the number of primitive arrays

There is a well-known formula for the number of prim-
itive words of length n over a k-letter alphabet (see e.g.
[17, p. 9]):

Yi(m) =Y k", (3)
din
where v is the well-known M@ébius function, defined as
follows:
(=1, ifnis squarefree and the product
of t distinct primes;
0, if n is divisible by a square > 1.

() =

We recall the following well-known property of the sum
of the Mdébius function w(d) (see, e.g., [12, Thm. 263]):

Lemma 11.

1, ifn=1;
Yua@=11 gn ]
on s > 1.

In this section we generalize Eq. (3) to two-dimensional
primitive arrays:

Theorem 12. There are

Yemn) =Y p(dy) pu(dy)k™ @

d1 Im d2 In

primitive arrays of dimension m x n over a k-letter alphabet.

Proof. We will use Lemma 11 to prove our generalized for-
mula, which we obtain via Mébius inversion.

Define g(m,n) := k™; this counts the number of
m x n arrays over a k-letter alphabet. Each such array
has, by Corollary 9, a unique primitive root of dimen-
sion dqi x dy, where evidently di | m and d, | n. So
gm,n) =3 a;jm ¥r(d1,d2). Then

dz\n

m n
> udpds) g (E’ E)

d] |m
d2|n

m n
=Y ud))y ud) g (E’ E)

dy|m da|n

=D ud Yy pud) Y i)

di|m da|n c1lm/dq
c2|n/dy

= Y ) Y ) Yiler )

c1dy|m C2dz|n

=33 ke Y pd)ud).

cqlmcaln dilm/cy
da|n/ca
Let r =m/c1 and s =n/cy. By Lemma 11, the last sum in
the above expression is 1 if r =1 and s = 1; that is, if
c1 =m and ¢y =n. Otherwise, the last sum is 0. Thus, the
sum reduces to vy (m,n) as required. 0O

Table 1 gives the first few values of the function

Y2(m, n):

Remark 13. As a curiosity, we note that ¥,(2,n) also
counts the number of pedal triangles with period exactly n.
See [24,15].

7. Checking primitivity in linear time

In this section we give an algorithm to test primitivity
of two-dimensional arrays. We start with a useful lemma.

Lemma 14. Let A be an m x n array. Let the primitive root of
row i of A be r; and the primitive root of column j of A be c;.
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Then the primitive root of A has dimension p x q, where q =
lem(jrol, Ir1l, ..., Irm—11) and p =lem(|col, lcal, ..., [cn—1]).

Proof. Let P be the primitive root of the array A, of di-
mension m’ x n’. Then the row A[i,0..n — 1] is periodic
with period n’. But since the primitive root of A[i, 0..n —1]
is of length r;, we know that |r;| divides n’. It follows
that q|n’, where q = lem(|rol, |r1], ..., |Tm—1]). Now sup-
pose n’ # q. Then since q |n’ we must have n’/q > 1. Define
Q := P[0..m — 1,0..q — 1]. Then Q'*®/® = p, contra-
dicting our hypothesis that P is primitive. It follows that
n’ =g, as claimed.

Applying the same argument to the columns proves the
claim about p. O

Now we state the main result of this section.

Theorem 15. We can check primitivity of an m x n array and
compute the primitive root in O (mn) time, for fixed alphabet
size.

Proof. As is well known, a word u is primitive if and only
if u is not an interior factor of its square uu [7]; that is,
u is not a factor of the word uru;, where ur is u with
the first letter removed and uj is u with the last letter
removed. We can test whether u is a factor of uru; us-
ing a linear-time string matching algorithm, such as the
Knuth-Morris-Pratt algorithm [16]. If the algorithm re-
turns no match, then u is indeed primitive. Furthermore, if
u is not primitive, the length of its primitive root is given
by the index (starting with position 1) of the first match
of u in upu;. We assume that there exists an algorithm
1DPRIMITIVEROOT to obtain the primitive root of a given
word in this manner.

We use Lemma 14 as our basis for the following al-
gorithm to compute the primitive root of a rectangular
array. This algorithm takes as input an array A of dimen-
sion m x n and produces as output the primitive root C
of A and its dimensions.

Algorithm 1 Computing the primitive root of A.
1: procedure 2DPRIMITIVEROOT(A, m, n)

2: for 0<i<mdo > compute primitive root of each row
3: ri <= 1DPRIMITIVEROOT(A[i, 0..n —1])
4. q<lem(frol, Ir1l, ..., Irm=11) > compute lcm of lengths of

primitive roots of rows
5: for 0<j<ndo > compute primitive root of each column
¢j < 1DPRIMITIVEROOT(A[0..m — 1, j])

N @

p < lem([col, [eal, .-, len—1])
primitive roots of columns
8: for 0<i<pdo
9: for 0<j<gqdo
10: Cli, j1 < Ali, jl
11: return (C, p,q)

> compute Icm of lengths of

The correctness follows immediately from Lemma 14,
and the running time is evidently O (mn). O

Remark 16. The literature features a good deal of previ-
ous work on pattern matching in two-dimensional arrays.

The problem of finding every occurrence of a fixed rect-
angular pattern in a rectangular array was first solved in-
dependently by Bird [6] and by Baker [5]. Amir and Ben-
son later introduced the notion of two-dimensional peri-
odicity in a series of papers [2,1,3]. Mignosi, Restivo, and
Silva [20] considered two-dimensional generalizations of
the Fine-Wilf theorem. A survey of algorithms for two-
dimensional pattern matching may be found in Chapter 12
of Crochemore and Rytter’s text [9]. Marcus and Sokol [19]
considered two-dimensional Lyndon words. Crochemore,
Iliopoulos, and Korda [8] and, more recently, Gamard and
Richomme [10], considered quasiperiodicity in two dimen-
sions. However, with the exception of this latter paper,
where Corollary 9 can be found, none of this work is di-
rectly related to the problems we consider in this paper.

Remark 17. One might suspect that it is easy to reduce
2-dimensional primitivity to 1-dimensional primitivity by
considering the array A as a 1-dimensional word, and
taking the elements in row-major or column-major or-
der. However, the natural conjectures that A is primitive
if and only if (a) either its corresponding row-majorized or
column-majorized word is primitive, or (b) both its row-
majorized or column-majorized words are primitive, both
fail. For example, assertion (a) fails because

a a

b b
is not primitive, while its row-majorized word aabb is
primitive. Assertion (b) fails because

a b a

b a b

is 2-dimensional primitive, but its row-majorized word
ababab is not.
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