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Abstract
A tandem repeat is an occurrence of two adjacent identical substrings. In this paper, we introduce
the notion of a double string, which consists of two parallel strings, and we study the problem
of locating all tandem repeats in a double string. The problem introduced here has applications
beyond actual double strings, as we illustrate by solving two different problems with the algorithm
of the double string tandem repeats problem. The first problem is that of finding all corner-sharing
tandems in a 2-dimensional text, defined by Apostolico and Brimkov. The second problem is that of
finding all scaled tandem repeats in a 1d text, where a scaled tandem repeat is defined as a string
UU ′ such that U ′ is discrete scale of U . In addition to the algorithms for exact tandem repeats, we
also present algorithms that solve the problem in the inexact sense, allowing up to k mismatches.
We believe that this framework will open a new perspective for other problems in the future.
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3:2 Double String Tandem Repeats

1 Introduction

A tandem repeat, or square, is a string which consists of two consecutive identical occurrences
of a substring or root, e.g. abab. Finding all tandem repeats in a given string is a well-studied
problem with many applications in diverse areas such as biological sequence analysis and
data compression. A maximal run in a string S is a substring of S that is periodic and
cannot be extended at all to the right or left, e.g. ababa is a maximal run in the string
abaababac. A maximal run in a string represents contiguous tandem repeats, all with periods
conjugates of each other, and as such, maximal runs have been used to succinctly encode all
tandem repeats. For example, the maximal run ababa represents consecutive tandem repeats
with roots ab and ba.

In this paper, we consider the problem of finding tandem repeats in input that consists
of two parallel strings. We define a double string, and introduce the corresponding notions
of tandem repeat and run in a double string. Double strings are ubiquitous in nature,
as molecules such as DNA come in pairs.1 Hence, the problem considered is interesting
from both a theoretical and practical perspective. However, the strength of this paper’s
contribution lies in its applicability to unrelated variants of the tandem repeats problem. We
show how the solution to the double string tandem repeats problem can be used to solve two
different problems. The first is finding 2D corner-sharing tandems, and the second is finding
all scaled tandem repeats. We are confident that more applications of double string pattern
matching will be discovered in the future.

In Section 2 we present precise definitions and examples of tandem repeats and runs in
a double string, and then prove upper and lower bounds on the number of occurrences of
such runs. In Section 3 we present an O(n logn) time algorithm for locating all double string
tandem repeats. We then extend this algorithm to deal with double string tandem repeats
while allowing k mismatches. In Section 4 we provide a reduction of the 2-dimensional (2D)
corner-sharing tandem problem to the double string tandem repeats problem. We thus obtain
a more efficient algorithm for locating all corner-sharing tandems in a 2D text, both with
and without mismatches. Finally, in Section 5 we solve the scaled tandem repeats problem by
reducing it to a tandem repeats problem on double strings.

2 Definition and Characterization of Double String Tandem Repeats

We use S[i] to denote the ith character of a string S, and S[i . . . j] to denote the substring of
S from S[i] through S[j].

I Definition 1. A double string of length n consists of two parallel sequences over a given
alphabet, each of length n, indexed by 1 . . . n. We call the two strings S1 and S2.

I Example 1. A double string of length 5, with S1 = aabca and S2 = ccbba.

1 2 3 4 5
a a b c a
c c b b a

I Definition 2. A double string tandem repeat (2-str TR) is a substring of S1 and a
substring of S2 that are identical and consecutive. As in one string, we call the repeating

1 In DNA there are specific relationships between corresponding bases, while our definition of a double
string does not imply any such relationship.
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substring the root or period of the 2-str TR. Specifically, a 2-str TR with length 2p beginning
at location i in S1, implies that the substring S1[i . . . i+ p− 1] is identical to the substring
S2[i+ p . . . i+ 2p− 1]. A 2-str TR beginning at location j in S2 implies that S2[j . . . j+ p− 1]
is identical to the substring S1[j + p . . . j + 2p− 1].

I Example 2. A double string tandem repeat with root abc begins at location 2 in S1.

1 2 3 4 5 6 7 8
a a b c a a b b
c c b b a b c d

For the remainder of the paper, we assume that the 2-str TR begins in S1; all lemmas
and algorithms apply with minor modifications to indices for those beginning in S2.

I Definition 3. A 2-str run (i, j, p) in a double string (S1, S2) of length n, 1 ≤ i ≤ j ≤
n− 2p+ 1, 1 ≤ p ≤ n/2, is a sequence of one or more 2-str TR’s with period size p beginning
at each location i ≤ ` ≤ j in S1. The run is said to be maximal if it cannot be extended to
the left or right, i.e. both (i− 1, j, p) and (i, j + 1, p) are not 2-str runs.

I Example 3. A maximal run with period size 3 occurs at locations 1 . . . 8 in S1 and 4 . . . 11
in S2. It can be represented by the triple (1, 6, 3), since 1 is the start of the leftmost tandem,
6 is the start of the rightmost tandem, and 3 is the period size.

1 2 3 4 5 6 7 8 9 10 11
a b c a b x y z z z z
a a a a b c a b x y z

Although all of the consecutive 2-str TR’s in a 2-str run have the same period size, the
actual characters in the periods can be different for different tandems in the same run, as is
evident in Example 3. Thus, transitivity in equality of location i with location i − p and
i+ p, for period p, which holds trivially for a run in a string, does not hold for a 2-str run.
Nevertheless, 2-str runs can still be used as an efficient encoding of consecutive 2-str TR’s,
and as we show in the next subsection, there cannot be too many of them.

2.1 The number of maximal 2-str runs in a double string
I Lemma 4. Two distinct maximal 2-str runs in a double string, with the same period size,
cannot overlap within S1 or S2.

Proof. Let p be the period size of two distinct maximal 2-str runs in a given double string, and
let j be the rightmost location of the 2-str run that has the leftmost starting location. Due to
the maximality, there must be a mismatch following the first run, thus S1[j+1] 6= S2[j+p+1],
and location j + 1 cannot be included in any 2-str run with period p due to the mismatch.
Therefore, the second 2-str run must start to the right of location j + 1 in S1 and hence
cannot overlap. J

Note that in one string, two maximal runs with the same period size may overlap, as long
as the overlap is shorter than the period size, for e.g. abcabcxbcx.

I Lemma 5. There can be O(n logn) maximal 2-str runs in a double string of length n.

Proof. For a given period p there are no more than n/p maximal 2-str runs since they cannot
overlap by Lemma 4. Since p can be 1 . . . n/2, this yields Σn/2

p=1n/p, a harmonic series which
is bound by O(n logn). J

CPM 2020



3:4 Double String Tandem Repeats

I Lemma 6. There can be Ω(n) maximal 2-str runs in a double string of length n.

Proof. If we take any S1 that contains Θ(n) runs (e.g. Fibonacci string [9]), and then set
S1 = S2, we will get a double string with Θ(n) 2-str runs, since the first period of each run
in S1 will pair up with the second period in S2. J

Remark: We point out that the gap of logn between the upper and lower bound remains
an open problem.

2.2 Primitivity in 2-str TR’s and Runs
A string S is primitive if it cannot be expressed in the form s = uj , for some integer j > 1
and some prefix u of S. For example, ababa is primitive, but abab is non-primitive. The
notion of primitivity is very relevant to tandem repeats, since tandem repeats with primitive
roots are really the only interesting tandem repeats. In fact, in a string, a maximal run with
a primitive root encodes the information about all tandem repeats that span its substring, for
e.g. ababababababa encodes consecutive tandems with periods 2, 4, and 6. We can encode this
output as a triple (i, j, p), where i is the start location of the leftmost tandem, j is the start
of the rightmost tandem, and p is the smallest period (in the above example it is (1, 10, 2)).
This encoding is commonly used in algorithms that report all tandem repeats in a string.

On the other hand, the concept of primitivity in a 2-str TR is more subtle. We cannot
say that we are only interested in TR’s with primitive roots, as we will miss some TR’s in
the double string (see Example 4). Furthermore, a non-primitive TR may be a substring of
a longer run as in Example 5. This non-primitivity certainly should not disqualify the run.

I Example 4. The 2-str TR beginning at location 1, of length 8, has non-primitive root
abab. This is not implied by the 2-str TR at location 3 with primitive root ab.

1 2 3 4 5 6 7 8 9 10
a b a b c c c c c c
c c c c a b a b a b

I Example 5. The TR at location 1 has primitive root xbab, the TR’s at locations 2, 3, and
4 have non-primitive roots baba, abab. There is also a 2-str run of period 2 beginning at
location 4, which in a sense encodes the TR of period 4 beginning at location 4.

1 2 3 4 5 6 7 8 9 10 11
x b a b a b a b a b c
c c c c x b a b a b a

We conclude that since some non-primitive TR’s must be reported, an algorithm that
locates all 2-str TR’s must search for these TR’s. Hence, our algorithm finds and reports all
2-str TR’s, including those that have non-primitive roots. For example, when searching the
double string S1 = S2 = an, bn

2 c maximal 2-str runs will be found, one for each period size.
If necessary, those that are not interesting can be filtered out by finding all 1d runs in each
string, and merging this with the output of our algorithm, since every 2-str TR that has a
non-primitive root will be part of a run in each individual string of the double string.

3 The Algorithm

A common idea used in algorithms that find tandem repeats in a string, is to search for all
tandem repeats that cross a given point (see for e.g. [11, 15]). Instead of fixing the starting
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point of a tandem, and searching for xx, the algorithm fixes certain points that the set of
contiguous tandems must cross, and searches for all tandems that cross that point. We use
this idea, searching for each period size separately, and reporting consecutive tandem repeats
as a single run. We follow the framework of the Main-Lorentz algorithm [16] (see pseudocode
in Algorithm 1). Given an input double string (S1, S2) of length n, in the first iteration,
all runs that cross the center of the string are found. In the following iteration, (S1, S2) is
split into two halves, and each one is searched individually. (To simplify the presentation
we assume that n is a power of 2.) As implemented in Algorithm 1, this continues for logn
iterations.

The runs that cross the center are classified into two groups. A right run has more than
half of its characters to the right of the center of the string, and a left run has the majority
of its characters to the left of the center. Algorithm 2, together with Figure 1, describes the
procedure that finds all right runs; by symmetry, all left runs can be found.

The novel idea of Algorithm 2 is that computing the longest common extensions using
two different strings yields the desired results. The forward comparisons are done with a
substring of S1 against a substring S2, and the same for the reverse comparisons. These
extensions define which runs occur in the double string crossing the midpoint. The standard
KMP algorithm [10] is used to compute all of the forward and reverse extensions in linear
time, as done in [16]. The input pattern to KMP for the forward extensions is the string
S1[ n

2 . . . n] and the text is S2[ n
2 + 1 . . . n]. Conversely the reverses of S1[1 . . . n

2 − 1] and
S2[1 . . . n] are used as input to KMP for the reverse extensions. To ensure maximality, the
2-str runs that reach the end of the substring being processed can be discarded in every
iteration other than the top level, since they are non-maximal and will be found in a different
iteration. This will ensure in practice that each 2-str run will be found only once.

Algorithm 1 Find Runs in a Double String.

Input: double string (S1, S2) of length n
Output: all runs that occur in the double string

for i = log2 n downto 1 do . for logn iterations of ML framework
for ` = 0 to n/2i − 1 do . for each piece of the input of width 2i

FindRightRuns((S1, S2) , `2i + 1, (`+ 1)2i)
FindLeftRuns((S1, S2) , `2i + 1, (`+ 1)2i)

end for
end for

𝑛

2
 

𝑛 

𝑛

2
+  𝑝 

𝑆1 

𝑆2 

𝛿1 
𝛿2 

𝛿1 
𝛿2 

Figure 1 Computing right runs: The figure shows the first iteration, where beg = 1 and end = |S1|.
δ1 is the length of the forward extension that results from matching S1[ n

2 . . . n] to S2[ n
2 + p . . . n]. δ2

is the length of the reverse extension of S1[1 . . . n
2 − 1] and S2[1 . . . n

2 + p− 1]. If δ1 + δ2 ≥ p, then
there are tandem repeats with period size p beginning from location S1[ n

2 − δ2 . . .
n
2 + δ1 − 1]. These

are reported by the algorithm as a single run.
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3:6 Double String Tandem Repeats

Algorithm 2 FindRightRuns.

Input: double string (S1, S2), beg, end (beginning and end indexes of substring to search)
Output: all right runs that occur in the double string that cross the midpoint.
n = end− beg + 1
mid = (beg + end)/2
for p = 1 to n/2 do . find runs with period p

δ1 = length of longest common prefix of S1[mid . . . end] and S2[mid+ p . . . end]
. Forward Extension

δ2 = length of longest common suffix of S1[beg . . .mid− 1] and S2[beg . . .mid+ p− 1]
. Reverse Extension

if δ1 + δ2 ≥ p then . Check length
if δ1 < n/2 AND δ2 < n/2− 1 then . Check for maximality

report run (mid− δ2,mid+ δ1 − 1, p)
end if

end if
end for

I Lemma 7. Algorithm 1 finds all 2-str runs in a double string (S1, S2) in O(n logn) time.

Proof. Every run within (S1, S2) crosses the center of a substring of S1 at some point in the
algorithm. As proof of this, consider a run that does not cross the center of S1, and hence is
not found in the first iteration. The run will be divided among different substrings at some
point since in the final iteration the input strings are of length 1. In the step prior to its
division, a given run must cross the center since the center becomes the splitting point of the
following iteration. In each iteration, only one 2-str run of a given period can cross the center,
since no two runs of the same period size can overlap by Lemma 4. Since the algorithm
checks each possible period size, all 2-str runs will be found by the algorithm. Since there
are O(logn) iterations, and each iteration takes O(n) time, the total time complexity of
Algorithm 1 is O(n logn). J

3.1 Tandem Repeats in a Double String with k-mismatches
The Hamming distance between two strings of equal length is the number of positions at
which the corresponding characters are different. Allowing a Hamming distance up to k
between the two occurrences of the root results in a k-mismatch 2-str TR. (The concept
of a k-mismatch run applies as well, where a run includes consecutive k-mismatch tandem
repeats, i.e. each repeat in the run has at most k mismatches, and overall the number of
mismatches in the run is not relevant.) In this section we discuss a method for searching for
2-str TR’s with up to k mismatches.

I Example 6. A double string tandem repeat with k = 1 mismatch begins at location 2
in S1.

1 2 3 4 5 6 7 8
a a b c a a b b
c c b b b b c d

Just as we were able to directly extend the Main and Lorentz idea in the previous section,
we are able to extend the algorithm of [12] which solves the tandem repeats with k-mismatches
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problem in 1 string. First, instead of using KMP to find the longest common extenstions,
the algorithm uses the “kangaroo method” that relies on suffix trees and Lowest Common
Ancestor (LCA) queries to give the position of the first mismatch between strings [6].

Hence, suffix trees in both the forward and reverse direction must be constructed for each
S1 and S2, and preprocessed for LCA to allow constant time Longest Common Prefix (LCP)
queries [8, 14].

As in the previous algorithm, there are O(logn) iterations and in each iteration, the
repeats that cross the center are found by using the forward and reverse extensions. However,
in this case the comparisons are done allowing up to k errors in each direction. Specifically,
each possible period p is searched for separately. For a given p, each LCP query returns a
position of mismatch, and when the k + 1st mismatch is encountered, we stop. Finally, the
algorithm considers each pair, (k′, k − k′) for 0 ≤ k′ ≤ k. For each pair, we check whether a
2-str TR exists when allowing k′ mismatches in the reverse extension and k − k′ mismatches
in the forward extension.

Time Complexity: The number of iterations is slightly smaller than in the previous
algorithm, since for substrings with length ≤ k, our algorithm should not be run, but a
simple O(k) time method should be used. In each iteration, there are O(k) LCP queries
done for each possible period size. In addition, before reporting in a particular period, we
consider O(k) pairs, allowing a number of mismatches to the left and right. Hence, each
iteration takes O(nk) time, while the overall runtime is O(nk log(n/k)).

4 Application 1 - Corner Sharing Tandems

I Definition 8. A 2D corner-sharing tandem ( cs-tandem) in a 2D array, is a configuration
consisting of two occurrences of the same subarray that share one corner (see Figure 2).

In [2], Apostolico and Brimkov mention that all primitive corner-sharing tandems can
be found in O(n4) time using similar techniques to their algorithm that they presented for
side-sharing tandems. In this section, we reduce the problem of finding all corner-sharing
tandems in a 2D array to the problem of finding tandems in a double string. We thus obtain
an O(n3 logn) time algorithm for this problem. Although the actual output may be of size
O(n4) cs-tandems, we can reasonably represent the set of cs-tandems with the set of maximal
cs-runs, which has size at most O(n3 logn). For the special case of tandems that are square
(i.e. of size p × p), the algorithm acheives O(n2 logn). Finally, the algorithm that allows
mismatches in a 2-str TR is also extended to 2D cs-tandems with mismatches, as described
in Section 4.3.

Figure 2 The two configurations of a 2D cs-tandem.

I Definition 9. A 2D corner-sharing horizontal run (cs-run) is a sequence of one or more
corner sharing tandems with the same period size occurring consecutively.

CPM 2020



3:8 Double String Tandem Repeats

I Lemma 10. There can be O(n3 logn) and Ω(n3) maximal cs-runs in a 2D array of size n2.

Proof. The proof will be included in the full version of the paper. J

4.1 Reduction

The technique of naming in 1d is that of consistently replacing identical substrings with
an integer called the name. We use the following 2D naming technique to reduce the 2D
corner sharing tandem problem to the 2-str tandem problem. Given an input 2D text T ,
we construct n/2 2D texts by naming all subcolumns of T . We create a new text called Th

for each 1 ≤ h ≤ n/2, such that Th[r, c] is the name of the height h substring in column c
beginning at row r.

Each two rows, i and i+ h, in each text of names Th, 1 ≤ h ≤ n/2, is input as a double
string to the algorithm that finds tandem repeats in a double string. Since we have a text
of names for each height, every corner sharing tandem of height h′, will appear as a 2-str
tandem in the text of names for Th′ . See Figure 3 for an example.

The time complexity for the reduction is O(n3) since we construct O(n) texts, each in
time linear to the size of T , as the naming can be done during construction of a suffix tree of
all columns [17]. Algorithm 3 presents pseudocode for the corner-sharing tandem problem.
Algorithm 1 is called O(n) times for each of the O(n) texts, and each running of Algorithm 1
takes O(n logn) time. Overall, the 2D corner-sharing tandem problem is solved in O(n3 logn)
time.

Algorithm 3 Corner Sharing Tandems Algorithm in 2D Text.

Input: 2D text T of size n× n
Output: all corner-sharing tandems in T

Preprocessing: Construct n/2 texts of names, Th, 1 ≤ h ≤ n/2

Text Scanning:
for h = 1 to n/2 do . for each height h

for r = 1 to n− 2h+ 1 do . for each row r in Th

call Algorithm 1 with rows r and r + h in Th as S1, S2 respectively.
end for

end for

4.2 Corner-Sharing Square Tandems

If the problem of finding all corner-sharing tandems is limited to those tandems whose roots
are of size p × p, we can improve our algorithm to run in O(n2 logn) time. We will have
to show two things: 1: a transformation of the input 2D text into input to the double
string problem in less time. 2. The search phase of the algorithm can be improved. The
transformation can be done using the techniques of [7] for finding 2D palindromes, while the
search phase can be shown to be faster using a counting trick. Details are omitted due to
lack of space.
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a b c d e a x x x x

a b c d e a x x x x

c c c c c c x x x x

y y y y a b c d e a

y y y y a b c d e a

y y y y c c c c c c

1 2 3 4 5 1 6 6 6 6

7 7 7 7 1 2 3 4 5 1

Figure 3 Input text T is shown on the left, containing a run with period size 3× 4, beginning at
its upper left corner. The two corresponding rows in T3 can be viewed as a double string, and the
2-str run with period 4 found with substring “123451” in S1 directly corresponds to the cs-run in T .

4.3 Corner Sharing Tandems with k-mismatches
A 2D corner sharing tandem that allows up to k mismatches between copies is called a k-
mismatch cs-tandem. A k-mismatch cs-run can be defined analogously as a set of contiguous
k-mismatch cs-tandems, such that each individual cs-tandem contains at most k mismatches.
The algorithm described in Section 3.1 searches for tandem repeats in a double string allowing
k mismatches. The reduction of Section 4.1 can be used in a similar manner to reduce
the k-mismatch cs-tandem problem to the k-mismatch double string problem. However,
each mismatch between names in the 2D text may consist of one or more mismatches in
the column, and will therefore need further investigation. Hence, we will need to process
the mismatching columns when attempting to discover the actual tandems. Details will be
included in the full version of the paper.

5 Application 2 - Scaled Tandem Repeats

5.1 Definitions and Properties
Denote the string aa . . . a, where a repeated r times, by ar. Let S = ar1

1 a
r2
2 . . . a

rj

j be a string
for which ai 6= ai+1. Let e ∈ N , we say that S[e] is an e-scaling of S if S[e] = ar1·e

1 ar2·e
2 . . . a

rj ·e
j .

I Definition 11. A scaled tandem repeat is a string UU ′ where U ′ is an e-scaling of U for
some integer e, i.e. U ′ = U [e]. We call the period of a scaled tandem repeat the length of the
first copy, i.e. |U |.

We say that a scaled tandem repeat is sharp if the the last letter of U is not equal to the
first letter of U ′. Similarly, we say that scaled tandem repeat UU ′ occurring within text T is
a sharp occurrence, if the character in T prior to U differs from the first character of U , and
the following character in T differs from the last character of U ′. Using the techniques of [1]
it is possible to show that any solution to the problem of finding sharp occurrences of sharp
scaled tandem repeats yields a solution to the general scaled tandem problem with the same
complexity. Thus, we solve the following problem.

Problem Definition. Given a 1-dimensional text T = t1 . . . tn, find all sharp occurrencces
of sharp scaled tandem repeats (SSTR) that are substrings of T .

CPM 2020



3:10 Double String Tandem Repeats

We assume that the number of distinct characters in a sharp tandem repeat is at least
two, otherwise it would not be sharp. We also assume that the scaled tandem repeats we are
seeking are of scale e > 1, since for e = 1 this is the known case of regular tandem repeats.

Define T ′ as the run-length encoding (RLE) of the given text T , where each sequence of
characters is replaced with a character and exponent. T ′char is the string of characters of the
RLE of T , and T ′exp is the string of exponents of T ′. In a similar manner to [5] we define
the quotient array SQ[1..n− 1] of array of numbers S[1..n] as follows: SQ[i] = S[i+ 1]/S[i].

I Lemma 12. No more than O(n logn) SSTR can occur in a string T of length n.

Proof. Every SSTR in T must correspond to a tandem repeat in T ′char. By the Three
Squares Lemma [4], each location in T ′char can have at most O(logn) tandem repeats. We
conclude that there are O(n logn) SSTR’s in T . J

The naive algorithm for the problem would consider every substring of the input text T
and check whether it is an SSTR resulting in time O(n3). Known methods of using suffix
trees and LCA’s on the character and quotient arrays of the string (see e.g. [13]) , allow
checking in constant time, for every substring U of T , whether the subsequent substring of
T is a scaled copy of U . Thus the time complexity of straight-forward improvements for
finding all scaled tandem repeats would be O(n2).

In the next subsection we solve the SSTR problem in a more efficient way by reducing
the problem into a tandem problem on double strings. To this end, we first generalize the
definition of a run as a concatenated string of repeats, so that the problem can fit into the
framework described in Sections 2 and 3.

I Definition 13. Let T be a string, 1 ≤ i < j ≤ n. We say that there is a scaled run from
T [i] to T [j] if there are k, `; i < k ≤ ` < j, for which ∃e, T [k . . . j] = T [i . . . `][e]. e is called
the scale of the run. The period of the run is the period of the leftmost scaled tandem repeat
in the run. A scaled run with scale e is maximal if it cannot be extended by one character
either to the right or the left, i.e. there are no scaled runs from T [i] to T [j + 1], from T [i− 1]
to T [j], nor from T [i− 1] to T [j + 1] with scale e.

Figure 4 An example of a scaled run.

5.1.1 The Compact Region Idea for Scaling
In [3], Butman, Eres and Landau showed a linear-sized data structure of compact regions of
text T that enables efficient work on scaled matching problems. The idea is to construct n/2
collections of strings T1, ..., Tn/2, where the sum of the lengths of the substrings in all Ti’s is
O(n). We will then seek dual tandems of each such substring S in the Ti’s and a substring
of T whose length is O(|S|).

We provide below the definition of the compact regions data structure, which is based
upon the following observation.

I Observation 1. If a substring S scaled to e occurs sharply in σi
ji · · ·σk

jk then ji, . . . , jk

are multiples of e.
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Following the above observation, the compact regions structure computes for each scale e
a compact text Te in the following two steps:
Step 1: Locate all the regions in T where the symbols appear in scale e. Add the symbol $
as a separator between the regions.
Step 2: Expand these regions to include the symbols on their boundaries. In order to simplify
the computation of Stage 2, a symbol tjrj of T is replaced in Te by tj

b
rj
e c. Butman et

al. [3] showed that the total length of all regions is O(n), and that the compact regions data
structure can be constructed in linear time.

𝑇 = 𝑎2𝑏5𝑎8𝑐6𝑏4𝑎8𝑏9𝑎3𝑐7𝑏2𝑎4𝑐8𝑎9𝑏1𝑎3𝑏6𝑐9𝑏9

𝑇2 = 𝑎1𝑏2$𝑏2𝑎4𝑐3𝑏2𝑎4𝑏4$𝑏4𝑎1$𝑎1𝑐3$𝑐3𝑏1𝑎2𝑐4𝑎4$𝑎4$𝑎1$𝑎1𝑏3𝑐4$𝑐4𝑏4$𝑏4

𝑇3 = $𝑏1$𝑏1𝑎2$𝑎2𝑐3𝑏1$𝑏1𝑎2$𝑎2𝑏3𝑎1𝑐2$𝑐2$𝑎1$𝑎1𝑐2$𝑐2𝑎3$𝑎1𝑏2𝑐3𝑏3

𝑇4 = $𝑏1$𝑏1𝑎2𝑐1$𝑐1𝑏1𝑎2𝑏2$𝑏2$𝑐1$𝑐1$𝑎1𝑐2𝑎2$𝑎2$𝑏1$𝑏1𝑐2$𝑐2𝑏2$𝑏2

𝑇5 = $𝑏1𝑎1$𝑎1𝑐1$𝑐1$𝑎1$𝑎1𝑏1$𝑏1$𝑐1$𝑐1$𝑐1𝑎1$𝑎1$𝑏1$𝑏1𝑐1$𝑐1𝑏1$𝑏1

𝑇6 = $𝑎1$𝑎1𝑐1$𝑎1$𝑎1𝑏1$𝑏1$𝑐1$𝑐1$𝑐1$𝑐1𝑎1$𝑎1$𝑏1𝑐1$𝑐1𝑏1$𝑏1

𝑇7 = $𝑎1$𝑎1$𝑎1$𝑎1𝑏1$𝑏1$𝑐1$𝑐1$𝑐1𝑎1$𝑎1$𝑐1$𝑐1𝑏1$𝑏1

𝑇8 = $𝑎1$𝑎1𝑏1$𝑏1$𝑐1𝑎1$𝑎1$𝑐1$𝑐1𝑏1$𝑏1

𝑇9 = $𝑏1$𝑎1$𝑐1𝑏1

Figure 5 compact regions data structure example.

5.2 The Reduction

The reduction is based on the following lemma.

I Lemma 14. Let T be a text and assume that there is a scaled tandem to scale e > 1
starting in index i of T , where the length of the period is p. Then the scaled part of the
tandem is represented by a substring of a single compact region in Te. In fact, the substring
in Te is precisely the period.

Proof. Since the scale of the period is e, then e divides the exponent of every symbol in the
scaled part of the tandem. We write in Te the scales divided by e therefore what is written
in Te is precisely the period. J

Assume that a compact region C in Te starts at location i of the RLE T ′ of T . Lemma 14
assures us that any scaled tandem whose scaled repetition occurs in C cannot start in any
index smaller than i−|C| and cannot end in any index larger than i+ |C|. Let X be the string
composed of |C| occurrences of σ1, where σ is a symbol not in the alphabet. Let C ′ = XC.
Then every double string tandem between the strings T ′[i−|C|..i+ |C|] and C ′ is an e-scaled
tandem in T . The figure below illustrates this. Both abaabb and abaabbccaabbaaaabbbbcccc
are 2-scale tandems. They both appear as double string tandems between the appropriate
substring of T ′ and C ′.

CPM 2020
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Figure 6 2-scale tandems as double tandems.

Time: The compact regions data structure is created in time O(n). For every region C
the double string tandem repeats are found in time O(|C| log |C|). Since

∑
∀C |C| = O(n)

the total time is O(n logn).
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