
Computers & Operations Research 37 (2010) 199 -- 212

Contents lists available at ScienceDirect

Computers &Operations Research

journal homepage: www.e lsev ier .com/ locate /cor

Total flow timeminimization in a flowshop sequence-dependent group
scheduling problem

Nasser Salmasia, Rasaratnam Logendranb,∗, Mohammad Reza Skandaria
aDepartment of Industrial Engineering, Sharif University of Technology, Tehran, Iran
bSchool of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, 204 Rogers Hall, Corvallis, OR 97331, USA

A R T I C L E I N F O A B S T R A C T

Available online 6 May 2009

Keywords:
Sequence dependent scheduling
Group scheduling
Branch and price
Metaheuristics
Lower bound

We have developed a mathematical programming model for minimizing total flow time of the flow shop
sequence dependent group scheduling (FSDGS) problem, typically classified as Fm|fmls, Splk, prmu|

∑
Cj. As

the problem is shown to be strongly NP-hard, a tabu search (TS) algorithm as well as a hybrid ant colony
optimization (HACO) algorithm have been developed to heuristically solve the problem. A lower bounding
(LB) method based on the Branch-and-Price algorithm is also developed to evaluate the quality of the
metaheuristic algorithms. In order to compare the performance of metaheuristic algorithms, random test
problems, ranging in size from small, medium, to large are created and solved by both the TS and the
HACO algorithms. A comparison shows that the HACO algorithm has a better performance than the TS
algorithm. The results of the heuristic algorithms are also compared with the results of the LB method to
evaluate the quality of the solutions. The LB method presented in this paper can be generalized to solve
the FSDGS problem with other objective functions.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper it is assumed that several jobs are assigned to a flow
shop in order to be processed. Each machine needs a specific setup
to process a job. The required setup time for each machine to process
a job depends on the previously processed job on that machine. In
this case, grouping the jobs in families (groups) in a way that the
jobs of a group need the same setup on machines will increase the
efficiency of the production. This problem is known as flow shop
sequence dependent group scheduling (FSDGS) problem.

There are several applications of FSDGS problems in industry
practice. Paint shop of an automobile manufacturer is an example
of such problems. Assume that the paint shop is switching to paint
a batch of automobiles in green after painting a batch with another
color. The required setup time (including cleaning the nozzles, area,
etc.) to start painting the new batch in green is dependent on the
previously used color. Clearly, switching fromwhite to green is much
easier than switching from black to green since it needs less clean-
ing activities. Another application which is also observed in auto-
mobile industry is the press shop. Items are processed by a series of
press machines in several stages in a row. Because of issues such as

∗ Corresponding author. Tel.: +15417375239; fax: +15417372600.
E-mail addresses: nsalmasi@sharif.edu (N. Salmasi),

Logen.Logendran@oregonstate.edu (R. Logendran), r.skandari@ie.sharif.edu
(M.R. Skandari).

0305-0548/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2009.04.013

weight of items and safety, the items are transferred between press
machines by conveyers. All parts should be processed in the same
order on all machines. The required setup time for each press is
dependent upon the part processed previously on the machine. A
few studies reported in the recent past also show its applicability in
electronics manufacturing. Schaller et al. [1] and Pinedo [2] discussed
an industrial-case of the proposed problem in printed circuit boards
(PCBs) in which a major setup is required to switch from a group of
PCBs to another.

Cheng et al. [3], Allahverdi et al. [4], Zhu and Wilhelm [5], and
Allahverdi et al. [6] performed a comprehensive literature review
of scheduling problems related to this research. Schaller et al. [1]
proposed an efficient heuristic algorithm as well as a lower bound-
ing (LB) method to minimize the makespan of an FSDGS problem.
Franca et al. [7] developed two algorithms based on genetic algo-
rithm and memetic algorithm with local search to solve the FSDGS
problems for minimization of the makespan criterion. Logendran et
al. [8] developed a heuristic algorithm based on tabu search (TS) to
solve the two-machine FSDGS problems by considering minimiza-
tion of makespan. They also developed a lower bounding method
to evaluate the quality of their heuristic algorithm. Hendizadeh et
al. [9] developed a heuristic algorithm based on TS by applying the
concept of “elitism” and the acceptance of worse moves from sim-
ulated annealing to improve the intensification and diversification
strategies to solve the same problem. To the best of our knowledge,
all of the previous research in FSDGS problems addresses only the

http://www.sciencedirect.com/science/journal/cor
http://www.elsevier.com/locate/cor
mailto:nsalmasi@sharif.edu
mailto:Logen.Logendran@oregonstate.edu
mailto:r.skandari@ie.sharif.edu

200 N. Salmasi et al. / Computers & Operations Research 37 (2010) 199 -- 212

minimization of the makespan criterion. In other words, there is no
other paper that investigates into the FSDGS problems by considering
minimization of total flow time (TFT) as the objective.

Based on Pinedo [2], the problem we investigate can be notated
as Fm|fmls, Splk, prmu|

∑
Cj. The reasons for this notational choice and

the assumptions of this research are:

• It is assumed that in a flow shop environment, g groups are as-
signed to a cell that has m machines (Fm).
• Each group (p= 1, 2, . . . , g) includes bp jobs (fmls).
• The setup time of a group (l) on each machine (k) depends on

the immediately preceding group (p) that is processed on that
machine (i.e., sequence dependent setup time (splk)).
• The setup time of each group on each machine can be different.
• All jobs and groups are processed in the same sequence on all

machines (permutation scheduling (prmu)). This is the only way
to produce in some industries. For instance, if a conveyer is used
to move jobs between machines, then all jobs should be processed
in the same sequence on all machines.
• Each job of a group does not need a separate setup time. If it does,

the required setup time is assumed to be included in its runtime.
• The setup process of a machine for a group can be started before

a job that belongs to the group is available (anticipatory).
• The jobs belonging to each group should be processed without

any preemption by other jobs of other groups (group technology
assumption).

Garey et al. [10] proved that the multi-stage flow shop job-
scheduling problem by considering minimization of TFT criterion is
an NP-hard problem. A group scheduling problem can be easily re-
duced to a multi-stage flow shop job-scheduling problem by assum-
ing zero group setup times and one job per each group. Based on this
insight, it is easy to see that the problem investigated in this paper
is easily reducible to the one already proven NP-hard. Thus, the fact
that the proposed problem is NP-hard, follows immediately.

Since the research problem is NP-hard, heuristic algorithms are
developed to solve industry size problems in a reasonable time.
Previous research by Logendran et al. [8] has shown TS to be a
promising technique for solving similar scheduling problems. Thus,
a metaheuristic algorithm based on TS has been developed to solve
the research problem. Also among the available heuristics, ant colony
optimization (ACO) algorithm, for its capability of solving difficult
combinatorial problems, is chosen to be compared with the TS algo-
rithm because of its recent widespread favorable publicity.

We also propose a mathematical model to develop the lower
bounding method based on the Branch-and-Price (B&P) algorithm
to estimate the quality of the developed heuristic algorithms. Then,
we compare the performance of the TS algorithm with the ACO al-
gorithm to uncover any statistically significant difference that might
exist between the two.

Heuristic algorithms are presented in Sections 2 and 3. In Sec-
tion 4, the mathematical model is presented followed by the lower
bounding method in Section 5. The test problem specifications are
described in Section 6. Finally, the results, and the conclusions along
with suggestions for future research are presented in Sections 7 and
8, respectively.

2. Tabu search

A two level TS algorithm is developed for the proposed research
problem. The first (outside) level investigates to find the best se-
quence of groups. The second (inside) level investigates to find the
sequence of jobs in each group based on the chosen group sequence
by the first level. When a sequence of groups by the outside level
is chosen, the second level finds the best sequence of jobs that
belongs to each group by considering minimization of TFT. This is

done for the inside search by moving from a sequence of jobs in a
group sequence to another sequence of jobs in the same group se-
quence. The relationship between the outside and inside search is
that once the outside search is performed to get a new group se-
quence, the search process is switched to inside search. The inside
search is performed to find the best sequence of jobs in groups by
considering the proposed group sequence by outside search. When
the inside search stopping criteria are satisfied, the best found job
sequence is considered. Then, the search returns back to the out-
side search. The outside search stops when one of the outside search
stopping criteria is satisfied. The best found solution, comprises the
sequence of groups and the sequence of jobs in each group that pro-
vides the best objective function value, is reported as the final solu-
tion. The specifications of the developed TS are as follows:

• The stopping criteria are either the specified number of local op-
tima or the maximum number of iterations without improvement,
whichever occurs first.
• A random sequence for groups and jobs that belong to each group

is applied as an initial solution. The initial solution is considered
as the first entry into the outside candidate list.
• During inside search, a neighborhood of a seed is generated by

applying swap moves, i.e., changing the order of adjacent jobs
that belong to a group. By changing the position of the last and
the first job of a group, another neighbor can be generated. The
neighbors for an outside seed are derived similar to the inside
ones by applying swap moves.
• The tabu list (TL) is constructed based on the recent change in

previous best solutions. The TL records these changes or moves in
the order they are applied. If a restricted move has a better value
than the best global value found so far, called the aspiration level,
the tabu restriction is ignored. The bestmove, after filtering against
TL and aspiration criterion, is compared with the current members
of the candidate list. If the chosen neighbor does not belong to
the current candidate list, it is selected for next perturbation and
generation of new neighbor. Otherwise, the next best neighbor is
chosen. This move is recorded into the TL.
• The search is terminated by satisfying one of the stopping criteria.
• The long-term memory is used to enhance the search. In this ap-

plication, the attribute indicates the position of a group or a job
within a group. The search is intensified by encouraging the ex-
plorations in the neighborhoods of the good solutions with fre-
quently added attributes. This process is performed twice for both
levels in this research.
• The TS algorithm parameters should be tuned based on the size

of the problem. In order to tune the algorithm, extensive experi-
mentation was performed to evaluate the parameter values. The
empirical formulae for the value of parameters used for these re-
search problems are presented in Appendix A. In some cases a
formula for a range is generated and in some of them a value for
a parameter in a range is offered. If a formula does not provide an
integer value for a parameter, it is rounded down. For instance, if
a problem with seven groups and 61 jobs is intended to be solved
by the algorithm, the size of the TS algorithm should be as follows:

Outside index list = 7×10 = 70.
Outside number of iterations without improvement = 6.
Outside tabu list size = 2.
Inside index list = 7.
Inside number of iterations without improvement = 8.
Inside tabu list size = 6.

3. Hybrid ant colony optimization algorithm (HACO)

A hybrid algorithm, resulting from a heuristic inspired by NEH
algorithm [11] and ant colony optimization algorithm, is developed

N. Salmasi et al. / Computers & Operations Research 37 (2010) 199 -- 212 201

for the research problem. The sequence of jobs is calculated by the
NEH-inspired algorithm, while the sequence of groups is calculated
based on a variant of ACO, termed ant colony system (ACS).

3.1. Sequence of groups

ACO is a population based construction metaheuristic, inspired
by the foraging behavior of an ant species. The Argentine ants guide
other members of the colony indirectly via dynamic modifications
of their environment (trails of pheromones) to propose a better path
from nest to food and vice versa, based on their collaborative experi-
ence. The more pheromone on a path, the higher is the likelihood of
that path being followed by other ants. ACO exploits similar mech-
anism by deploying artificial ants (agents) to solve combinatorial
problems.

Dorigo [12] introduced ACO by using Ant System to solve the Trav-
eling Salesman Problem. Since ACS proposed by Dorigo and Gam-
bardella [13] has shown to have better performance among available
versions of ACO, it is used as a part of HACO in this research. The
common mechanics behind every ACO algorithm are as follows:

1. A colony of (a number of) ants which constructs solutions inde-
pendently.

2. The solution construction phase that works using pheromone val-
ues and heuristic information.

3. Local search that is applied around the best found solution(s) to
improve the solution(s).

4. Updating pheromone values phase that updates the pheromone
values based on the quality of the solutions found, so as to guide
the algorithm toward promising solutions.

The following are the steps of ACO as pseudocode:

Set parameters, initialize pheromone trails
while termination condition not met do
Construct Ant Solutions
Apply Local Search (optional)
Update Pheromones

end while

3.1.1. Solution construction
A group sequence solution is a permutation of groups �1 =

(G1,G2, . . . ,Gg), in which the absolute positions of groups are also
important. A solution can be constructed in two different ways:

(1) Constructing a sequence of groups by determining the rela-
tive order of processing them. For instance, the sequence �1 =
{G1,G2, . . . ,Gg} is constructed as follows: G1 is processed as the
first group, G2 is processed immediately after G1, and so on.

(2) Defining g slots for g groups, and assigning the groups to the
slots. For instance, in the sequence �1 = {G1,G2, . . . ,Gg}, G1 is
assigned to the first slot, G2 is assigned to the second slot, and
so on.

While the two ways seem different, there is a one-to-one accor-
dance between them in interpreting a solution.

3.1.2. Pheromone definition
Two different types of pheromone trails are developed based on

the aforementioned construction ways:

(1) Pheromone trail type I �1pl: desirability of processing group l
immediately after group p, p= 0, 1, . . . , g l= 1, 2, . . . , g.

(2) Pheromone trail type II �2ip: desirability of processing group p in
the ith slot of the sequence, p, i= 1, 2, . . . , g.

To elaborate the distinction between the two pheromone trails
and the usability of each, two important factors that affect the total
flow time of the solutions to a given problem that result from the
sequence of groups should be noticed. First the required time for
processing jobs on machines (that include the setup time as a major
part), and second the sequence of jobs. The setup times are sequence
dependant, thus the relative positions of the groups determine the
setup times and consequently affect the time required for processing
jobs. On the other hand, the absolute position of the groups affects
the sequence of jobs indirectly since the jobs belonging to each group
should be processed consecutively without being preempted by jobs
that belong to other groups.

The first trail type helps in determining the relative position of
the groups, while the second one helps to determine the absolute
position of the groups (see [14]). Incorporating the two trails in
the algorithm alongside helps to move toward promising areas of
solution space in a better way.

Althoughwe noted the one-to-one accordance of the construction
ways in the previous section, it is vital to acknowledge the difference
of utilization of pheromone types during the construction phase.
The high value of �1pl proposes processing group l immediately after

group p, while the high values of �2ip proposes processing group p in
the ith position of the sequence.

3.1.3. Heuristic information
To bias the construction algorithm toward promising areas, in

addition to the pheromone mechanism, heuristic information is de-
ployed in ACO. In ACO literature, heuristic information indicates an
intuitive guess of the cost of adding a candidate solution component
to the partial solution. For coordinating the direction of pheromone
and heuristic information, usually the reverse of the guessed cost (or
other related functions) is used instead. In this research, the heuris-
tic information for each candidate group p in the ith step of the
construction algorithm (or equally for the ith slot of the sequence)
is defined as the differential flow time �flowtimeip produced be-
cause of adding the candidate group to the partial sequence (1).
Suppose that the partial sequence SParti has been constructed until
the ith step that has a total flow time of flowtime(SParti); now if we
add the candidate group p to this partial solution, we will have an-
other partial solution SParti+1 = SParti ∪ {p} (or a complete solution) that
has a total flow time of flowtime(SParti+1). So, we define heuristic in-
formation for the candidate group p in the ith step of construction
as 1/(flowtime(SParti+1) − flowtime(SParti)). In order to calculate the dif-
ferential flow time, we need to know the sequence of jobs in the
groups. Thus, the group sequencing algorithm needs job sequencing
algorithm to perform and they go hand in hand.

�ip =
1

flowtime(SParti+1)− flowtime(SParti)
, SParti+1 = SParti ∪ {p} (1)

3.1.4. Stochastic model of solution construction
ACO constructs a solution by adding solution components to a

null sequence, one after the other guided by a stochastic mechanism.
In HACO, we use the following pseudorandom proportional rule,
derived from ACS, to select the next group p to be added to the partial
sequence SParti from the list of not yet sequenced groups N(SParti). For
the ith group of the sequence, with �0 probability, the best group (in
terms of pheromone intensity and heuristic information) is selected,
and with (1 − �0) probability a random model identifies the next
group:

p=
⎧⎨
⎩
arg Max

∀l∈N(SPart)
{(�1p′ l)

�1 · (�2il)
�2 · ��

il }

P otherwise
(2)

202 N. Salmasi et al. / Computers & Operations Research 37 (2010) 199 -- 212

Prip =

⎧⎪⎪⎨
⎪⎪⎩

(�1p′p)
�1 · (�2ip)

�2 · ��
ip∑

∀l∈N(SPart)(�1pl)
�1 · (�2il)

�2 · ��
il

if p ∈ N(SParti)

0 otherwise

(3)

In the above formulae p
′
is the last sequenced group, i stands for

the construction step and P stands for the group selected via the ran-
dom model for which the distribution function is presented in (3).
This model assigns a probability to every group p in the ith step of
the algorithm (Prip) proportional to the pheromone and heuristic in-
formation values. In this model, �1, �2, and � are parameters which
determine the relative influence of the two pheromone trails and
the heuristic information, respectively; or in other words they indi-
cate the relative importance of sequencing group l immediately after
group p (the first type of pheromone), the importance of sequenc-
ing group p in the ith position of the sequence (the second type of
pheromone), and heuristic information importance, respectively.

3.1.5. Local search
Before updating pheromone and after construction of the solu-

tions, a local search is applied to the best solution. The integral part
of every local search algorithm is the definition of neighborhood. In
HACO, three different neighborhoods are used to improve the qual-
ity of solutions, and the efficiency of each was tested:

(1) Swapping all possible pairs of groups (jobs).
(2) Removing a group (a job) and inserting it in all possible posi-

tions.
(3) Permutations of all triplets of groups (jobs).

In all scenarios, we tested a random scheme to add power to the
local search, i.e., the order of candidate groups (jobs), pairs or triplet
of them to undertake local search functions is set by random. For
instance, for the first scenario, the order of pairs of groups (jobs) to
be swapped in the given sequence is set by random.

3.1.6. Pheromone update
In order to guide the algorithm in ACS, two strategies are used to

manipulate the pheromone: local and offline pheromone update. The
former diversifies the search by decreasing the pheromone accord-
ing to the selected candidates by each ant during construction phase
(diversification strategy), and the latter intensifies the search toward
promising areas at the end of the iteration by the best ant (intensifi-
cation strategy). The model (4) is used to perform local pheromone
update, while the model (5) is used to perform offline pheromone
update:

�ab ← (1−�).�ab +�.�0, � ∈ (0, 1] (4)

�ab ←
⎧⎨
⎩ (1−) · �ab +

1
CBestAnt

if best ant uses edge (a, b)

�ab otherwise
(5)

The factor � is the local pheromone decay coefficient, and �0
is the initial value of the pheromone, 	 is the offline pheromone,
decay coefficient, and CBestAnt is the cost of the best solution. In
the formulae, edge (a,b) has two different meanings according to
each type of pheromone trail: for the first type, using edge (a,b)
equals to sequencing group b after group a, while for the second
type, using edge (a,b) means sequencing group b in the ath slot
of the sequence. It is important to update the two noted types of
pheromone values independently because of their different ways of
interpreting a solution.

3.1.7. Initialization of the algorithm
To set the initial values of the pheromone and start from a more

favorable region in the solution space, a greedy like algorithm is used

as follows: in each step of solution construction, the best group (in
terms of partial flow time, calculated after adding the candidates to
the partial solution) is added until a complete solution is made. Then
the initial value for the pheromone �0 is calculated as follows:

�0 ←
1

g · CGreedySolution
(6)

In (6), g stands for the total number of groups, CGreedySolution stands
for the total flow time of the constructed greedy solution. After ini-
tializing the pheromone values, we take this greedy solution as the
best solution and update pheromone values by using this solution to
guide the future search.

Experiments show that the burden of calculating heuristic infor-
mation during each step of construction is not cost effective and
saved time can be used to explore the solution domain in a more ef-
ficient way. So we adopted � as zero. Also best results are achieved
when adopting �1, and �2 as 2 and 1, respectively. This shows the
superiority of importance of the relative position of groups. The best
values of the parameters �, 	, and �0 are 0.9, 0.9, and 0.1, respec-
tively. The best results are gained by taking the number of ants equal
to 10.

The more extensive the neighborhood, the more effective is the
local search, but more time will be spent; so a tradeoff between the
power of local search and computational burden should be applied.
Results show that only the two first definitions of neighborhood are
cost effective, and adding the random scheme boosts the power of
the local search noticeably.

3.2. Sequence of jobs in a group

For sequencing jobs inside groups, a heuristic inspired by NEH
algorithm [11] is used. Because the original version of NEH is not
iterative, and it was originally proposed for makespan objective, we
made some changes to the NEH algorithm.

In the original NEH algorithm proposed for the makespan objec-
tive, the order of jobs to undertake the second and third steps of
the algorithm is defined by sorting the jobs in terms of the sum of
the processing times on the machines decreasingly. For that objec-
tive, sorting the jobs accordingly might be a good intuition, but for
total flowtime objective it is not desirable. Moreover, the original
NEH is not iterative and no new solution is constructed unless a new
sequence of group is introduced. To counteract the two mentioned
problems, the proposed algorithm sorts the job by random in the first
step, instead. The steps of the proposed algorithm are as follows:

(1) Order jobs by random.
(2) Take the first two jobs and schedule them in order to minimize

the partial flow time as if there were only these two jobs.
(3) For the remaining jobs, try to insert the jobs, one by one, at all

possible positions, and select the position which minimizes the
partial flow time until all jobs are sequenced.

Experiments show the superiority of the random scheme over the
original one.

3.3. Terminating criteria

Experiments show that almost for all problems, the algorithm
converges at a maximum of 30 s of CPU time. So, 30 s of CPU time
was adopted as the terminating criterion.

4. Mathematical model

We develop a mixed integer linear programming (MILP) model
based on the concept of “slots”. It is assumed that there are slots
for positioning of groups. Each group is assigned to only one

N. Salmasi et al. / Computers & Operations Research 37 (2010) 199 -- 212 203

slot and each slot is dedicated to receiving only one group. In real
world problems, groups have different number of jobs. Because each
group can be assigned to any slot, to facilitate the development of the
mathematical model, in the model, it is assumed that every group
has the same number of jobs, composed of real and dummy jobs.
This number is equal to bmax which is the maximum number of
real jobs in a group. If a group has fewer real jobs than bmax, the
difference, i.e., bmax—number of real jobs, is assumed to be occupied
by dummy jobs for that group. The parameters, decision variables,
and the mathematical model are defined as follows:

Parameters:

g number of groups
bp number of jobs in group p, p= 1, 2, . . . , g
m number of machines
bmax maximum number of jobs in groups

tpjk

{
for real jobs; run time of job j in group p on machine k

for dummy jobs, 0
p= 1, 2, . . . , g

j= 1, 2, . . . , bmax

t′pjk

{
for real jobs; run time of job j in group p on machine k

for dummy jobs, −M k= 1, 2, . . . ,m

M: a large number
Splk the setup time for group l on machine k if group p is the preceding group p= 0, 1, 2, . . . , g

l= 1, 2, . . . , g (p� l)
k= 1, 2, . . . ,m

Tpk the summation of run times of jobs in group p on machine k Tpk =
∑bp

j=1tpjk

Decision variables:

Xijk the completion time of job j in ith slot on machine k i= 1, 2, . . . , g
j= 1, 2, . . . , bmax

k= 1, 2, . . . ,m

Wip

{
1 If group p is assigned to slot i

0 Otherwise
i, p= 0, 1, 2, . . . , g

Yijq

{
1 If job q is processed after job j in slot i

0 Otherwise
i= 1, 2, . . . , g

j, q= 1, 2, . . . , bmax, j� q
Cik the completion time of ith slot on machine k i= 0, 1, 2, . . . , g, k= 1, 2, . . . ,m
Oik the setup time for a group assigned to slot i on machine k i= 1, 2, . . . , g, k= 1, 2, . . . ,m

Aipl

⎧⎨
⎩
1 If group p is assigned to slot i and group l is

assigned to slot i+ 1
0 Otherwise

i= 0, 1, 2, . . . , g − 1

p= 0, 1, 2, . . . , g − 1
l= 1, 2, . . . , g, p� l

The Model (model 1):

Min Z =
g∑

i=1

bmax∑
j=1

Xijm (7)

Subject to:

g∑
i=1

Wip = 1, p= 1, 2, . . . , g (8a)

g∑
p=1

Wip = 1, i= 1, 2, . . . , g (8b)

g∑
p=0

g∑
l=1

Aipl = 1, i= 0, 1, 2, . . . , g − 1 (p� l) (9)

Aipl �Wip, i= 0, 1, 2, . . . , g − 1, p, l= 1, 2, . . . , g, p� l (10a)

Aipl �W(i+1)l, i= 0, 1, 2, . . . , g − 1, p, l= 1, 2, . . . , g, p� l (10b)

Oik =
g∑

p=0

g∑
l=1

A(i−1)plSplk, i= 1, 2, . . . , g, k= 1, 2, . . . ,m, p� l (11)

Xijk �C(i−1)k + Oik +
g∑

p=1
Wiptpjk

′ (12)

i= 1, 2, . . . , g, j= 1, 2, . . . , bmax, k= 1, 2, 3, . . . ,m

Xijk − Xiqk +MYijq �
g∑

p=1
Wipt

′
pjk,

i= 1, 2, . . . , g,
j, q= 1, 2, . . . bmax,
k= 1, 2, 3, . . . ,m,

j<q (13)

Xiqk − Xijk +M(1− Yijq)�
g∑

p=1
Wipt

′
pqk, M : a large number (14)

Ci1 = C(i−1)1 + Oi1 +
g∑

p=1
WipTp1, i= 1, 2, 3, . . . , g (15)

Cik �Xijk, i= 1, 2, . . . , g, k= 2, 3, . . . ,m, j= 1, 2, . . . , bmax (16)

Xijk − Xij(k−1) �
g∑

p=1
Wiptpjk,

i= 1, 2, . . . , g,
k= 2, 3, . . . ,m,

j= 1, 2, . . . , bmax (17)

Xijk,Cik,Oik �0, Wip,Aipl ∈ {0, 1}, Yijq ∈ {0, 1}
(j<q), i= 1, 2, . . . , g, j, q= 1, 2, . . . , bmax

The objective function focuses on minimizing the TFT. There are
`g' slots and each group should be assigned to one of them. It is clear
that each slot should contain just one group and every group should
be assigned to only one slot. Constraints (8a) and (8b) support this
assumption. The setup time of a group on a machine is dependent
on that group and the group processed immediately preceding it. If
group p is assigned to slot i and group l is assigned to slot i+1, then
Aipl must be equal to one. Likewise, if group p is not assigned to slot i
or group l is not assigned to slot i+1, then Aipl must be equal to zero.
Constraints (9), (10a), and (10b) ensure that each is true. Constraint

204 N. Salmasi et al. / Computers & Operations Research 37 (2010) 199 -- 212

(11) evaluates the required setup time of groups on machines. The
required setup time for a group on a machine is evaluated based on
the group assigned to a slot and the group assigned to the preceding
slot. Constraint (12) is incorporated to find the completion time of
jobs on machines. The completion time of a job that belongs to a
group is greater than or equal to the summation of the completion
time of the group processed in the previous slot, the setup time for
the group, and the run time of the job. Constraints (13) and (14)
are incorporated into the model to find the sequence of processing
jobs that belong to a group. If job j in a group is processed after job
q of the same group, then the difference between the completion
time of job j and job q on all machines should be greater than or
equal to the run time of job j. The completion time of the group
assigned to a slot on the first machine is evaluated by constraint
(15). The completion time of a group assigned to a slot is equal to
the summation of the completion time of the group assigned to the
preceding slot, the required setup time for the group in this slot, and
the sum of the run time of all jobs in the group. Constraint (16) is
incorporated into the model to ensure that the completion time of a
group on a machine is equal to the completion time of the last job of
that group processed on the machine. A machine starts processing
a job only if the job is finished on the previous machine. It means
that the completion time of a job on a machine must be greater than
or equal to the summation of the completion time of the job on the
preceding machine and the run time of the job on that machine.
Constraint (17) is incorporated for this reason.

5. Lower bounding method

Several techniques such as Lagrangian relaxation were tried to
get a promising lower bound for the proposed research problem,

but none of them had a successful performance. Thus, a generalized
lower bounding method based on B&P algorithm is developed for
the proposed problem. This model should serve well as a basis for
future research in FSDGS problems with other objectives. The details
associated with the B&P algorithm can be found in Barnhart et al.
[15], Wilhelm [16], and Wilhelm et al. [17].

The goal is to develop a mathematical model whose LP relaxation
provides a good lower bound for the original problem. The problem
is reformulated with a huge number of variables. Each variable set
presents a possible feasible solution (schedule) for a machine. The
mathematical model is then decomposed into a master problem and
one or more sub-problems (SPs). The number of SPs is equal to the
number of machines of the original problem. The sets of columns
(variables) are left out of the LP relaxation of master problem because
there are too many columns (variables) to handle efficiently and
most of them will have their associated variable equal to zero in an
optimal solution anyway. At the beginning, the LP relaxation of the
master problem is solved by considering a few feasible solutions.
Because themaster problem at this stage does not include all possible

solutions, it is called the Restricted Master Problem (RMP). To check
the optimality of the LP solution to the RMP, the SPs, which are
a separation problem for the dual LP, are solved to find columns
to enter the master problem. If such columns exist, the LP is re-
optimized. If there is no column to enter and the LP solution does
not satisfy the integrality conditions, then branching is applied for
the optimal solution of the LP problem.

In the following sections, in Section 5.1, the mathematical model
for solving the problem by B&P algorithm is discussed. Then, in Sec-
tions 5.2–5.4, the rules applied to simplify solving SPs are explained.
In Section 5.5, the rules applied for solving SPs are presented. In Sec-
tions 5.6 and 5.7, branching rules and stopping criteria are presented,
respectively. And finally, in Section 5.8, the rules of evaluating the
lower bound for the original problem are presented.

5.1. Mathematical model for solving the problem by B&P algorithm

In the original mathematical model which was presented in Sec-
tion 4, constraints (8)–(11) deal with finding the setup times for
groups. Constraints (12)–(14) deal with finding the completion time
of jobs on each machine. Constraints (15) and (16) are also related to
evaluating the completion time of each group on different machines.
These constraints can be applied for each machine separately. Con-
straint (17) is the only constraint that deals with the completion time
of jobs on more than one machine. Thus, this constraint is consid-
ered as the linking (complicating) constraint in the model. The RMP
includes constraint (17), which is a relational constraint between
the completion times of jobs on machines. A convexity constraint
for each SP is also incorporated into the RMP. The parameters, de-
cision variables, and mathematical model of the LP relaxation of the
RMP, herein after referred to as LRMP, for an m machine problem
are presented as follows:

Parameters:

hk the number of columns that exist in LRMP related to the kth machine k= 1, 2, . . . ,m
Xhk
ijk the completion time of jth job of ith slot on machine k in hkth existing solution in LRMP related to machine k i= 1, 2, . . . , g

j= 1, 2, . . . , bmax

k= 1, 2, . . . ,m

Whk
ipk

⎧⎨
⎩
1 If group p is assigned to slot i in hkth existing solution in

LRMP related to machine k
0 Otherwise

i= 0, 1, 2, . . . , g

p= 0, 1, 2, . . . , g
k= 1, 2, . . . ,m

Decision variable:

k
h the decision variable of the hth existing solution of machine k in LRMP k= 1, 2, . . . ,m

The LRMP Model (model 2):

Min Z =
hm∑
h=1

m
h

g∑
i=1

bmax∑
j=1

Xh
ijm (18)

Subject to:

hk∑
h=1

k
h

⎛
⎝Xh

ijk −
g∑

p=1
wh

ipktpjk

⎞
⎠− hk−1∑

h1=1

k−1
h1 Xh1

ij(k−1) �0

i= 1, 2, . . . , g, j= 1, 2, . . . , bmax, k= 2, 3, . . . ,m (19)

hk∑
h=1

k
h = 1, k= 1, 2, 3, . . . ,m (20)

k
h �0, k= 1, 2, . . . ,m, h= 1, 2, . . . ,hm

In this model,
k
h's are the LRMP decision variables. The objective

is to minimize total flow time. Constraint (19) is the relational con-
straint, incorporated to the model based on constraint (17) of the

N. Salmasi et al. / Computers & Operations Research 37 (2010) 199 -- 212 205

original model. Constraint (20) is the convexity constraint. For each
SP a convexity constraint is incorporated to the model. If the dijk's
and �k denote the dual variables of constraint (19) and (20), respec-
tively, the dual problem of the LRMP can be formulated as follows:

Max Z′ = 0 ∗
⎛
⎝ m∑

k=2

g∑
i=1

bmax∑
j=1

dijk

⎞
⎠+ m∑

M=1
�M (21)

Subject to:

−
g∑

i=1

bmax∑
j=1

dij2(Xij1)+ �1 �0 (22)

g∑
i=1

bmax∑
j=1

dijk

⎛
⎝Xijk −

g∑
p=1

Wiptpjk

⎞
⎠+ �k −

⎛
⎝ g∑

i=1

bmax∑
j=1

dij(k+1)Xijk

⎞
⎠ �0

k= 2, 3, . . . ,m− 1 (23)

g∑
i=1

bmax∑
j=1

dijm

⎛
⎝Xijm −

g∑
p=1

Wiptpjm

⎞
⎠+ �m −

⎛
⎝ g∑

i=1

bmax∑
j=1

Xijm

⎞
⎠ �0 (24)

dijk �0, �k Unrestricted, i= 1, 2, . . . , g, j= 1, 2, . . . , bmax , k= 2, 3, . . . ,m

A feasible solution of LRMP is optimal, if its dual can satisfy the
constraints of the dual problem. Thus, to check the optimality of
LRMP, the constraints of the dual problem are checked. Each dual
problem constraint deals with the completion time of jobs on a spe-
cific machine. Thus, to check the optimality, the SPs, in which their
objective functions are the left-hand side of the dual constraints, are
solved. If the value of the objective function is greater than zero, the
column is added to the LRMP. Decomposition leads to an indepen-
dent SP for each machine. When the LRMP is solved, it generates
new dual variables for SPs. The SPs are:

SP1 Max W1 =−
g∑

i=1

bmax∑
j=1

dij2(Xij1)+ �1

S.t. Constraints (8)–(15) of the original problem (25)

SP2 through SPm−1 Max Wk =
g∑

i=1

bmax∑
j=1

dijk

⎛
⎝Xijk −

g∑
p=1

Wiptpjk

⎞
⎠

+ �k −
⎛
⎝ g∑

i=1

bmax∑
j=1

dij(k+1)Xijk

⎞
⎠

k= 2, 3, . . . ,m− 1

S.t. Constraints (8)–(14), and (16)

of the original problem (26)

SPm Max Wm =
g∑

i=1

bmax∑
j=1

dijm

⎛
⎝Xijm −

g∑
p=1

Wiptpjm

⎞
⎠

+ �m −
⎛
⎝ g∑

i=1

bmax∑
j=1

Xijm

⎞
⎠

S.t. Constraints (8)–(14), and (16)

of the original problem (27)

The decomposed model has the following characteristics:

• For large size problems the time required to solve the SPs is very
high. The experiments that we performed show that the SPs be-
come more complicated when the maximum number of jobs in a
group is increased.

Table 1
The coefficient of Xijk 's in sub-problems and the required constraints.

Sub-problem Xijk coefficient Required
inequalities

Ranges

SP1 −dij2 dij2 �0 i= 1, 2, . . . , g, j= 1, 2, . . . , bmax

SPk1, k1= 2, . . . ,m− 1 dijk − dij(k+1) dijk − dijn �0 i= 1, 2, . . . , g, j= 1, 2, . . . , bmax

k= 2, 3, . . . ,m− 2, n= k+ 1
SPm dijm − 1 dijm �1 i= 1, 2, . . . , g, j= 1, 2, . . . , bmax

• The coefficient of Xijk's in the objective function of SPs, except
SP1, can be positive. Because of the maximization of the objective
function as well as the inability of any constraint in SPs to limit the
value of Xijk's, it is possible that an SP be unbounded. For instance,
in SP2, the coefficient of Xij2's is equal to (dij2 − 1). By considering
the maximization of the objective function, it is possible that if
dij2 �1, SP2 be unbounded. Thus, it is required to add an upper
bound to SP2. In this case the quality of solution and the efficiency
of the algorithm are highly dependent on the value of the chosen
upper bound for the SPs.

Consider the m-machine problem. In order to prevent an un-
bounded solution in any of the SPs, the coefficient of Xijk, which are
shown in Table 1, in any SP should be negative. Thus, the inequal-
ities in this table should hold true in order to prevent unbounded
solutions.

To support these rules, a set of artificial variables, S1, are added to
the relational constraint (19) for the jth job of slot i of the constraint
between M1 (the first machine) and M2 (the second machine) with
the coefficient equal to 1. The same set of artificial variables is also
added to the relational constraint betweenM2 andM3 with the coef-
ficient equal to−1, respectively. Another artificial variable set, S2ij, is
also added to the relational constraint of the jth job of slot i between
M2 and M3 with the coefficient equal to 1. The same set of artificial
variables is also added to the relational constraint between M3 and
M4 with the coefficient equal to −1, respectively. These artificial
variables are added, respectively, to consecutive constraints from
M2–M3 through Mm−1–Mm. The new model and its dual problem
are as follows. This model will provide a lower bound for model 2.

Min Z =
hm∑
h=1

m
h

g∑
i=1

bmax∑
j=1

Xh
ijm +

g∑
i=1

bmax∑
j=1

SMij (28)

Subject to:

h2∑
h=1

2
h

⎛
⎝Xh

ij2 −
g∑

p=1
Wh

ip2tpj2

⎞
⎠− h1∑

h1=1

1
h1X

h1
ij1 + S1ij �0

i= 1, 2, . . . , g

j= 1, 2, . . . , bmax
(29)

hk∑
h=1

k
h

⎛
⎝Xh

ijk −
g∑

p=1
Wh

ipktpjk

⎞
⎠− hk−1∑

h1=1

k−1
h1 Xh1

ij(k−1) + Skij − S(k− 1)ij �0

i= 1, 2, . . . , g

j= 1, 2, . . . , bmax

k= 3, 4, . . . ,m

(30)

H∑
h=1

k
h = 1, k= 1, 2, . . . ,m (31)

k
h �0,

k= 1, 2, 3, . . . ,m

h= 1, 2, . . . ,hm

206 N. Salmasi et al. / Computers & Operations Research 37 (2010) 199 -- 212

dq dj

B1 A1 tq tj A2

dj dq

B2 A1 tj tq A2

tA1

Fig. 1. The Gantt chart of processing two different sequences.

Table 2
The completion times of jobs in B1 and B2.

Job Dual variable Completion time in B1 Completion time in B2

Job q dq tA1 + tq tA1 + tq + tj
Job j dj tA1 + tq + tj tA1 + tj

The dual problem of the new model:

Max Z′ = 0 ∗
m∑

k=2

g∑
i=1

bmax∑
j=1

dijk +
m∑

M=1
�M (32)

Subject to:

−
g∑

i=1

bmax∑
j=1

dij2(Xij1)+ �1 �0 (33)

g∑
i=1

bmax∑
j=1

dijk

⎛
⎝Xijk −

g∑
p=1

Wiptpjk

⎞
⎠+ �k −

⎛
⎝ g∑

i=1

bmax∑
j=1

dij(k+1)Xijk

⎞
⎠ �0

k= 2, 3, . . . ,m− 1 (34)

g∑
i=1

bmax∑
j=1

dijm

⎛
⎝Xijm −

g∑
p=1

Wiptpjm

⎞
⎠+ �m −

⎛
⎝ g∑

i=1

bmax∑
j=1

Xijm

⎞
⎠ �0 (35)

dij2 �1,
i= 1, 2, . . . , g

j= 1, 2, . . . , bmax
(36)

dijk − dij(k+1) �0, i= 1, 2, . . . , g, j= 1, 2, . . . , bmax k= 2, 3, . . . ,m− 1

(37)

dijm �0, �k Unrestricted, i= 1, 2, . . . , g, j= 1, 2, . . . , bmax (38)

As mentioned, the SPs get harder to be solved if the maximum
number of jobs in a group is increased. There are rules that can relax
the job sequence constraints of SPs and simplify solving them. These
rules for each SP are discussed in the following sections. Thus, the
complexity of the SPs will be based on only finding the sequence of
groups.

5.2. The relaxing rule for SP1 in the multiple-machine problem

The objective function of SP1 is shown in (25). In this equation �1
is a constant. Assume that B1 and B2 are two different sequences of
processing jobs for SP1, which are shown in Fig. 1. The only difference
between these two sequences is that the sequences of processing
job q and job j, in which both of them belong to the same group, are
changed. The completion times of the preceding jobs before these
jobs are the same, and are shown by tA1 in both sequences in Fig. 1.
Variables dq and dj are the dual values of these jobs, respectively.
Assume that the objective function value of B1 is less than B2. The
completion times of these jobs in B1 and B2 are shown in Table 2.

By substituting these values in the objective function of SP1, be-
cause B1 has a smaller objective function value, inequality (39) holds
true:

−dq(tA1+tq)−dj(tA1 + tq + tj)� − dj(tA1+tj)− dq(tA1+tq + tj) (39)

Simplifying the inequality leads to

dq
tq

�
dj
tj

(40)

Based on this fact, at the optimal solution of SP1, the sequence of
jobs that belong to a group should respect inequality (40). Thus, by
incorporating constraints in SP1 which can guarantee that inequality
(40) holds true, the sequence of jobs in a group can be calculated
easily. By incorporating the constraints below to SP1, for any given
group sequence, the sequence of jobs in a group can be calculated
by the model. Thus, the SP1 can be solved optimally easier. Based on
these constraints job q is processed after job j if

Yijq �
g∑

p=1
Wip

(
dij2
tpj1
− diq2

tpq1

)
,

i= 1, 2, . . . , g

j, q= 1, 2, . . . , bmax, j<q
(41)

Yijq �1+
g∑

p=1
Wip

(
dij2
tpj1
− diq2

tpq1

)
,

i= 1, 2, . . . , g

j, q= 1, 2, . . . , bmax, j<q
(42)

In these constraints, if job q is processed after job j in slot i, then the
value of

∑g
p=1Wip((dij2/tpj1) − (diq2/tpq1)) is positive. In this case, by

applying constraint (41) is SP1, Yijq will be equal to 1. Constraint (42)
supports this value as well. On the other hand, if job q is processed
before job j in slot i, then the value of

∑g
p=1Wip(dij2/tpj1 − diq2/tpq1)

is negative. By applying constraint (41) in SP1, Yijq will have a value
greater than a negative number. In this case, constraint (42) forces
Yijq to take a value equal to zero.

5.3. The relaxing rule for SP2 through SPm−1 in the multiple-machine
problem

The objective function of any sub-problem, except the first and
the last SP, SPk(k= 2, 3, . . . ,m− 1), is shown in (26). In this equation
�k is a constant. To find a rule to relax the job sequence constraints,
consider two different sequences of processing jobs which are shown
in Fig. 1. Assume that the objective function value of B1 is less than B2.
The completion time of the jobs which make the difference between
B1 and B2 are shown in Table 2. In this case, by substituting the value
of completion times in the objective function of SPk, inequality (43)
holds true:

dkq(tA1 + tq − tq)− d(k+1)q(tA1 + tq)+ dkj(tA1 + tq + tj − tj)

− d(k+1)j(tA1 + tq + tj)

�dkj(tA1 + tj − tj)− d(k+1)j(tA1 + tj)+ dkq(tA1 + tj + tq − tq)

− d(k+1)q(tA1 + tq + tj) (43)

Simplifying the inequality leads to

dkj − d(k+1)j
tj

�
dkq − d(k+1)q

tq
(44)

Thus, at the optimal solution of SPk, if there is no idle time among
the processing time of jobs, the sequence of jobs of a group respect
inequality (44). By incorporating the constraints below to SPk, for
any given group sequence, the sequence of jobs in a group can be
calculated by the model. The explanation for the constraints below

N. Salmasi et al. / Computers & Operations Research 37 (2010) 199 -- 212 207

is similar to the ones presented for constraints (41) and (42):

Yijq �
g∑

p=1
Wip

(
diq(k+1) − diqk

tpqk
− dij(k+1) − dijk

tpjk

)

i= 1, 2, . . . , g

j, q= 1, 2, . . . , bmax

k= 2, 3, . . . ,m− 1

, j<q (45)

Yijq �1+
g∑

p=1
Wip

(
diq(k+1) − diqk

tpqk
− dij(k+1) − dijk

tpjk

)

i= 1, 2, . . . , g

j, q= 1, 2, . . . , bmax

k= 2, 3, . . . ,m− 1
, j<q (46)

5.4. The relaxing rule for SPm in the multiple-machine problem

The objective function of SPm is given in (27). In this equation �m

is a constant. Consider two different sequences of processing jobs (B1
and B2) which are shown in Fig. 1. The completion time of the jobs
which make the differences between B1 and B2, i.e., job q and job j
are shown in Table 2. Assume that the objective function value of B1
is less than B2. In this case, by substituting the value of completion
times of the two sequences for B1 and B2 in the objective function
of SPm, inequality (47) holds true:

dq(tA1 + tq − tq)− (tA1 + tq)+ dj(tA1 + tq + tj − tj)− (tA1 + tq + tj)

�dj(tA1 + tj − tj)− (tA1 + tj)+ dq(tA1 + tj + tq − tq)

− (tA1 + tj + tq) (47)

Simplifying the above inequality leads to

dj − 1
tj

�
dq − 1

tq
(48)

Since the objective is maximizing the SPm, at the optimal solution
of SPm, the sequence of jobs of a group respects inequality (48). Thus,
by incorporating the constraints below to SPm, for any given group
sequence, the sequence of jobs in a group can be calculated by the
model:

Yijq �
g∑

p=1
Wip

(
diqm−1
tpqm

−dijm − 1
tpjm

)
,

i= 1, 2, . . . , g

j, q= 1, 2, . . . , bmax, j<q
(49)

Yijq �1+
g∑

p=1
Wip

(
diqm − 1
tpqm

− dijm − 1
tpjm

)
,

i= 1, 2, . . . , g

j, q= 1, 2, . . . , bmax, j<q

(50)

The explanation for the constraints is similar to the ones pre-
sented for constraints (41) and (42). These constraints help to solve
SPm easier since they restrict the completion time of each group.

5.5. Solving SPs

At each level of solving a node, by solving each SP, a column is
added to LRMP. Since the SPs are very complicated, it is better to
avoid solving them optimally as long as possible. It is not necessary
that the SPs be solved optimally during the intermediate levels of
solving a node to choose a column. Thus, a heuristic algorithm based
on TS is applied to solve SPs until it provides a column with positive
objective function value as a solution. When the TS is unable to
find such a column for all SPs, the SPs are solved optimally. This
process is performed until none of the SPs can provide a columnwith
positive objective function. At this time, the node is optimally solved

by solving the mathematical models of the SPs optimally. In other
words, at the end of each node, all SPs must be solved optimally to
make sure that the optimal solution of a node is found.

5.6. Branching

The LRMP, which is solved by column generation, will not neces-
sarily provide an integral solution. Thus, applying a standard branch-
and-bound procedure to the LRMP with its existing columns will not
guarantee an optimal (or feasible) solution [15]. Barnhart et al. [18]
and Desrosiers et al. [19] suggested to branch on the original vari-
ables of the problem. Since the sequence of jobs in a group can be
calculated by the rules discussed, the branching is only performed on
the group binary variables, i.e., Aipl's or Wip's. In this case, to find the
best variable to branch on, all Aipl variables related to all machines
are considered for branching.

Each column that exists in LRMP relates to a decision variable
(
k

h) of each node. To find the best decision variable for branching,
for each Aipl related to each machine, a branching index is calculated.
The value of this index is the sum of the coefficients of the existing
columns in LRMP in which Aipl = 1. Wilhelm et al. [17] suggested
to branch on the original variable in which its branching index has
the nearest value to “0.5” compared to the other variables. Thus,
branching is performed on the variable in which its branching index
has the closest value to 0.5.

Suppose that Ak
ipl (Aipl that belongs to the kth SP) has the closest

value to 0.5 among all variables. In this case, the parent node is
branched on two new nodes. In one node, the constraint Aipl = 1 is
added to SPk of the parent node and in the other node the constraint
Aipl = 0 is added to SPk of the parent node. All existing columns
related to all machines but the kth machine are added to both child
nodes. The columns related to the kth machine of the parent node
are separated into two parts. The ones in which Aipl = 1 are added
to the first node, and the remaining are added to the one which
includes the Aipl = 0 constraint.

5.7. Stopping criteria

The branching process is continued until all nodes provide an
integer solution, be infeasible, or are fathomed. Since this process
requires a considerable amount of time, especially for large size prob-
lems, and considering the required amount of time for solving SPs
optimally which are NP-hard, a time limitation is applied for solv-
ing problems. During solving the problems to obtain lower bounds,
if the time spent for solving a problem exceeds 4h, the SPs of the
current node started is solved optimally once. After solving all SPs
optimally, the algorithm stops and the best lower bound obtained
so far is reported as the lower bound of the problem. The maximum
time spent on solving an SP is set to at most 2h. If an SP cannot
be solved optimally in 2h, solving the SP is stopped and the lower
bound of the SP is considered as the objective function value of the
SP. During solving the nodes, the breadth first procedure is used.

5.8. The lower bound for the original problem

The B&P algorithm terminates when one of the following two
conditions is applicable in each problem:

• The B&P algorithm solves the problem optimally.
• The B&P algorithm is unable to solve the problem optimally be-

cause of the imposed time limitation.

If the B&P algorithm solves the problem optimally, it provides a
lower bound for the original problem. If the B&P algorithm is un-
able to solve the problem optimally, the following rules are used to
calculate the lower bound of the original problem.

208 N. Salmasi et al. / Computers & Operations Research 37 (2010) 199 -- 212

Level 0

Level 1

Level 2
Node (4)

154
Node (5)

155
Node (6)

156
Node (7)

Unable to solve

Node (1) 150

Node (2) 153 Node (3) 156

Fig. 2. The objective function value of nodes for an incomplete problem.

If in a problem, all nodes are not solved optimally because of time
limitation, the lower bound of the original problem is the minimum
value of the nodes which are solved optimally, but their branches
are not solved optimally yet. For instance, consider the nodes of a
problem in Fig. 2. Suppose that the B&P algorithm is stopped at the
middle of the 7th node because of time limitation. In this case, since
node 7 is not optimally solved yet, the lower bound of the original
problem is the minimum objective function value of nodes 3, 4, and
5, which is equal to 154.

• In some problems, the SPs cannot be solved optimally in their
time limitation of 2h. In such cases, the algorithm stops solving
the SP after 2h and the lower bound of the SP is considered as the
objective function value of the SP.
• If in a problem, a node cannot be solved optimally, the lower

bound of the problem is equal to the objective function value of
the recent LRMP minus the summation of the objective function
values of the SPs [20].

The B&P algorithm is coded by concert technology concept of
CPLEX 9.0 [21] version, by applying the beta version of MAESTRO
library function developed for the B&P algorithm.

6. Test problem specifications

In industry, the goal is to decompose the production line to small,
but independent manufacturing cells. Thus, a flow shop cell with
more than six machines is highly unlikely in industry. In this re-
search we consider the flow shop cells in which there are at most
six machines. In the interest of time, an experiment which includes
the minimum and the maximum number of machines is considered.
Thus, the comparison is performed for two-, three-, and six-machine
problems separately by solving the test problems generated. Three
factors are considered to generate test problems for this research as
follows:

• Number of groups: Schaller et al. [1] performed their experiments
by considering at most 10 groups in a cell. Using this as a guide-
line and yet accommodating the possibility of investigating larger
number of groups in industry settings, the maximum number of
groups in a cell is set equal to 16 in this research. Thus, test prob-
lems are generated in three different categories: small, medium,
and large, randomly from a uniform discrete distribution DU [1,5],
DU [6,10], and DU [11,16] for small, medium, and large size prob-
lems, respectively.
• Number of jobs in a group: Problems including 2−10 jobs in a

group are considered in this research. This number is the same as
that used by Schaller et al. [1]. Our experience showed that the
maximum number of jobs that belongs to a group in a problem
is very important. Thus, this factor is chosen to classify the test
problems based on their number of jobs in a group. For instance, if
in a group scheduling problemwith three groups, groups have five,
seven, and nine jobs, respectively, then the problem is classified
as a 9-job problem. The test problems based on their maximum
number of jobs in a group are classified into three different sizes,

small, medium, and large, respectively. The problems include at
most 2−4 jobs in a group are classified as small size, problems
with at most 5−7 jobs in a group are classified as medium size,
and finally if one of the groups of a problem includes 8−10 jobs,
then the problem belongs to the large size problems based on its
number of jobs. Thus, the number of jobs in a group is generated
based on a random integer from a discrete uniform distribution
DU [2,4], DU [5,7], and DU [8,10] for small, medium, and large size
problems, respectively.
• The ratio of setup times: The experiments performed indicate that

the quality of solutions strongly depends on the ratio of setup
times of groups on consecutive machines. Three levels are defined
for this factor. In a sequential machine pair, if the setup time of
the first machine is significantly less than the setup time of the
second machine, the problem belongs to the first level. If both
machines have almost the same setup times, the problem belongs
to the second level. Finally, if the setup time of the first machine
is significantly greater than the second machine, the problem is
classified as the third level of this factor. This factor is applied
to all sequential machine pairs. For instance, in a three machines
problem, this ratio for “M1/M2” and “M2/ M3” is compared. Thus,
this is considered as two separate factors in this problem.

If this technique is applied for problems with more than three
machines, the number of test problems which should be investigated
will increase significantly. For instance, for a six-machine problem,
because the number of whole-plot factors will increase to 7 (group
factor, job factor, and 5 factors for ratios of sequenced machines),
if in each cell only two replicates are applied, then it is required to
solve 37×2 = 4374 problems. By considering that there are three ver-
sions of TS and two different initial solution generator mechanisms,
4374×3×2 = 26,244 problems should be solved. This is the correct
way to perform the experiment, but in the interest of time, it was
not practical for this research. Thus, the experiment for problems
with more than three machines is performed by just applying one
factor for the ratio of setup times for all machine pairs. In this case,
only a factor is defined for the ratio of setup times of machine pairs
with three levels. Level 1 indicates the problems in which the re-
quired setup times for each machine are increased sequentially. The
second level investigates the problems in which the setup times of
all machines are almost equal. And finally, level three investigates
the problems in which the setup times of machines are decreased
from the first machine to the last machine.

Based on above definitions we have different class of problems
to test. For instance for two-machine problems we have 27 different
classes (3 (classes for groups)×3(classes for jobs)×3(classes for setup
ratios)). This number is equal to 81 for three-machine problems since
there are two different classes for setup ratios. If two sample prob-
lems are generated for each class of problems, for two-, three-, and
six-machine problems, then the number of generated test problems
is equal to 54, 162, and 54, respectively. The test problems are gen-
erated based on the specifications below:

• The runtime of jobs on machines is a random integer from a DU
[1,20].

N. Salmasi et al. / Computers & Operations Research 37 (2010) 199 -- 212 209

Table 3
The setup time of each machine on two-machine problems.

Machine Level 1 Level 2 Level 3

M1 DU [1,50] DU [1,50] DU [17,67]
M2 DU [17,67] DU [1,50] DU [1,50]

Table 4
The setup time of each machine on three-machine problems.

Machine Level 1 Level 2 Level 3

M1 DU [1,50] DU [1,50] DU [45,95]
M2 DU [17,67] DU [1,50] DU [17,67]
M3 DU [45,95] DU [1,50] DU [1,50]

Table 5
The setup time of each machine on six-machine problems.

Machine Level 1 Level 2 Level 3

M1 DU [1,50] DU [1,50] DU [300,350]
M2 DU [17,67] DU [1,50] DU [170,220]
M3 DU [45,95] DU [1,50] DU [92,142]
M4 DU [92,142] DU [1,50] DU [45,95]
M5 DU [170,220] DU [1,50] DU [17,67]
M6 DU [300,350] DU [1,50] DU [1,50]

• The setup time of groups on each machine for the two-machine
problem is shown in Table 3. As discussed, in the first the setup
time of groups on M1 should be less than M2. If these setup times
are generated based on DU [1,50] and DU [17,67] for M1 and M2,
respectively, then the average ratio of setup times is equal to
0.607 ([(1+50)/2]/[(17+67)]/2 = 0.607), which satisfies the condi-
tion. The setup times for other levels are generated similar to this
rule to satisfy the required ratio of each level as well.
• The setup times of groups on each machine for problems with

three and six machines are shown in Tables 4 and 5. The setup
times shown in Table 4 for the three-machine problem can be
applied for setup time ratio factors of M1/M2 as well as M2/M3.
The distribution to generate random setup time for each machine
at each level is chosen based on the required ratio among setup
times.

7. Results

Both TS and HACO algorithms are coded in C programming lan-
guage and the test problems are solved by them. The performances
of the algorithms for two-, three-, and six-machine problems are
compared separately, as a paired t-test experiment. The results are
shown in Appendix B. Since the p-value for all three experiments
are almost equal to zero (0, 0, and 0.0007, respectively), we can con-
clude that there is a statistically significant difference between the
results of these algorithms. Since the average of the total flow time
of the HACO algorithm is lower than the TS, we can conclude that
the HACO has a better performance compared to the TS algorithm.
The time required to reach the best solution for the HACO algorithm
is shown in Fig. 3. For instance, for two-machine problems, almost
50% of the problems attain their best solutions in less than 5 s.

The lower bounding method is applied to estimate the quality of
solutions. The ILOG CPLEX (version 9.0) is used to solve the lower
bounding model. The heuristic algorithms (TS and HACO) and the
lower bounding problems are run on a Power Edge 2650with 2.4GHz
Xeon, and 4GB RAM.

If the B&P algorithm is applied to solve large size problems, it
requires a considerable amount of time to identify an LB. Thus, in the
interest of time, only a few of the test problems are considered to be

[0-5)

Pe
rc

en
t

[5-10) [10-15) [15-20)

Intervals (Seconds)

Percentile Histogram of Runtimes for HACO Algorithm

0

10

20

30

40

50

60

[20-25) [25-30]

2M 3M 6M

Fig. 3. Runtime percentage histogram.

solved for estimating the quality of solutions as a sample. The size
of the sample used for two-, three-, and six-machine problems is 11,
21, and 11, respectively. As shown in Table 6 the average percentage
errors of the problems for the HACO algorithm are 14.4%, 16.3%,
and 13.9% for two-, three-, and six-machine problems. For large size
problems, the SPs cannot be solved optimally during their 2-h time
limitation, and it explains the reason for not attaining a high quality
LB for SPs. In each of these problem structures, there are a few
problemswith high percentage error (more than 50%). The number of
these problems is one, two, and one for two-, three-, and six-machine
problems, respectively. If these problems with high percentage error
are removed from the sample, the percentage error of the problems is
reduced drastically to result in satisfactory percentage errors. Table 6
also shows the reduced percentage errors by removing the problems
with more than 50% error. More detailed results about each test
problem instances are given in Salmasi [22]. In order to investigate
the reason for low percentage error, the test problems with less
than five groups as well as at most four jobs in a group are solved
optimally by CPLEX based on the developed mathematical model.
In all of these test problems the optimal solution was equal to the
solutions developed by HACO algorithm. Thus, we can conclude that
the low percentage error is due to the performance of the lower
bounding technique. Since the research problem is too complex, this
method is currently the only available method to determine the LB
for the proposed research problem. The percentage error is calculated
based on the formula:

(The heuristic algorithm solution− The lower bound)/The lower bound

The results based on different levels of the group size factor are
presented in Table 7 for two-, three-, and six-machine problems,
separately. Among the 11 problems chosen to be solved for two-
machine problems, four of them belong to small size, four test prob-
lems belong to medium size, and three of them belong to large size
problems. As presented in this table, the percentage errors for these
levels are 5.8%, 9.2%, and 32.9%, respectively. One of these 11 test
problems, which belongs to the large size factor, has a percentage
error of more than 50%. By removing this problem, the revised per-
centage errors are reported in the last column of this table. The same
policy is used to provide the information in Table 7 for three- and
six-machine problems.

Also in order to evaluate the effect of different levels of setup
time ratios, the percentage errors are evaluated and presented based
on different levels of setup time ratio factors in Table 8–10 for two-,
three,- and six-machine problems, respectively. In these tables, for
each level of the setup time ratio factors (one ratio factor for two-
and six-machine problems and two ratio factors for three-machine
problems), the number of problems, the original percentage error,
and the percentage error after removing the test problemswithmore
than 50% percentage error are presented.

210 N. Salmasi et al. / Computers & Operations Research 37 (2010) 199 -- 212

Table 6
The percentage error for the hybrid ant colony optimization algorithm from the lower bound.

Problem Average percentage error Average percentage error by removing more than 50% percentage error problems

2-Machine 14.4 8.4 (by removing one test problem)
3-Machine 16.3 11.8 (by removing two test problems)
6-Machine 13.9 9.1 (by removing one test problem)

Table 7
The average percentage error for the hybrid ant colony optimization algorithm from the lower bound based on levels of group factor.

Problem Group size Number of test problems Percentage error Percentage error by removing more than 50% percentage error problems

2-Machine Small 4 5.8 5.8
Medium 4 9.2 9.2
Large 3 32.9 11.9 (by removing one test problem)
Total 11 14.4 8.4 (by removing one test problem)

3-Machine Small 7 6.6 6.6
Medium 7 10.3 10.3
Large 7 32.1 21.5 (by removing two test problems)
Total 21 16.3 11.8 (by removing two test problems)

6-Machine Small 4 8.0 8.0
Medium 4 6.1 6.1
Large 3 31.3 16.0 (by removing one test problem)
Total 11 13.9 9.1 (by removing one test problem)

Table 8
The average percentage error for the hybrid ant colony optimization algorithm from the lower bound based on levels of ratio of setup times for 2-machine problems.

Level of setup ratio factor Number of test problems Percentage error Percentage error by removing more than 50% percentage error problems

Level 1 3 6.8 6.8
Level 2 4 28.9 13.5 (by removing one test problem)
Level 3 4 5.7 5.7

Total 11 14.4 8.4 (by removing one test problem)

Table 9
The average percentage error for the hybrid ant colony optimization algorithm from the lower bound based on levels of ratio of setup times for 3-machine problems.

Level of setup ratio factor (M1/M2) Level of setup ratio factor (M2/M3) Number of test problems Percentage error Percentage error by removing more than
50% percentage error problems

Level 1 Level 1 3 19 2.3 (by removing one test problem)
Level 2 2 14 14
Level 3 2 21 21

Level 2 Level 1 2 5.6 5.6
Level 2 3 21.9 21.9
Level 3 2 37.3 9.4 (by removing one test problem)

Level 3 Level 1 2 10 10
Level 2 2 2.9 2.9
Level 3 3 12.6 12.6

Total 21 16.3 11.8 (by removing two test problems)

Table 10
The average percentage error for the hybrid ant colony optimization algorithm from the lower bound based on levels of ratio of setup times for 6-Machine problems.

Level of setup ratio factor Number of test problems Percentage error Percentage error by removing more than 50% percentage error problems

Level 1 3 0.0 0.0
Level 2 4 35.2 26.3 (by removing two test problems)
Level 3 4 3.1 3.1

Total 11 13.9 9.1 (by removing one test problem)

N. Salmasi et al. / Computers & Operations Research 37 (2010) 199 -- 212 211

8. Conclusions and suggestions for future research

To the best of our knowledge, this is the first work on FSDGS prob-
lems by considering minimization of TFT criterion. In this research,
a metaheuristic algorithm based on TS as well as a hybrid heuristic
algorithm based on ant colony algorithm are developed for solving
FSDGS problems. Then, the TS algorithm is compared with the HACO
algorithm. The result of paired t-test shows that the HACO algorithm
has a better performance for all problem sizes than the best TS al-
gorithm. These comparisons are performed based on test problems
ranging in size from small, medium, to large for two-, three-, and
six-machine problems.

A generalized lower bounding method based on the branch-and-
price method is also developed for FSDGS problems to estimate the
quality of solutions. The comparison of the result of the heuristic
algorithms with the optimal solutions for small size problems shows
that the HACO algorithm can provide a good quality solution for the
problems investigated.

All of the previous work on FSDGS problems is based only on
minimization of makespan criterion. Recognizing the industrial rel-
evance of FSDGS problems, further research can be performed by
considering other optimization criteria such as minimization of total
tardiness and minimization of weighted tardiness, amongst others.

Acknowledgment

The research reported in this paper is funded in part by the Na-
tional Science Foundation (USA) Grant no. DMI-0010118. Their sup-
port is gratefully acknowledged.

Appendix A. The tabu search parameter values for minimization
of total flow time criterion

See Table A1.

Table A1

Outside parameters

Index list Iterations without improvement Tabu list size

Number of groups (G) Parameter value/ formula Number of groups (G) Parameter value/formula Number of groups (G) Parameter
value

From To From To From To

2 4 2 2 3 G/2 2 5 1
5 6 G∗2 4 5 2 6 7 2
7 7 G∗10 6 6 3 8 9 3
8 12 G∗20 7 7 6 10 14 4
13 16 250 8 14 8 15 16 6

15 16 11

Inside parameters

Number of jobs (J) Parameter value Number of jobs (J) Parameter value Number of jobs (J) Parameter value

From To From To From To

2 20 2 2 30 2 2 20 1
21 30 3 31 40 3 21 30 2
31 40 5 41 50 5 31 39 3
41 50 6 51 120 8 40 50 4
51 90 7 51 60 5
91 120 8 61 75 6

76 85 8
86 95 9
96 100 10
101 120 13

Appendix B. The result of paired t-tests for the tabu search and
hybrid ant colony optimization algorithm comparison

Paired t-test for two-machine problems
data: x: V1 in SDF64, and y: V2 in SDF64
t = −4.5692, df = 53, p-value = 0
Alternative hypothesis: true mean of differences is
not equal to 0
95 percent confidence interval: −476.9937 −185.9693
sample estimates: mean of x – y: −331.4815

Paired t-test for three-machine problems
data: x: V3 in SDF64, and y: V4 in SDF64
t = −4.7069, df = 161, p-value = 0
alternative hypothesis: true mean of differences is
not equal to 0
95 percent confidence interval: −500.2285 −204.5369
sample estimates: mean of x – y: −352.3827

Paired t-test for six-machine problems
data: x: V5 in SDF64, and y: V6 in SDF64
t = −3.5835, df = 53, p-value = 0.0007
alternative hypothesis: true mean of differences is
not equal to 0
95 percent confidence interval: −613.1127 −173.0725
sample estimates: mean of x – y: −393.0926

References

[1] Schaller JE, Gupta JND, Vakharia AJ. Scheduling a flowline manufacturing cell
with sequence dependent family setup times. European Journal of Operational
Research 2000;125:324–39.

[2] Pinedo M. Scheduling theory, algorithms, and systems. 3rd ed., Englewood
Cliffs, NJ: Prentice-Hall; 2008.

212 N. Salmasi et al. / Computers & Operations Research 37 (2010) 199 -- 212

[3] Cheng TCE, Gupta JND, Wang G. A review of flowshop scheduling research with
setup times. Production and Operations Management 2000;9(3):262–82.

[4] Allahverdi A, Gupta JND, Aldowaisian T. A review of scheduling research
involving setup considerations. Omega, International Journal of Management
Science 1999;27:219–39.

[5] Zhu X, Wilhelm WE. Scheduling and lot sizing with sequence-dependent setups:
a literature review. IIE Transactions 2006;38:987–1007.

[6] Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY. A survey of scheduling
problems with setup times or costs. European Journal of Operational Research
2008;187(3):985–1032.

[7] Franca PM, Gupta JND, Mendes PM, Veltink KJ. Evolutionary algorithms for
scheduling a flowshop manufacturing cell with sequence dependent family
setups. Computers and Industrial Engineering 2005;20:1–16.

[8] Logendran R, Salmasi N, Sriskandarajah C. Two-machine group scheduling
problems in discrete parts manufacturing with sequence-dependent setups.
Journal of Computers and Operations Research 2006;33:158–80.

[9] Hendizadeh H, Faramarzi H, Mansouri SA, Gupta JND, Elmekkawy TY. Meta-
heuristics for scheduling a flowshop manufacturing cell with sequence
dependent family setup times. International Journal of Production Economics
2008;111:593–605.

[10] Garey MD, Johnson DS, Sethi R. The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research 1976;1(2):117–29.

[11] Nawaz M, Enscore E, Ham I. A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega, International Journal of Management
Science 1983;11(1):91–5.

[12] Dorigo M. Optimization, learning, and natural algorithms. PhD thesis, Politecnico
di Milano; 1992.

[13] Dorigo M, Gambardella LM. Ant colonies for the traveling salesman problem.
BioSystems 1997;43(2):73–81.

[14] Gajpal Y, Rajendran C. An ant-colony optimization algorithm for minimizing
the completion-time variance of jobs in flowshops. International Journal of
Production Economics 2006;101:259–72.

[15] Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH. Branch
and price: column generation for solving huge integer programs. Operations
Research 1998;46(3):316–29.

[16] Wilhelm WE. A technical review of column generation in integer programming.
Optimization and Engineering 2001;2:159–200.

[17] Wilhelm WE, Damodaran P, Li J. Prescribing the content and timing of product
upgrade. IIE Transactions 2003;35:647–63.

[18] Barnhart C, Hane CA, Johnson EL, Sigimondi G. A column generation and
partitioning approach for multi-commodity flow problem. Telecommunication
Systems 1995;3:239–58.

[19] Desrosiers J, Dumas Y, Solomon MM, Soumis F. Time constrained routing
and scheduling. In: Ball ME, Magnanti TL, Monma C, Nemhauser GL, editors.
Handbooks in operations research and management science. Amsterdam:
Elsevier; 1995.

[20] Lubbecke ME, Desrosiers J. Selected topics in column generation. Operations
Research 2005;53(6):1007–23.

[21] CPLEX, Release 9.0, ILOG Institute, Paris, France.
[22] Salmasi N. Multi-stage group scheduling problems with sequence dependent

setups. Doctoral Dissertation, Oregon State University, Corvallis, Oregon; 2005.

	Total flow time minimization in a flowshop sequence-dependent groupscheduling problem
	Introduction
	Tabu search
	Hybrid ant colony optimization algorithm (HACO)
	Sequence of groups
	Solution construction
	Pheromone definition
	Heuristic information
	Stochastic model of solution construction
	Local search
	Pheromone update
	Initialization of the algorithm

	Sequence of jobs in a group
	Terminating criteria

	Mathematical model
	Lower bounding method
	Mathematical model for solving the problem by B&P algorithm
	The relaxing rule for SP1 in the multiple-machine problem
	The relaxing rule for SP2 through SPm-1 in the multiple-machine problem
	The relaxing rule for SPm in the multiple-machine problem
	Solving SPs
	Branching
	Stopping criteria
	The lower bound for the original problem

	Test problem specifications
	Results
	Conclusions and suggestions for future research
	Acknowledgment
	Appendix A. The tabu search parameter values for minimization of total flow time criterion
	Appendix B. The result of paired =t-tests for the tabu search and hybrid ant colony optimization algorithm comparison
	References

