
ar
X

iv
:1

80
8.

03
55

3v
1

 [c
s.D

S]
 1

0
A

ug
 2

01
8

Dynamic all scores matrices for LCS score

Amir Carmel∗ Dekel Tsur∗ Michal Ziv-Ukelson∗

Abstract

The problem of aligning two strings A,B in order to determine their sim-
ilarity is fundamental in the field of pattern matching. An important concept
in this domain is the “all scores matrix” that encodes the local alignment com-
parison of two strings. Namely, let K denote the all scores matrix containing
the alignment score of every substring of B with A, and let J denote the all
scores matrix containing the alignment score of every suffix of B with every
prefix of A.

In this paper we consider the problem of maintaining an all scores matrix
where the scoring function is the LCS score, while supporting single character
prepend and append operations to A and B. Our algorithms exploit the
sparsity parameters L = LCS(A,B) and ∆ = |B| − L. For the matrix K
we propose an algorithm that supports incremental operations to both ends
of A in O(∆) time. Whilst for the matrix J we propose an algorithm that
supports a single type of incremental operation, either a prepend operation
to A or an append operation to B, in O(L) time. This structure can also be
extended to support both operations simultaneously in O(L log logL) time.

1 Introduction

In the classical problem of sequence alignment, two strings are aligned according to
some predifined scoring function. The common scoring schemes are the Edit Dis-
tance (ED) and the Longest Common Subsequence (LCS). This problem is funda-
mental in the field of pattern matching. It has broad applications to many different
fields in computer science, among others: computer-vision, bioinformatics and nat-
ural language processing. Hence, it is of no suprise that this problem has attracted
a vast amount of research and publications over the years.

Given two strings A and B of lengths m and n, respectively. The alignment
problem of A and B can be naturally viewed as a shortest path problem on the
alignment graph of A and B. That is, an (n + 1) × (m + 1) grid graph, in which,
horizontal (respectively, vertical) edges correspond to alignment of a character in
A (respectively, B) with a gap, and diagonal edges correspond to alignment of two
characters in A and B (see Figure 1).

Landau et al. [23] introduced the problem of incremental string comparison, i.e.
given an encoding of the global comparison of two strings A and B, to efficiently

∗Department of Computer Science, Ben-Gurion University of the Negev.

1

http://arxiv.org/abs/1808.03553v1
Aaron
all scores matrix

Aaron
local alignment com- parison of two strings

Aaron
K

Aaron
J

Aaron
substring of B with A

Aaron
suffix of B with every prefix of A.

Aaron
single character prepend and append

Aaron
∆ = |B| − L

Aaron
predifined scoring function

Aaron
pattern matching

Aaron
alignment graph

Aaron
incremental string comparison

Aaron
稀疏 sparsity

Aaron
O(L log log L)

compute the answer for A and σB, and the answer for σA and B. Furthermore,
they show how incremental string comparison can be used to obtain more efficient
algorithms for various problems in pattern matching, such as: the longest prefix
approximate matching problem, the approximate overlap problem and cyclic string
comparison. Incremental string comparison has also been applied to finding all
approximate gapped palindromes [14], approximate regularities in strings [8, 38],
consecutive suffix alignment [15, 22] and more [21, 33]. Several improvements to the
algorithm of Landau et al. [23] have been proposed over the years [16, 17, 18, 20].

All scores matrices were introduced by Apostolico et al. [2] in order to obtain fast
parallel algorithms for LCS computation. An all scores matrix is a matrix that stores
the optimal alignment scores of one or more types from the following types: (I) B
against every substring of A, (II) A against every substring of B, (III) every suffix of
A against every prefix of B, and (IV) every suffix of B against every prefix of A. We
denote by L the all scores matrix containing the optimal alignment scores of all the
types defined above. We denote by K the all scores matrix containing the optimal
alignment scores of type (II), and denote by J the all scores matrix containing the
optimal alignment scores of type (IV) (see Figure 1). Due to symmetry, we will
ignore the all scores matrices that contain optimal alignment scores of type (I) or of
type (III). All scores matrices are also called DIST matrices [2, 32] or highest-score
matrices [35].

The problem of constructing all scores matrices has been studied in [1, 7, 27, 31,
32, 35, 36]. We note that this problem is a special case of the more general problem
of computing all pairs shortest paths in planar graphs [5, 6, 9, 10, 11, 28].

For an n×n matrix D, its density matrix D! is an (n−1)×(n−1) matrix, where
D![i, j] = D[i−1, j−1]+D[i, j]−D[i−1, j]−D[i, j−1]. A matrix is called Monge
(resp. anti-Monge) if its density matrix is non-negative (resp. non-positive), and
sub-unit Monge (resp. sub-unit anti-Monge) if every row or column of the density
matrix contains at most one non-zero element, and all the non-zero elements are
equal to 1 (resp. −1). All scores matrices are known to be sub-unit Monge or
sub-unit anti-Monge [35]. Hence, all scores matrices can be encoded in linear space.
Consequently, supporting incremental operations for all scores matrices can also
serve to further reduce the space complexity for Incremental String Comparison,
which was noted in [17] to be the main practical limitation.

We next consider the problem of incremental construction of all scores matrices.
That is, we wish to maintain an all scores matrix of two strings A and B while
supporting all or some of the following operations: appending a character to A,
prepending a character to A, appending a character toB, and prepending a character
to B. If the number of supported operations from the four operations above is k, we
refer to the problem as the k-sided incremental all scores matrix problem (k-IASM).

The algorithm of Schmidt [32] for all scores matrix construction also solves the 2-
IASM problem on the matrix L. For discrete score functions, including LCS scores,
the algorithm of Schmidt requires O(m + n) space and it supports incremental
operations to the right ends of A and B in O(n) and O(m) time, respectively. For
LCS scores, Tiskin [34, Chapter 5.3] utilized the property that the all scores matrix
L is unit-Monge. His algorithm solves the 4-IASM problem on L. The algorithm
uses O(m + n) space and supports incremental operations in either O(n) or O(m)

2

Aaron
A and σB

Aaron
σA and B

Aaron
longest prefix approximate matching problem

Aaron
fast parallel algorithms for LCS

Aaron
optimal alignment scores

Aaron
L

Aaron
K

Aaron
II

Aaron
J

Aaron
IV

Aaron
symmetry

Aaron
DIST matrices [2, 32] or highest-score matrices

Aaron
all scores matrices

Aaron
all pairs shortest paths

Aaron
Monge

Aaron
at most one non-zero element

Aaron
sub-unit Monge or sub-unit anti-Monge

Aaron
D[i,j] = D[i−1,j−1]+D[i,j]−D[i−1,j]−D[i,j−1]

Aaron
linear space

Aaron
appending

Aaron
prepending

Aaron
k-sided incremental all scores matrix problem (k-IASM)

B

A
c c b c c a a

c

a

c

a

b

(a) The all substring-string LCS prob-
lem

B

A
c c b c c a a

c

a

c

a

b

(b) The all prefix-suffix LCS problem

Figure 1: The alignment graph for the strings A = ccbccaa and B = cacab. Fig-
ure (a) illustrates a prepend operation of character c to A. The matrix K contains
the optimal scores of paths from every vertex on the left border to every vertex
on the right border (these vertices are colored gray). The optimal path that cor-
responds to K[2, 4] is marked using thicker edges. Figure (b) illustrates an append
operation of character b to B. The matrix J contains the optimal scores of paths
from every vertex on the left border to every vertex on the bottom border (these
vertices are colored gray).

time. Restricting the set of supported incremental operations and maintaining either
the matrix J or K rather than the full matrix L allows for faster algorithms. Such
an algorithm was given in Landau et al. [22]. The algorithm of Landau et al.
allows prepend operations to the string A while maintaining the alignment score
between every suffix of B to every prefix of A, thus it solves 1-IASM on the matrix
J . Amortized on m incremental operations, the algorithm runs in O(L) time per
operation, where L is the length of the longest common subsequence of A and B.
The space complexity of the algorithm is O(n).

1.1 Our Contribution

In this paper we study the k-IASM problem under LCS score. We exploit the sparsity
parameters L and ∆ = n − L, to design faster algorithms. These parameters have
already been extensively used to give faster LCS algorithms [3, 4, 13, 29, 37]. In
order to obtain faster running times, we restrict the set of supported incremental
operations (namely k is either 1 or 2), and we also maintain either J or K and not
the full matrix L.

We note that various applications that utilize incremental all scores matrices
require a specific type of all scores matrix, and also use restricted sets of update
operations (see for example [14, 15, 19, 22, 24, 25, 26, 30, 32, 36]). Thus, our
algorithms are advantageous to these applications.

Our results are as follows (see also Table 1). In Section 3 we give an algorithm
for maintaining the matrix K while supporting incremental operations to both sides
of string A in O(∆) time, using O(n) space. In Section 4 we give an algorithm for
maintaining the matrix J and supporting one type of update operations: either
prepending a character to A or appending a character to B. The algorithm uses

3

Aaron
prefix-suffix

Aaron
substring-string

Aaron
如：S-table

Aaron
prepend operation of character c to A

Aaron
append operation of character b to B

Aaron

Aaron

Aaron
c a c a

Aaron

Aaron
J or K

Aaron
faster

Aaron
k-IASM problem under LCS score

Aaron
sparsity parameters L and ∆ = n − L

Aaron
稀疏 sparsity

Aaron
J or K

Aaron
1 or 2

Aaron
有利的 advantageous

Aaron
K

Aaron
both sides

Aaron
J

Aaron
one type

Aaron
K

Aaron
T

Aaron
2

Aaron
4

Problem Supported operations Time Space
Landau et al. [22] 1-sided J Prepend a character to A O(L) amortized O(n)
Schmidt [32] 2-sided L Append a character to A or B O(n)/O(m) O(m+ n)
Tiskin [34] 4-sided L Prepend/append a character to A or B O(n)/O(m) O(m+ n)
Ours (Thm. 3.8) 2-sided K Prepend and append a character to A O(∆) O(n)

Ours (Thm. 4.7) 1-sided J
Prepend a character to A, or
append a character to B

O(L)
O(n)
O(m)

Ours (Thm. 4.8) 2-sided J
Prepend a character to A, and
append a character to B

O(L log logL) O(m+ n)

Ours (Thm. 5.3) 2-sided K,J Append a character to A or B O(∆)/O(L) O(m+ n)

Table 1: Comparison of known and new results for k-IASM. A and B denote two
strings of lengths m and n, respectively, over a constant alphabet. In this setting,
L = LCS(A,B) and ∆ = n− L.

either O(n) or O(m) space, and the worst-case time complexity of an update opera-
tion is O(L). We also show how to support both update operations simultaneously.
This increases the space complexity to O(m+n) and the worst-case time complexity
of an update operation to O(L log logL). Our result improves the result of Landau
et al. [22] since the update time in Landau et al. is O(L) amortized. Additionally,
the proof of correctness of our algorithm is simpler. Finally, in Section 5, we give
an algorithm for maintaining both matrices K and J while supporting append op-
erations to either string. Here, the space complexity is O(m + n) and the update
time is O(∆) or O(L).

We note that our proposed approach could also be applied to yield a solution to
the 4-sided problem with the same time and space complexity as the algorithm of
Tiskin [34].

2 Preliminaries

We denote [i : j] = {i, i + 1, . . . , j}. Let A,B be two strings of lengths m,n,
respectively, over an alphabet Σ of constant size. Denote by GA,B the alignment
graph of A and B. GA,B is a grid graph over a vertex set [0 : n]× [0 : m], where all
vertical and horizontal edges are present, and a diagonal edge between (i− 1, j− 1)
to (i, j) is present if and only if B[i] = A[j], in which case we say that (i, j) is a
match point in GA,B. Diagonal edges have score 1, and horizontal and vertical edges
have a score 0. We denote L = LCS(A,B) and ∆ = n− L.

For a string S = σ1σ2 · · ·σn, let S[i..j] = σi+1 · · ·σj denote the substring of S
from i + 1 to j. Consequently, S[i..i] denotes the empty string, for which we use
the symbol ε. For a character σ and a string S, let NextMatchS(i, σ) denote the
minimum index i′ > i, such that σ = S[i′] (and ∞ if no such i′ exists), and let
PrevMatchS(j, σ) denote the maximum index j′ ≤ j, such that σ = S[j′] (and −∞
if no such j′ exists).

We consider two types of all scores matrices (see Figure 1). Let J denote
the matrix containing the scores of the optimal paths between every vertex on
the left border of GA,B to every vertex on its bottom border, that is, J [i, j] =
LCS(B[i..n], A[0..j]). Also, let K denote the matrix containing the scores of the

4

Aaron
O(n) or O(m) space

Aaron
O(L)

Aaron
simultaneously

Aaron
O(m+n)

Aaron
O(L log log L)

Aaron
K and J

Aaron
O(m + n)

Aaron
O(∆) or O(L)

Aaron
4-sided problem

Aaron
L = LCS(A, B) and ∆ = n − L.

Aaron
Tiskin

Aaron
4-sided L

Aaron
GA,B

Aaron
grid graph

Aaron
B[i] = A[j],

Aaron
diagonal

Aaron
match point

Aaron
L=LCS(A,B)and∆=n−L.

Aaron
S[i..j] = σi+1 ···σj

Aaron
ε

Aaron
NextMatchS(i,σ)

Aaron
PrevMatchS(j,σ)

Aaron
J

Aaron
left

Aaron
bottom

Aaron
K

Aaron
J[i,j] = LCS(B[i..n],A[0..j])

optimal paths between every vertex on the left border of GA,B to every vertex on
its right border, namely K[i, j] = LCS(B[i..j], A). If i > j then no such path exists
and we define K[i, j] = j − i.

For a matrix D over index set [0 : n] × [0 : m], we define its density matrix,
denoted by D!, to be a matrix over the index set [1 : n] × [1 : m] such that
D![i, j] = (D[i, j] + D[i− 1, j − 1])− (D[i− 1, j] + D[i, j − 1]). The next property
follows immediately from the above definition.

Proposition 2.1. D[i, j] =
∑

1≤i′≤i
1≤j′≤j

D![i′, j′] − D[0, 0] + D[0, j] + D[i, 0], for every

0 ≤ i ≤ n and 0 ≤ j ≤ m.

We say that a matrix is sub-unit Monge (resp., sub-unit anti-Monge), if every row
and column of its density matrix contains at most one non-zero element, and all the
non-zero elements are equal to 1 (resp., −1). It is well established that the matrices
K and J are sub-unit Monge and sub-unit anti-Monge, respectively (cf. [35]). This
implies the next corollary regarding the size of the encoding of K and J .

Corollary 2.2. The density matrix of J has exactly L non-zero elements, and the
density matrix of K has exactly ∆ non-zero elements.

Proof. For the first part, note that J [n,m] = LCS(B[n..n], A) = 0. However, by
Proposition 2.1, J [n,m] =

∑
1≤i′≤n
1≤j′≤m

J ![i′, j′] − J [0, 0] + J [0, m] + J [n, 0]. Hence,

J [0, m] + J [n, 0]− J [0, 0] = −
∑

1≤i′≤n
1≤j′≤m

J ![i′, j′]. By the definition of the matrix J ,

J [0, 0] = LCS(B, ε) = 0, J [0, m] = LCS(B,A) = L and J [n, 0] = LCS(ε, ε) = 0.
Therefore,

∑
1≤i′≤n
1≤j′≤m

−J ![i′, j′] = L. The second part of the corollary can be obtained

similarly, by the definition of the matrix K.

In what follows the non-zero cells of a density matrix are called pivotal points.
We encode an all scores matrix by storing the pivotal points of its density matrix.
This requires O(L) space for the J matrix, and O(∆) space for K (by Corollary 2.2).
In the subsequent sections we handle the two matrices K and J separately, and for
each matrix we consider both the 1-sided and the 2-sided problems.

3 Incremental K matrix

Recall that we need to maintain the all scores matrix, denoted K, of the strings A
and B. Our algorithm encodes the matrix K by storing the pivotal points of its
density matrix. Consider an incremental operation that prepends a character σ to
A, that is A′ = σA. We need to compute the pivotal points of K′!, where K′ is the
all scores matrix of A′ and B. Define C = K′ − K. By definition, K′! = K! + C!.
We will next show how to compute the pivotal points of C!. This will allow the
algorithm to compute the pivotal points of K′!. C contains either 0 or 1 values,

5

Aaron
left

Aaron
right

Aaron
K[i, j] = LCS(B[i..j], A)

Aaron
density matrix, denoted by D

Aaron
D[i,j]=(D[i,j]+D[i−1,j−1])−(D[i−1,j]+D[i,j−1])

Aaron
Monge

Aaron
sub-unit Monge

Aaron
at most one non-zero element

Aaron
1

Aaron
推論 Corollary

Aaron
L non-zero

Aaron
∆ non-zero

Aaron
J [n, m] = LCS(B[n..n], A) = 0

Aaron
pivotal points

Aaron
重要 pivotal

Aaron
O(L) space for the J matrix, and O(∆) space for K

Aaron
K by storing the pivotal points of its density matrix

Aaron
A′ = σA

Aaron
C = K′ − K

Aaron
C contains either 0 or 1 values

Aaron
(i-1, j-1) (i-1, j)
(i. , j-1) (i , j)

Aaron
斜角-反斜角

Aaron
左右兩邊A對B的所有子字串

since the new character σ can increase the length of the LCS of each alignment by
at most 1. See Figure 2 for an example of matrices K′,K, C and C!.

The optimal path from the i’th vertex on the first column to the j’th vertex on
the last column of GσA,B either utilizes a match point that was generated due to the
new prepended character σ, or not. In the former case we can assume the optimal
path uses the topmost such match point, and in the latter case the score of this path
is equal to K[i, j]. Hence, we have K′[i, j] = max{K[NextMatchB(i, σ), j]+1,K[i, j]}.
This leads to the following proposition.

Proposition 3.1. K′[i, j] = K[i, j] + 1 if and only if NextMatchB(i, σ) < ∞ and
K[i, j] = K[NextMatchB(i, σ), j].

We now describe our main lemma required for the incremental step.

Lemma 3.2. C[i, j] = 1 if and only if NextMatchB(i, σ) < ∞ and every row of
K![i+ 1..NextMatchB(i, σ), 1..j] has exactly one pivotal point.

Proof. Let NextMatchB(i, σ) = k. By Proposition 2.1, K[i, j] = K[k, j] if and only if:

∑

1≤i′≤i
1≤j′≤j

K![i′, j′]−K[0, 0]+K[0, j]+K[i, 0] =
∑

1≤i′≤k
1≤j′≤j

K![i′, j′]−K[0, 0]+K[0, j]+K[k, 0].

After canceling the terms that appear in both sides, we obtain the equality

∑

i+1≤i′≤k
1≤j′≤j

K![i′, j′] = K[i, 0]−K[k, 0].

By the definition of the matrix K, K[i, 0] = −i and K[k, 0] = −k, thus obtaining

∑

i+1≤i′≤k
1≤j′≤j

K![i′, j′] = k − i.

Recall that K is a sub-unit Monge matrix and hence there is at most one pivotal
point in every row of K!. Therefore,

∑
i+1≤i′≤k
1≤j′≤j

K![i′, j′] = k − i if and only if every

row of K![i + 1..NextMatchB(i, σ), 1..j] has exactly one pivotal point. The lemma
now follows from Proposition 3.1.

The following corollary follows immediatly from Lemma 3.2.

Corollary 3.3. If C[i, j] = 1 then C[i, j′] = 1 for every j′ ≥ j.

We say that (i, j) is a step index in C if C[i, j] '= C[i, j − 1] (see Figure 2). The
following lemma shows that the pivotal points of C! can be obtained from the step
indices of C. Therefore, the computation of these indices will be the focus of our
algorithm.

Lemma 3.4. For every cell (i, j) in C!,

6

Aaron
at most 1

Aaron
i’th

Aaron
j’th

Aaron
a match point

Aaron
topmost

Aaron
K′[i,j]=max{K[NextMatchB(i,σ),j]+1,K[i,j]}

Aaron
存在

Aaron
K[i, j] = K[NextMatchB(i, σ), j]

Aaron
K′[i, j] = K[i, j] + 1

Aaron
C[i,j] = 1

Aaron
NextMatchB(i,σ) < ∞

Aaron
K[i+1..NextMatchB(i,σ),1..j] has exactly one

Aaron
i

Aaron
k

Aaron
移項化簡

Aaron
k−i

Aaron
a sub-unit Monge

Aaron
NextMatchB(i,σ)=k

Aaron
C[i, j] = 1

Aaron
C[i, j′] = 1 for every j′ ≥ j

Aaron
step index

Aaron
=

Aaron
pivotal points of C can be obtained from the step indices of C

Aaron
自己為1，則右邊皆為1

Aaron
自己為1且左邊為0，則自己是step

Aaron
存在

0 1 2 2 2 3 4 4 4 4
-1 0 1 2 2 3 4 4 4 4
-2 -1 0 1 2 3 4 4 4 4
-3 -2 -1 0 1 2 3 3 3 3
-4 -3 -2 -1 0 1 2 3 3 3
-5 -4 -3 -2 -1 0 1 2 2 2
-6 -5 -4 -3 -2 -1 0 1 2 2
-7 -6 -5 -4 -3 -2 -1 0 1 2
-8 -7 -6 -5 -4 -3 -2 -1 0 1
-9 -8 -7 -6 -5 -4 -3 -2 -1 0

(a) K′

0 1 2 2 2 2 3 3 3 3
-1 0 1 2 2 2 3 3 3 3
-2 -1 0 1 1 2 3 3 3 3
-3 -2 -1 0 1 2 3 3 3 3
-4 -3 -2 -1 0 1 2 2 2 2
-5 -4 -3 -2 -1 0 1 2 2 2
-6 -5 -4 -3 -2 -1 0 1 2 2
-7 -6 -5 -4 -3 -2 -1 0 1 1
-8 -7 -6 -5 -4 -3 -2 -1 0 1
-9 -8 -7 -6 -5 -4 -3 -2 -1 0

(b) K

0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

(c) C

0 0 0 0 0 0 0 0 0
0 0 0 1 -1 0 0 0 0
0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0

(d) C!

Figure 2: An example of the matrices K,K′, C and C! for A = bbcac, B = ccabaccaa,
and a prepend of the character a to A. Pivotal points are colored dark gray and
step indices in C are colored light gray.

7

Aaron
K, K′, C and C

Aaron
a to A

Aaron
=K' - K

Aaron
1

Aaron
1

Aaron
1

Aaron
1

Aaron
1

Aaron
1

Aaron
c

Aaron
a

Aaron
c

Aaron
c

Aaron
c

Aaron
c

Aaron
a

Aaron
b

Aaron
a

Aaron
a

Aaron
c

Aaron
c

Aaron
c

Aaron
a

Aaron
a

Aaron
a

Aaron
a

Aaron
b

Aaron
0 1 2 3 4 5 6 7 8 9

• C![i, j] = 1 if and only if (i, j) is a step index in C and (i− 1, j) is not a step
index.

• C![i, j] = −1 if and only if (i, j) is not a step index in C and (i − 1, j) is a
step index.

Proof. Let C̄ be a matrix containing the columns differences of the matrix C, that
is, C̄[i, j] = C[i, j]− C[i, j − 1]. From Corollary 3.3 we have that C̄[i, j] = 1 if and
only if (i, j) is a step index in C (note that if (i, j) is a step index then j > 0). The
lemma follows due to the equality C![i, j] = C̄[i, j]− C̄[i− 1, j].

Lemma 3.2 gives the following corollary.

Corollary 3.5. (i, j) is a step index in C if and only if j is equal to the maximum
column index among all pivotal points in rows i + 1, . . . ,NextMatchB(i, σ) of the
matrix K!.

3.1 1-sided incremental K matrix

We now describe our algorithm that supports 1-sided operations to the string A. We
consider the incremental operation of prepending a character σ to A (an appending
operation to A can be carried out in the same manner). In our proposed solution,
we assume that there is an auxilary data structure that encodes the string B and
allows access operations to any position in B in constant time. We do not take into
account the space occupied by this data structure in the space complexity of the
algorithm. This leads to an O(∆) space data structure that supports prepend (or
append) operations to the string A in O(∆) time.

Recall that the all scores matrix K is encoded via the pivotal points of its density
matrix. These points are stored in a list P , sorted by increasing row indices. Our
algorithm computes the step indices of C, from which the pivotal points of C!,
and hence the pivotal points of K′!, can be obtained (Lemma 3.4). Note that the
number of step indices in C is bounded by ∆. This is due to the fact that each such
step index corresponds to a unique pivotal point of K! (Lemma 3.2).

The step indices are computed as follows (see Figure 3). Denote by i1 + 1 the
minimum row index of a pivotal point of K (the value of i1+1 is obtained by accessing
the first element of P) and let k1 = NextMatchB(i1, σ). Note that by Lemma 3.2,
there is a step index in the i1’th row of C only if there are k1− i1 consecutive pivotal
points in P with row indices i1 + 1 to k1. Therefore we scan simultaneously the list
P and the string B starting from index i = i1 + 1. At each step we check whether
the current examined element in P is a pivotal point in row i, and if it is, we move
to the next element of P and increase i by 1. This scan is stopped when reaching
the index k1 for which B[k1] = σ. If such k1 is found then by Lemma 3.2, every
row from rows i1, . . . , k1 − 1 contains a step index. In order to compute these step
indices, go over i = k1 − 1, k1 − 2, . . . , i1. For each such i, compute the maximum
column index ji among all pivotal points in rows i+1, . . . , k1. ji can be computed in
constant time since ji is equal to the maximum of ji+1 and the column of the pivotal
point of row i+ 1 (this column is obtain from P , which is scanned in reverse order,

8

Aaron
C[i,j]=1

Aaron
stepindex

Aaron
(i−1,j)isnot

Aaron
自己step且上面不是step = 1 - 0 = 1

Aaron
C ̄[i,j]=C[i,j]−C[i,j−1]

Aaron
自己-左邊

Aaron
C ̄[i,j]=1

Aaron
C[i, j] = C ̄[i, j] − C ̄[i − 1, j]

Aaron
自己step且上面不是step

Aaron
(i, j) is a step

Aaron
j is equal to the maximum column index

Aaron
prepending a character σ to A

Aaron
輔助 auxilary

Aaron
O(∆) space data structure

Aaron
A in O(∆) time.

Aaron
K is encoded via the pivotal points of its density matrix.

Aaron
P

Aaron
increasing row

Aaron
step

Aaron
pivotal points of C

Aaron
the pivotal points of K′

Aaron
step indices in C is bounded by ∆

Aaron
step index corresponds to a unique pivotal point of K

Aaron
i1 + 1

Aaron
k1 = NextMatchB(i1,σ)

Aaron
a step index in the i1

Aaron
k1 −i1 consecutive pivotal

Aaron
i1 + 1 to k1

Aaron
P : pivotal

Aaron
i1 + 1

Aaron
B[k1] = σ

Aaron
i1 , . . . , k1 − 1 contains a step index

Aaron
maximum column index ji

Aaron
reverse order

b1

b2

b3

(a) K!

i NextMatchB(i, a)
0 3
1 3
2 3
3 5
4 5
5 8
6 8
7 8
8 9
9 ∞

P = {(1, 3), (2, 5), (3, 4), (5, 7), (6, 8), (8, 9)}

Figure 3: A run of the algorithm on the strings A and B of Figure 2, and a prepend
of the character a to A. Figure (a) shows the pivotal points of K!. The red lines
correspond to the different values of NextMatchB(i, a). b1, b2 and b3 denote blocks
of consecutive pivotal points as defined in Section 3.2. The algorithm begins with
the pivotal point at row i1 + 1 = 1. It then scans for the next match, denoted by
a red line at index k1 = 3, and verifying at each step that there is a pivotal point
in every row. Once reaching index 3, the algorithm backward scans the previously
traversed pivotal points starting with the pivotal point at row 3. At each step the
algorithm computes the maximum column index among all scanned pivotal points.
The first column maxima is j2 = 4, hence (2, 4) is a step index in C. The following
pivotal point is (2, 5), thus the column maxima is j1 = 5, and (1, 5) is identified
as a step index in C. The last scanned pivotal point is (1, 3), thus the column
maxima remains 5 and the step index identified is (0, 5). The next scanned block is
b2 starting with pivotal point (5, 7). The next match point is 5, and thus (4, 7) is a
step index. Pivotal point (6, 8) does not yield a step index since there is no match
point at index 6 and also there is no pivotal point at row 7, hence the search stops
after the first iteration. The last pivotal point is handled similarly.

9

Aaron
a to A

Aaron
pivotal points of K

Aaron
3

Aaron
5

Aaron
8

Aaron
9

Aaron
NextMatchB(i,a)

Aaron
A = bbcac, B = ccabaccaa

Aaron
consecutive pivotal points

Aaron
i1 + 1 = 1

Aaron
k1 = 3

Aaron
2, 4

Aaron
the maximum column index among all scanned pivotal points.

Aaron
P : pivotal

Aaron
1,5

Aaron
0, 5

Aaron
03

Aaron
35

Aaron
58

Aaron
89

Aaron
4, 7

Aaron
黃色是step indices in C

Aaron
there is no match point at index 6 and also there is no pivotal point at row 7

Aaron
blocks of consecutive pivotal points

Aaron
step : (0, 5) (1,5) (2,4) | (4,7) | (7,9)

Aaron
3

Aaron
5

Aaron
8

Aaron
K-> 🄺 -> C(step) -> 🄲

Aaron
0 1 2 3 4 5 6 7 8 9 10

Aaron
2

Aaron
1

Aaron
4

Aaron
6

Aaron
7

Aaron
10

starting from the element holding the pivotal point of row k1). By Corollary 3.5,
(i, ji) is the step index of row i.

The algorithm processes the remaining pivotal points (starting from the topmost
pivotal point below row ki) similarly, until exhausting all ∆ pivotal points.

Complexity analysis To obtain the set of step indices, we traverse the list P of
pivotal points, and examine each pivotal point at most twice (once during a forward
scan on P and once during a backward scan on P). We also scan the string B. The
number of access operation to B is bounded by the number of pivotal points.

Once the set of step indices has been obtained, the computation of C! (using
Lemma 3.4) and the pivotal points of K′ is done in O(∆) time. Hence the total
running time is O(∆) and the space complexity is O(∆).

Appending a character to B Appending character σ to A follows the same
paradigm. Note that now K′[i, j] = max{K[i,PrevMatchB(j, σ)− 1] + 1,K[i, j]}.

The next lemma summarizes the properties required to carry out an append
operation to A.

Lemma 3.6. Let k = PrevMatchB(j, σ). C[i, j] = 1 if and only if there is one pivotal
point in each column from columns k, . . . , j of the matrix K!, and i is less than the
minimum row index among all pivotal points in the submatrix K![1..n, k..j].

Proof. Following the same steps as in Lemma 3.2 we obtain that C[i, j] = 1 if and
only if: ∑

1≤i′≤i
k≤j′≤j

K![i′, j′] = K[0, k − 1]−K[0, j]. (1)

Note that
∑

1≤i′≤i
k≤j′≤j

K![i′, j′] ≥ 0 and K[0, k−1] ≤ K[0, j]. Hence, Equation (1) holds if

and only if, (i) K[0, k−1] = K[0, j], and (ii)
∑

1≤i′≤i
k≤j′≤j

K![i′, j′] = 0. The first item holds

if and only if
∑

1≤i′≤n
k≤j′≤j

K![i′, j′] = j − k + 1, that is, there is a pivotal point in every

column from columns k, . . . , j. The second item holds if and only if i is less than the
minimum row index among all pivotal points in the submatrix K![1..n, k..j].

Due to Lemma 3.6 we need to use a different definition of step indices in this
case. We say that (i, j) is a column step index if C[i, j] '= C[i − 1, j]. Hence, the
main difference to the algorithm is that now we need to store a list P ′ containing
the pivotal points of K! sorted by decreasing columns indices.

We obtain the following theorem.

Theorem 3.7. Given strings A and B of lengths m and n, respectively, over al-
phabet Σ with L = LCS(A,B) and ∆ = n − L. We can construct an O(∆) space
data structure that encodes the LCS score between A and every substring of B and
supports 1-sided incremental operations to A in O(∆) time.

10

Aaron
k1

Aaron
(i, ji) is the step index of row i.

Aaron
耗盡 exhausting

Aaron
step indices

Aaron
forward

Aaron
backward

Aaron
number of pivotal

Aaron
K-> 🄺 -> C(step) -> 🄲

Aaron
C

Aaron
pivotal points of K′

Aaron
O(∆)

Aaron
範例 paradigm

Aaron
K′[i,j]=max{K[i,PrevMatchB(j,σ)−1]+1,K[i,j]}.

Aaron
k=PrevMatchB(j,σ)

Aaron
onepivotal

Aaron
k, . . . , j

Aaron
less

Aaron
a different definition of step indices

Aaron
column step index if C[i, j] ̸= C[i − 1, j]

Aaron
L = LCS(A, B) and ∆ = n − L

3.2 2-sided incremental K matrix

In this section we show how to extend the previously discussed data structure to
support both prepend and append operations to A. This extension requires O(n)
space and O(∆) time per operation.

In order to support incremental operations for both sides of the string A, one
possible solution is to sort the elements of P by their columns indices to obtain a list
P ′ when an append operation is performed. This sorting takes O(∆ log log∆) time
using the sorting algorithm of [12]. To obtain O(∆) worst-case running time we use
the observation that we don’t need the lists P and P ′ to be sorted, and instead we
will use a weaker requirement on the order of the elements.

We say that [j1 : j2] is a column block if there is a pivotal point in column j
for every j ∈ [j1 : j2], and there are no pivotal points in column j1 − 1 and column
j2 + 1. We now store P ′ in the following order. For every column block [j1 : j2],
the pivotal points in columns [j1 : j2] appear consecutively in P ′, and ordered by
decreasing column indices (namely, the pivotal point in column j2 appears first, then
the pivotal point in column j2−1 an so on). This corresponds to the sorting required
for the appending operation to A as described in Section 3.1. Note that we do not
require a specific order between pivotal points of different blocks. We define row
block analogously and we store P ordered according to the row blocks. It is easy to
verify that the algorithm described in Section 3.1 remains correct when P and P ′

are stored in block order.
We now describe how to construct the list P ′ from P . The process requires

an auxiliary array BA of size n, in which each cell is initialized with 0. Let
(i1, j1), . . . , (i∆, j∆) be the pivotal points. We traverse the set of pivotal points
as stored in P and set BA[jt] ← it for every 1 ≤ t ≤ ∆. Note that after the step
above, every column block corresponds to a maximal sub-array of BA with non-
zero elements. We next traverse again the set of pivotal points in order to extract
the column blocks. For each pivotal point (it, jt) we examine the value BA[jt]. If
BA[jt] '= 0, we scan the array BA starting at index jt to find the minimum index
j′ > jt such that BA[j′] = 0. Then, for j = j′ − 1, j′ − 2, . . . we add the pivotal
point (BA[j], j) to the end of P ′, and set BA[j] to 0. This loop is stopped when
BA[j] = 0. We then move to the next pivotal point (it+1, jt+1). The running time
of this algorithm is O(∆).

We obtain the following theorem.

Theorem 3.8. Given strings A and B of lengths m and n, respectively, over al-
phabet Σ with L = LCS(A,B) and ∆ = n − L. We can construct an O(n) space
data structure that encodes the LCS score between A and every substring of B and
supports 2-sided incremental operations to both ends of A in O(∆) time.

We note that our approach cannot support prepend or append operations on
B. The reason is that such operations increase the size of the matrix K. The new
column in K! may contain a new pivotal point. However, the matrix K! does not
have the information required for computing this new pivotal point.

11

Aaron
prepend and append operations to A

Aaron
both sides of the string A

Aaron
sort the elements of P

Aaron
O(∆ log log ∆) time

Aaron
[j1 : j2] is a column block

Aaron
consecutively in P′

Aaron
decreasing column

Aaron
j2 appears first

Aaron
row block

Aaron
P′ from P

Aaron
BA

Aaron
0

Aaron
穿越 traverse

Aaron
every column block corresponds to a maximal sub-array

Aaron
extract the column blocks

Aaron
minimum index

Aaron
BA[j′] = 0

Aaron
next pivotal point (it+1,jt+1)

Aaron
O(∆)

Aaron
L = LCS(A, B) and ∆ = n − L

Aaron
O(∆) time

Aaron
O(n) space

Aaron
We note that our approach cannot support prepend or append operations on B

Aaron
increase the size of the matrix K

4 Incremental J matrix

Our method introduced above can be modified to maintain the matrix J and sup-
ports prepend operations to A and append operations to B. Note that the size of
the matrix J is n ×m, thus it increases when such operations are performed. We
start by considering an incremental operation that prepends a character σ to A,
that is A′ = σA. We assume that J is over the index set [0 : n]× [0 : m] and J ′ is
over the index set [0 : n]× [−1 : m]. We define C[i, j] = J ′[i, j]− J [i, j] for j ≥ 0,
and C[i, j] = 0 otherwise.

In this case we have that J ′[i, j] = max{J [i, j],J [NextMatchB(i, σ), j] + 1} for
j ≥ 0. The following lemma is the analogous of Lemma 3.2.

Lemma 4.1. For j ≥ 0, C[i, j] = 1 if and only if NextMatchB(i, σ) <∞ and there
are no pivotal points in the submatrix J ![i+ 1..NextMatchB(i, σ), 1..j].

Proof. Let NextMatchB(i, σ) = k. Similarly to Lemma 3.2, C[i, j] = 1 if and only if∑
i+1≤i′≤k
1≤j′≤j

J ![i′, j′] = J [i, 0]− J [k, 0]. The lemma follows due to the definition of J ,

since J [i, 0] = J [k, 0] = 0.

This leads to the following corollary (analogous to Corollary 3.3).

Corollary 4.2. If C[i, j] = 1 then C[i, j′] = 1 for every 0 ≤ j′ ≤ j.

Following Corollary 4.2 we say that (i, j) is a step index if j ≥ 1 and C[i, j] '=
C[i, j − 1] (see Figure 4). We then obtain the following corollary (analogous to
Corollary 3.5).

Corollary 4.3. (i, j) is a step index in C if and only if NextMatchB(i, σ) < ∞
and j is equal to the minimum column index among all pivotal points in rows
i+ 1, . . . ,NextMatchB(i, σ) of the matrix J !.

Lemma 4.1 introduces several challenges compared to Section 3. First, the num-
ber of step indices is not bounded by the number of pivotal points (see for example
Figure 4). Consequently, the number of step indices may be Ω(n). Thus, to obtain
O(L) running time, we show in Lemma 4.6 how to compute C! directly, without
computing the entire set of step indices explicitly. Furthermore, the property of
consecutive pivotal points, which was exploited in Section 3 to bound the time com-
plexity of scanning for the next character matching to σ, no longer holds. Thus, we
need to use a data structure that supports NextMatchB(i, σ) or PrevMatchB(j, σ)
queries in constant time.

Following Lemma 4.1 we have that C[i, 0] = 1 for every 0 ≤ i ≤ n such that
NextMatchB(i, σ) < ∞. Hence, if C[i, 0] = 1 then C[i′, 0] = 1 for every 0 ≤ i′ ≤ i.
We get that the maximal row index i for which C[i, 0] = 1 yields a pivotal point in
cell C![i + 1, 0] of value -1 (see for example C![7, 0] in Figure 4 (d)). This yields
the following corollary.

Corollary 4.4. C![i, 0] = −1 for the minimum index i for which NextMatchB(i, σ) =
∞, and this is the only pivotal point in the 0’th column of C!.

12

Aaron
左邊對下面，A前綴對B後綴

Aaron
prepend operations to A and append operations to B

Aaron
n × m

Aaron
σA

Aaron
[0:n]×[0:m]

Aaron
[0:n]×[−1:m]

Aaron
J會隨著A前加或B後加增長

Aaron
C[i,j]=J′[i,j]−J[i,j]

Aaron
J ′[i, j] = max{J [i, j], J [NextMatchB(i, σ), j] + 1}

Aaron
C[i,j] = 1

Aaron
no pivotal points

Aaron
存在

Aaron
J[i+1..NextMatchB(i,σ),1..j]

Aaron
i+1≤i′ ≤k

Aaron
If C[i,j] = 1 then C[i,j′] = 1

Aaron
自己為1，則左邊也為1

Aaron
step index

Aaron
在J中的step為，自己和上面不一樣

Aaron
存在

Aaron
step

Aaron
minimum column index

Aaron
這裡是最小值喔喔

Aaron
i+1,...,NextMatchB(i,σ)

Aaron
step indices is not bounded by the number of pivotal points

Aaron
O(L)

Aaron
Lemma 4.6 how to compute C directly

Aaron
data structure that supports NextMatchB(i,σ) or PrevMatchB(j,σ) queries in constant time.

Aaron
自己

Aaron
上面

Aaron
maximal row index i for which C[i, 0] = 1 yields a pivotal point in cell C[i + 1, 0] of value -1

Aaron
C[i, 0] = −1

Aaron
minimum

Aaron
不存在

Aaron
only pivotal point in the 0’th

From the definition of step indices we obtain the following lemma.

Lemma 4.5. For every cell (i, j) with j > 0 in C!,

• C![i, j] = −1 if and only if (i, j) is a step index in C and (i − 1, j) is not a
step index.

• C![i, j] = 1 if and only if (i, j) is not a step index in C and (i− 1, j) is a step
index.

We would like to identify cases (i) and (ii) described above, to be able to compute
the pivotal points of C! directly.

Lemma 4.6. Let jmin be the minimum column index among the pivotal points in
rows i+ 1, . . . ,NextMatchB(i, σ). If there are no such pivotal points, jmin =∞. In
what follows we consider only cells of C! with column indices greater than 0.

• If B[i] '= σ then row i of C! contains non zero elements if and only if
NextMatchB(i, σ) <∞ and there is a pivotal point (i, j) in J ! with j < jmin.
If these conditions hold, C![i, j] = 1. Additionally, if jmin < ∞, C![i, jmin] =
−1. All other cells at row i of C! contain zeros.

• If B[i] = σ then C![i, jmin] = −1 if NextMatchB(i, σ) < ∞ and jmin < ∞.
Additionally, if there is a pivotal point (i, j) in J ! then C![i, j] = 1. All other
cells at row i of C! contain zeros.

Proof. Row i of C! contains non zero element if and only if there is a cell in this
row for which the first or the second case of Lemma 4.5 holds.

For the first part of the lemma, since B[i] '= σ, we get NextMatchB(i − 1, σ) =
NextMatchB(i, σ). If NextMatchB(i, σ) = ∞ then also NextMatchB(i − 1, σ) = ∞
and by Corollary 4.3 rows i − 1 and i do not have step indices. Therefore, by
Lemma 4.5 row i does not contain non zero elements. Assume now that NextMatchB(i, σ) <
∞. If there is no pivotal point (i, j) with j < jmin then by Corollary 4.3, both rows
i− 1 and i have step indices at column jmin if jmin <∞, and these rows do not have
step indices if jmin =∞. Hence, neither case of Lemma 4.5 can occur, so row i does
not contain non zero elements.

Suppose now that there is a pivotal point (i, j) with j < jmin. By Corollary 4.3,
(i, j) is not a step index in C and (i−1, j) is a step index. By Lemma 4.5, C![i, j] = 1.
Moreover, if jmin <∞ then (i, jmin) is a step index in C and (i−1, jmin) is not a step
index, so C![i, jmin] = −1. Finally, if jmin = ∞ then row i of C does not contain a
step index and the first case of Lemma 4.5 cannot occur.

For the second part of the lemma, since B[i] = σ, we get NextMatchB(i−1, σ) =
i. Suppose that NextMatchB(i, σ) < ∞ and jmin < ∞. By Corollary 4.3, (i, jmin)
is a step index in C and (i − 1, jmin) is not a step index (since the rows range
(i− 1) + 1, . . . ,NextMatchB(i− 1, σ) consists of only row i, and row i cannot have
a pivotal point in column jmin). By Lemma 4.5, C![i, jmin] = −1. Additionally, if
there is a pivotal point (i, j) in J ! then (i, j) is not a step index in C and (i− 1, j)
is a a step index. Therefore, C![i, j] = 1.

13

Aaron
C[i,j] = −1

Aaron
step

Aaron
not

Aaron
C=-1 <-> 自己是step且上面不是step

Aaron
jmin

Aaron
i + 1, . . . , NextMatchB (i, σ)

Aaron
greater than 0

Aaron
B[i] ̸= σ

Aaron
B[i] = σ

Aaron
non zero

Aaron
pivotal point (i,j) in J

Aaron
C[i, j] = 1

Aaron
C[i, jmin] = −1

Aaron
C[i,jmin] = −1

Aaron
C[i, j] = 1

Aaron
zeros

Aaron
zeros

Aaron
non zero

Aaron
NextMatchB (i − 1, σ) = NextMatchB (i, σ)

Aaron
不存在

Aaron
存在

Aaron
不存在

Aaron
no pivotal point (i, j)

Aaron
have step

Aaron
存在

Aaron
不存在

Aaron
pivotal point (i, j)

Aaron
(i,j)isnotastep

Aaron
(i−1,j)isastep

Aaron
C[i,j]=1

Aaron
(i,jmin) is a step

Aaron
(i−1,jmin) is not a step

Aaron
C[i, jmin] = −1

Aaron
jmin = ∞ then row i of C does not contain a step index

Aaron
NextMatchB(i−1,σ) = i

Aaron
1

Aaron
2

Aaron
存在

Aaron
存在

Aaron
(i,jmin) is a step

Aaron
(i − 1, jmin) is not a step

Aaron
i cannot have a pivotal point in column jmin

Aaron
C[i,jmin] = −1

Aaron
(i,j) is not a step

Aaron
(i−1,j) is a a step

0 1 2 3 3 3 4 5 5
0 1 2 3 3 3 4 5 5
0 1 2 3 3 3 3 4 4
0 1 2 3 3 3 3 4 4
0 1 1 2 2 2 2 3 3
0 1 1 1 1 1 1 2 2
0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0

(a) J ′

0 1 2 2 2 3 4 4
0 1 2 2 2 3 4 4
0 1 2 2 2 3 4 4
0 1 2 2 2 2 3 3
0 1 2 2 2 2 3 3
0 1 1 1 1 1 2 2
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

(b) J

0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0

(c) C

0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 0
0 0 0 0 0 1 0 0
0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 -1 0
-1 0 0 0 0 0 1 0

(d) C!

Figure 4: An example of the matrices J ′,J , C and C! for A = bbcbbaa, B =
aacabba, and a predend of the character a to A. Pivotal points are colored dark
gray and step indices in C are colored light gray.

14

Aaron
A = bbcbbaa, B = aacabba

Aaron
a to A

Aaron
b b c b b a a

Aaron
a

Aaron
a

Aaron
a

Aaron
a

Aaron
b

Aaron
b

Aaron
b

Aaron
0 1 2 3 4 5 6 7 8

Aaron
1 2 3 4 5 6 7 8

Aaron
0 1 2 3 4 5 6 7 8

Aaron
1

Aaron
0

Aaron
1

Aaron
1

Aaron
1

Aaron
0

Aaron
-1

Aaron
-

Aaron
0

Aaron
1

Aaron
2

Aaron
3

Aaron
4

Aaron
5

Aaron
6

Aaron
7

Aaron
1

4.1 1-sided incremental J matrix

In this section we encode the matrix J such that prepend operations to the string A
are supported. We encode the matrix J by the L pivotal points of its density matrix.
These points are stored in a list P sorted by increasing row indices. Note that the
string B remains constant, hence we can preprocess B in O(n) time and compute
two static look-up tables that contain all possible values of NextMatchB(i, σ) and
PrevMatchB(i, σ). We then use Lemma 4.6 to compute C! efficiently in O(L) time,
see Figure 4.1 for a running example.

We begin iterating over P . Let (i1 + 1, j1) denote the first element of P . We
compute k−

1 = PrevMatchB(i1, σ), and k+
1 = NextMatchB(i1, σ). k

−
1 and k+

1 are the
starting and ending indices of a block of pivotal points (in contrast to Section 3.2,
here the pivotal points of a block do not necessarily have consecutive row indices).
We scan the list P until reaching a pivotal point (i2 + 1, j2) for which i2 + 1 > k+

1

(forward scan). We then scan backward the block starting from the pivotal point
preceding (i2 + 1, j2), and at each step we compute the minimum column index in
the block so far and apply Lemma 4.6 to obtain the pivotal points of C!.

The algorithm processes the remaining pivotal points (starting from the pivotal
point (i2 + 1, j2)) similarly, until exhausting all L pivotal points. At the end we
compute PrevMatchB(n, σ) to obtain the pivotal point at column 0 by Corollary 4.4.

Complexity analysis The preprocessing step takes O(n) time and space. At
each step of the algorithm we examine each pivotal point at most twice, hence we
obtain O(L) time and O(n) space.

The following theorem concludes the data structure described in this section.
We note that the append operation to B can be carried out similarly.

Theorem 4.7. Given strings A and B of lengths m and n, respectively, over alpha-
bet Σ with L = LCS(A,B). We can construct an O(n) (resp. O(m)) space data
structure that encodes the LCS score between every suffix of B and every prefix of
A and supports 1-sided prepend operations to A (resp. append operations to B) in
O(L) time.

4.2 2-sided incremental J matrix

For the 2-sided case we note that both A and B are subjected to modifications.
Thus, the look-up tables must be updated dynamically. We suggest the following
data structure that supports PrevMatchB and NextMatchB queries in constant time,
and append operations to B in constant time.

We start with a data structure for PrevMatchB(i, σ). Note that the values of
PrevMatchB(i, σ) remain constant when append operations to B are applied. Thus,
we store a dynamic array PrevTableB in which PrevTableB[i, σ] = PrevMatchB(i, σ)
for all i and σ (a dynamic array is a data structure that stores an array and allows
appending a constant number of cells to the end of the array in constant worst-
case time). Assuming that B is of length n and a character τ is appended to B,
we only need to update the cell PrevTableB[n + 1, σ] for every σ ∈ Σ. Clearly,
PrevTableB[n+ 1, σ] = PrevTableB[n, σ] if σ '= τ and PrevTableB[n+ 1, τ] = n+ 1.

15

Aaron
J such that prepend operations to the string A

Aaron
J by the L pivotal points of its density matrix.

Aaron
O(n)

Aaron
compute C efficiently in O(L) time,

Aaron
k1− = PrevMatchB(i1,σ)

Aaron
k1+ = NextMatchB(i1,σ)

Aaron
first element

Aaron
P : pivotal

Aaron
starting and ending

Aaron
pivotal points of a block do not necessarily have consecutive row

Aaron
這裡塊的關鍵點不一定具有連續的行索引

Aaron
i2 + 1, j2

Aaron
i1 + 1, j1

Aaron
pivotal points of C

Aaron
pivotal point at column 0

Aaron
obtain the pivotal point at column 0

Aaron
O(L) time and O(n) space

Aaron
both A and B

Aaron
PrevMatchB and NextMatchB

Aaron
dynamic array PrevTableB

Aaron
τ is appended to B

Aaron
PrevTableB[n + 1,σ]

Aaron
PrevTableB[n+1,σ] = PrevTableB[n,σ] if σ ̸= τ and PrevTableB[n+1,τ] = n+1.

(a) J!

i PrevMatchB(i, a) NextMatchB(i, a)
0 −∞ 1
1 1 2
2 2 4
3 2 4
4 4 7
5 4 7
6 4 7
7 7 ∞

P = {(3, 5), (5, 2), (6, 1), (7, 6)}

Figure 5: A run of the algorithm on the strings A and B of Figure 4, and a
prepend of the character a to A. The algorithm begins with i1 + 1 = 3, where
k−
1 = PrevMatchB(i1, σ) = 2, and k+

1 = NextMatchB(i1, σ) = 4. The only piv-
otal point in rows 2, 3, 4 is (3, 5), hence C![3, 5] = 1 by part 1 of Lemma 4.6 and
C![2, 5] = −1 by part 2 of Lemma 4.6. The following scanned pivotal point is (5, 2)
for which k−

2 = 4 and k+
2 = 7. The backward scan begins with the pivotal point

(7, 6) and jmin = ∞. By Lemma 4.6 set C![7, 6] = 1. The value of jmin is 6 when
scanning the pivotal point (6, 1), thus we set C![6, 1] = 1 and C![6, 6] = −1. When
scanning the pivotal point (5, 2) the value of jmin is 1, thus row 5 does not contain
non zero elements. The block scan is complete after setting C![4, 1] = −1. Lastly,
we set C![7, 0] = 1 by Corollary 4.4.

For the data structure that supports NextMatchB(i, σ) queries, it is no longer
the case that the values remain constant. To handle this, we use a dynamic ar-
ray NextTableB that is defined as follows: NextTableB[i, σ] = NextMatchB(i, σ) if
i = 0 or B[i] = σ. Otherwise, NextTableB[i, σ] contains an arbitrary value. We can
now compute NextMatchB(i, σ) using the following equality: NextMatchB(i, σ) =
NextTableB[i′, σ] where i′ = max(0,PrevMatchB(i, σ)). Assuming that B is of
length n and a character τ is appended to B, we update NextTableB by setting
NextTableB[i, τ] = n+ 1 where i = PrevMatchB(n, τ).

Now, using the dynamic data structures, the technique remains the same as de-
scribed in Section 4.1. Note that when an append operation is preformed, the set of
pivotal points needs to be sorted by the column indices. This requires O(L log logL)
time for sorting the set of L pivotal points using the sorting algorithm of [12]. This
leads to the following theorem.

Theorem 4.8. Given strings A and B of lengths m and n, respectively, over alpha-
bet Σ with L = LCS(A,B). We can construct an O(m + n) space data structure
that encodes the LCS score between every suffix of B and every prefix of A and
supports prepend operations to A and append operations to B in O(L log logL)
time.

16

Aaron
a to A

Aaron
A = bbcbbaa, B = aacabba

Aaron
i1 + 1 = 3

Aaron
2

Aaron
4

Aaron
224

Aaron
3,5

Aaron
0 1 2 3 4 5 6 7 8 9

Aaron
1

Aaron
2

Aaron
3

Aaron
5

Aaron
6

Aaron
4

Aaron
7

Aaron
C[3,5] = 1

Aaron
C[2, 5] = −1

Aaron
(5, 2)

Aaron
4

Aaron
7

Aaron
447

Aaron
(7,6) and jmin = ∞

Aaron
C[6, 1] = 1 and C[6, 6] = −1

Aaron
jmin is 1, thus row 5 does not contain non zero elements

Aaron
C[4, 1] = −1

Aaron
C[7, 0] = 1

Aaron
NextTableB[i,σ] = NextMatchB(i,σ) if i = 0 or B[i] = σ

Aaron
O(L log log L) time for sorting the set of L pivotal

5 Incremental K and J matrices

In this section we show how to maintain the matrices K and J and support append
operations to either A or B.

Recall that J is over the index set [0 : n] × [0 : m] and K is over the index set
[0 : n] × [0 : n]. We store a list PK for the matrix K as defined in Section 3, and a
list PJ for the matrix J as defined in Section 4. Both lists are sorted by decreasing
column indices.

First consider an append operation to B. This operation adds a new row to the
matrix J , and a new row and column to K. Denote the modified matrices by J ′

and K′. The modifications to the matrix J are carried as described in Section 4.1.
The matrix K′, on the other hand, does not vary much from the matrix K, since the
submatrix K′[0..n, 0..n] is not affected by the newly added symbol. However, note
that a new pivotal point may be added to the matrix K′! at the newly appended
column. In the following lemma we show how to compute this pivotal point.

Lemma 5.1. If (i,m) is a step index in C = J ′−J then (i, n+1) is a pivotal point
in K′!. Otherwise, if PrevMatchA(m, σ) = −∞ (i.e. there is no new match-point)
then (n+ 1, n+ 1) is a pivotal point in K′!.

Proof. Note that the (n + 1)’th column of K′ is precisely the m’th column of the
matrix J ′, and the n’th column of K is precisely the m’th column of J . Hence if
(i,m) is a step index in C = J ′−J then K′![i, n+1] = (J ′[i,m]−J [i,m])−(J ′[i−
1, m]−J [i− 1, m]) = C[i,m]−C[i− 1, m] = 1. Otherwise, if PrevMatchA(m, σ) =
−∞, then K′[n, n + 1] = 0 and by definition we get K′![n + 1, n+ 1] = 1.

The step index on the m’th column of J can be computed using Corollary 4.3
in O(L) time. Hence the modifications to both K and J can be carried out in O(L)
time.

An append operation to A can be carried out analogously. In this case the matrix
K is modified, and the list PK′ can be obtained as described in Section 3.1. A new
column is also appended to J . In this case we have the following lemma.

Lemma 5.2. If (i, n) is a step index in C = K′−K then (i,m+1) is a pivotal point
in J ′!.

By applying Lemma 5.2 for the matrix J ′! and using the approach described in
Section 3.1 for the matrix K′!, we can compute the lists PJ ′ and PK′ in O(∆) time.

We derive the following theorem.

Theorem 5.3. Given strings A and B of lengths m and n, respectively, over alpha-
bet Σ with L = LCS(A,B) and ∆ = n− L. We can construct an O(m+ n) space
data structure that encodes the LCS score between A and every substring of B,
and between every suffix of B and every prefix of A. This data-structure supports
append operations to A or B in O(∆) and O(L) time, respectively.

17

Aaron
append operations to either A or B

Aaron
an append operation to B

Aaron
K′[0..n,0..n] is not affected by the newly added symbol

Aaron
(i,m)isastep

Aaron
(i,n+1)isapivotalpoint in K′

Aaron
PrevMatchA(m,σ) = −∞

Aaron
(n+1,n+1) is a pivotal point in K′.

Aaron
(i,n) is a step

Aaron
(i,m+1) is a pivotal point in J′.

Aaron
append operations to A or B

References

[1] C. E. R. Alves, E. N. Cáceres, and S. W. Song. An all-substrings common
subsequence algorithm. Discrete Applied Mathematics, 156(7):1025–1035, 2008.

[2] A. Apostolico, M. J. Atallah, L. L. Larmore, and S. McFaddin. Efficient parallel
algorithms for string editing and related problems. SIAM J. on Computing,
19(5):968–988, 1990.

[3] A. Apostolico and C. Guerra. The longest common subsequence problem re-
visited. Algorithmica, 2(1-4):315–336, 1987.

[4] K. Bringman and M. Künnemann. Multivariate fine-grained complexity of
longest common subsequence. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1216–1235. SIAM, 2018.

[5] S. Cabello. Many distances in planar graphs. In Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, pages 1213–1220. Society
for Industrial and Applied Mathematics, 2006.

[6] S. Cabello, E. W. Chambers, and J. Erickson. Multiple-source shortest paths
in embedded graphs. SIAM Journal on Computing, 42(4):1542–1571, 2013.

[7] A. Carmel, D. Tsur, and M. Ziv-Ukelson. On almost monge all scores matrices.
Algorithmica, 2018.

[8] M. Christodoulakis, C. S. Iliopoulos, K. Park, and J. S. Sim. Implementing
approximate regularities. Mathematical and computer modelling, 42(7-8):855–
866, 2005.

[9] V. Cohen-Addad, S. Dahlgaard, and C. Wulff-Nilsen. Fast and compact exact
distance oracle for planar graphs. arXiv preprint arXiv:1702.03259, 2017.

[10] D. Eisenstat and P. N. Klein. Linear-time algorithms for max flow and multiple-
source shortest paths in unit-weight planar graphs. In Proceedings of the forty-
fifth annual ACM symposium on Theory of computing, pages 735–744. ACM,
2013.

[11] P. Gawrychowski, S. Mozes, O. Weimann, and C. Wulff-Nilsen. Better tradeoffs
for exact distance oracles in planar graphs. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 515–529. SIAM,
2018.

[12] Y. Han. Deterministic sorting in O(n log log n) time and linear space. Journal
of Algorithms, 1(50):96–105, 2004.

[13] D. S. Hirschberg. Algorithms for the longest common subsequence problem.
Journal of the ACM (JACM), 24(4):664–675, 1977.

18

Aaron
An all-substrings common subsequence algorithm

Aaron
S-table

Aaron
Efficient parallel algorithms for string editing and related problems

Aaron
On almost monge all scores matrices

[14] P.-H. Hsu, K.-Y. Chen, and K.-M. Chao. Finding all approximate gapped
palindromes. International Journal of Foundations of Computer Science,
21(06):925–939, 2010.

[15] H. Hyyrö. An efficient linear space algorithm for consecutive suffix alignment
under edit distance (short preliminary paper). In International Symposium on
String Processing and Information Retrieval, pages 155–163. Springer, 2008.

[16] H. Hyyrö and S. Inenaga. Compacting a dynamic edit distance table by rle
compression. In International Conference on Current Trends in Theory and
Practice of Informatics, pages 302–313. Springer, 2016.

[17] H. Hyyrö, K. Narisawa, and S. Inenaga. Dynamic edit distance table under a
general weighted cost function. Journal of Discrete Algorithms, 34:2–17, 2015.

[18] Y. Ishida, S. Inenaga, A. Shinohara, and M. Takeda. Fully incremental lcs
computation. In International Symposium on Fundamentals of Computation
Theory, pages 563–574. Springer, 2005.

[19] C. Kent, G. M. Landau, and M. Ziv-Ukelson. On the complexity of sparse exon
assembly. Journal of Computational Biology, 13(5):1013–1027, 2006.

[20] S.-R. Kim and K. Park. A dynamic edit distance table. In Annual Symposium
on Combinatorial Pattern Matching, pages 60–68. Springer, 2000.

[21] S. Lai, F. Yang, and T. Chen. Online pattern matching and prediction of
incoming alarm floods. Journal of Process Control, 56:69–78, 2017.

[22] G. M. Landau, E. Myers, and M. Ziv-Ukelson. Two algorithms for lcs consec-
utive suffix alignment. Journal of Computer and System Sciences, 73(7):1095–
1117, 2007.

[23] G. M. Landau, E. W. Myers, and J. P. Schmidt. Incremental string comparison.
SIAM Journal on Computing, 27(2):557–582, 1998.

[24] G. M. Landau, B. Schieber, and M. Ziv-Ukelson. Sparse LCS common substring
alignment. Information Processing Letters, 88(6):259–270, 2003.

[25] G. M. Landau, J. P. Schmidt, and D. Sokol. An algorithm for approximate
tandem repeats. J. of Computational Biology, 8(1):1–18, 2001.

[26] G. M. Landau and M. Ziv-Ukelson. On the common substring alignment prob-
lem. J. of Algorithms, 41(2):338–359, 2001.

[27] U. Matarazzo, D. Tsur, and M. Ziv-Ukelson. Efficient all path score computa-
tions on grid graphs. Theoretical Computer Science, 525:138–149, 2014.

[28] S. Mozes and C. Sommer. Exact distance oracles for planar graphs. In Proceed-
ings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pages 209–222. Society for Industrial and Applied Mathematics, 2012.

19

Aaron
Fully incremental lcs computation

Aaron
Incremental string comparison

Aaron
Dynamic edit distance table under a general weighted cost function

Aaron
Efficient all path score computa- tions on grid graphs

[29] E. W. Myers. Ano (nd) difference algorithm and its variations. Algorithmica,
1(1-4):251–266, 1986.

[30] Y. Sakai. An almost quadratic time algorithm for sparse spliced alignment.
Theory of Computing Systems, 48(1):189–210, 2011.

[31] Y. Sakai. A substring-substring lcs data structure. Theoretical Computer Sci-
ence, 2018.

[32] J. P. Schmidt. All highest scoring paths in weighted grid graphs and their
application to finding all approximate repeats in strings. SIAM J. of Computing,
27(4):972–992, 1998.

[33] D. Sokol and J. Tojeira. Speeding up the detection of tandem repeats over the
edit distance. Theoretical Computer Science, 525:103–110, 2014.

[34] A. Tiskin. Semi-local string comparison: algorithmic techniques and applica-
tions. arXiv:0707.3619v16.

[35] A. Tiskin. Semi-local longest common subsequences in subquadratic time. Jour-
nal of Discrete Algorithms, 6(4):570–581, 2008.

[36] A. Tiskin. Semi-local string comparison: Algorithmic techniques and applica-
tions. Mathematics in Computer Science, 1(4):571–603, 2008.

[37] S. Wu, U. Manber, G. Myers, and W. Miller. An o (np) sequence comparison
algorithm. Information Processing Letters, 35(6):317–323, 1990.

[38] H. Zhang, Q. Guo, and C. S. Iliopoulos. Generalized approximate regularities in
strings. International Journal of Computer Mathematics, 85(2):155–168, 2008.

20

Aaron
Semi-local longest common subsequences in subquadratic time

Aaron
A substring-substring lcs data structure

Aaron
Semi-local string comparison: Algorithmic techniques and applica- tions

	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 Incremental K matrix
	3.1 1-sided incremental K matrix
	3.2 2-sided incremental K matrix

	4 Incremental J matrix
	4.1 1-sided incremental J matrix
	4.2 2-sided incremental J matrix

	5 Incremental K and J matrices

