
ity,

given a
en
ce
e

s

0-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Journal of Discrete Algorithms 2 (2004) 303–312

www.elsevier.com/locate/jda

A dynamic edit distance table

Sung-Ryul Kima,∗,1, Kunsoo Parkb,2

a Division of Internet & Media and Multidisciplinary Aerospace System Design Team, Konkuk Univers
Seoul 143-701, South Korea

b School of Computer Science and Engineering, Seoul National University, Seoul 151-742, South Korea

Abstract

In this paper we consider the incremental/decremental version of the edit distance problem:
solution to the edit distance between two stringsA andB, find a solution to the edit distance betwe
A andB ′ whereB ′ = aB (incremental) orbB ′ = B (decremental). As a solution for the edit distan
betweenA andB, we define the difference representation of theD-table, which leads to a simpl
and intuitive algorithm for the incremental/decremental edit distance problem.
 2003 Elsevier B.V. All rights reserved.

Keywords:String matching; Edit distance; Incremental/decremental edit distance

1. Introduction

Given two stringsA[1..m] andB[1..n] over an alphabetΣ , theedit distancebetweenA
andB is the minimum number ofedit operationsneeded to convertA to B. The edit dis-
tance problem is to find the edit distance betweenA andB. Most common edit operation
are the following:

1. change: replace one character ofA by another single character ofB;
2. deletion: delete one character fromA;
3. insertion: insert one character intoB.

* Corresponding author.
E-mail addresses:kimsr@konkuk.ac.kr (S.-R. Kim), kpark@theory.snu.ac.kr (K. Park).

1 Supported by Korea Reasearch Foundation Grant KRF-2002-003-D00304.
2 Work supported by Brain Korea 21 Project, the IMT2000 Project AB02, and the MOST grant M6-0203-0

0039.

1570-8667/$ – see front matter 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S1570-8667(03)00082-0

https://core.ac.uk/display/82329548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jda

304 S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303–312

ies

rsion

g
n be
em, we

for

ely
e

le
to

n-
Fig. 1. An exampleCh-table.

A well-known method for solving the edit distance problem in O(mn) time uses the
D-table[1,11]. LetD(i, j), 0� i � m and 0� j � n, be the edit distance betweenA[1..i]
andB[1..j]. Initially, D(i,0) = i for 0 � i � m andD(0, j) = j for 0 � j � n. An en-
try D(i, j), 1 � i � m and 1� j � n, of theD-table is determined by the three entr
D(i − 1, j − 1), D(i − 1, j), andD(i, j − 1). The recurrence for theD-table is as follows:
for all 1 � i � m and 1� j � n,

(1)D(i, j) = min
{
D(i − 1, j − 1) + δij ,D(i − 1, j) + 1,D(i, j − 1) + 1

}

whereδij = 0 if A[i] = B[j]; δij = 1, otherwise.
In this paper we consider the following incremental (respectively decremental) ve

of the edit distance problem: given a solution for the edit distance betweenA and B,
compute a solution for the edit distance betweenA andaB (respectivelyB ′ whereB =
bB ′), wherea (respectivelyb) is a symbol inΣ . By a solutionwe mean some encodin
of theD-table computed betweenA andB. Since essentially the same techniques ca
used to solve both incremental and decremental versions of the edit distance probl
will consider only the decremental version.

Consider the symmetric problems whereB is changed at the end: given a solution
the edit distance betweenA andB, compute a solution for the edit distance betweenA

and Ba (respectivelyB ′ whereB = B ′b). Given theD-table betweenA and B, these
problems are easily solved in O(m) time by computing just one more column (respectiv
removing one column) at the end of theD-table. However, it is impossible to solve th
problems considered in this paper in less than�(mn) timewhen we are given theD-table
as the solutionbecause theD-table betweenA andB and theD-table betweenA and
aB (respectivelyB ′ whereB = B ′b) can be different in�(mn) places. (See the examp
in Fig. 1.) For an algorithm for incremental/decremental version to be useful, it needs
compute the new solution in time much less than�(mn), since�(mn) is the time required
to compute the new solution from scratch.

As a solution for the edit distance betweenA andB, we define the difference represe
tation of theD-table (DR-table for short). Each entryDR(i, j) in theDR-table betweenA
andB has two fields defined as follows: for 1� i � m and 1� j � n,

1. DR(i, j).U = D(i, j) − D(i − 1, j),
2. DR(i, j).L = D(i, j) − D(i, j − 1).

S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303–312 305

A third field DR(i, j).UL, which is defined to beD(i, j) − D(i − 1, j − 1), will be used

e

e

idered
as
,

tal
andau

ctually

tions,
, the

appli-
ether
ce

se

ties of
mental

ls

te
later, but it need not be stored inDR(i, j) because it can be computed asDR(i, j).U +
DR(i − 1, j).L. Because the possible values that each ofDR(i, j).U andDR(i, j).L can
have are−1,0, and 1 [9], we need only four bits to store an entry in theDR-table. It is easy
to see that theD-table can be converted to theDR-table in O(mn) time, and vice versa. W
can also compute one row (respectively column) of theD-table from theDR-table in O(n)

(respectively O(m)) time. For example, if we want to compute rowi, we can set the valu
of D(i,0) from the definition and then sequentially compute each entryD(i, j), 1� j � n,
asD(i, j − 1) + DR(i, j).L.

The incremental/decremental version of the edit distance problem was first cons
by Landau et al. [3]. They used theC-table [2,4,5,8,10] (represented with linked lists)
a solution for the edit distance betweenA andB. Given a thresholdk on the edit distance
their algorithm runs in O(k) time. (If the thresholdk is not given, it runs in O(m+n) time.)
Also, Schmidt [6] gave an algorithm based on weighted grid graphs that works in O(m+n)

time for the same problem. However, the results in [3,6] are quite complicated.
In this paper we present an O(m + n)-time algorithm for the incremental/decremen

edit distance problem. Our result is much simpler and more intuitive than those of L
et al. [3] and Schmidt [6]. A key tool in our algorithm is thechange tablebetween the
two D-tables before and after an increment/decrement. The change table is not a
constructed in our algorithm, but it is central in understanding our algorithm.

The incremental/decremental edit distance problem finds a variety of applica
which include the longest prefix match problem, the approximate overlap problem
cyclic string comparison problem, and the text screen update problem [3,6]. Another
cation can be found in computing an approximate period of a string [7]. To verify wh
a stringp is an approximate period of another stringx, one needs to find the edit distan
betweenp and every substring ofx [7]. A naive method that computes aD-table of size
O(|p|2) for each position ofx will take O(|p|2|x|) time, but our algorithm as well as tho
in [3,6] reduces the time complexity to O(|p| · |x|).

This paper is organized as follows. In Section 2, we describe the important proper
the change table. In Section 3, we present our algorithm for the incremental/decre
edit distance problem.

2. Preliminary properties

Let Σ be a finitealphabetof symbols. A string overΣ is a finite sequence of symbo
in Σ . The length of a stringA is denoted by|A|. Theith symbol inA is denoted byA[i]
and the substring consisting of theith through thej th symbols ofA is denoted byA[i..j].

Let A andB be strings of lengthsm andn, respectively, overΣ , and letB ′ = B[2..n].
Let D be theD-table betweenA andB and letD′ be theD-table betweenA andB ′. Also
let DR be theDR-table betweenA andB and letDR′ be theDR-table betweenA andB ′.
In this section, we prove the key properties betweenD andD′ that enables us to compu
efficientlyDR′ from DR.

One key tool in understanding our algorithm is thechange table(Ch-table for short)
from D to D′. Later, when we computeDR′ from DR, the first column ofDR is discarded

306 S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303–312

and each entryDR(i, j + 1), 0 � i � m and 0� j < n, will be converted toDR′(i, j).

f the
m.

r

,

at
), the
ral-

lso,
Thus, each entry in theCh-tableCh from D to D′ is defined as follows:

Ch(i, j) = D′(i, j) − D(i, j + 1).

TheCh-table is not actually constructed in our algorithm because the initialization o
Ch-table will require�(mn) time. It will be used only for the description of the algorith
See Fig. 1 for an exampleCh-table.

Fig. 1 suggests a property of theCh-table: the entries of value−1 (respectively 1) appea
contiguously in the upper-right (respectively lower-left) part of theCh-table in astaircase-
shapedregion. This property is formally proved in the following series of lemmas.

Lemma 1. In the Ch-table Ch, the following properties hold.

1. Ch(0, j) = −1 for all 0 � j < n.
2. Ch(i,0) = 0 for all 1 � i < k, wherek is the smallest index inA such thatA[k] = B[1].
3. Ch(i,0) = 1 for all k � i � m.

Proof. Immediate from the definition of theD-table. �
Lemma 2. For 1 � i � m and 1 � j < n, the possible values of Ch(i, j) are in
the rangemin{Ch(i − 1, j − 1),Ch(i − 1, j),Ch(i, j − 1)}..max{Ch(i − 1, j − 1),

Ch(i − 1, j),Ch(i, j − 1)}.

Proof. Recall thatCh(i, j) is defined to beD′(i, j) − D(i, j + 1). By recurrence (1)
D(i, j + 1) is

(2)min
{
D(i − 1, j) + δi,j+1,D(i − 1, j + 1) + 1,D(i, j) + 1

}
.

Also, D′(i, j) is min{D′(i − 1, j − 1) + δ′
ij ,D

′(i − 1, j) + 1,D′(i, j − 1) + 1} where
δ′
ij = 0 if A[i] = B ′[j]; δ′

ij = 1, otherwise. BecauseB ′[j] is the same symbol asB[j + 1],
δ′
ij = δi,j+1. Hence,D′(i, j) can be rewritten as

(3)min

D(i − 1, j) + Ch(i − 1, j − 1) + δi,j+1,

D(i − 1, j + 1) + Ch(i − 1, j) + 1,

D(i, j) + Ch(i, j − 1) + 1

 .

Note that the only differences between (2) and (3) are additional termsCh(i − 1,

j − 1),Ch(i − 1, j), and Ch(i, j − 1) in (3). Assume without loss of generality th
the second argument is minimum in (2). If the second argument is minimum in (3
lemma holds becauseCh(i, j) = Ch(i − 1, j). Otherwise, assume without loss of gene
ity that the third argument is minimum in (3). ThenCh(i, j) = D(i, j)+Ch(i, j −1)+1−
(D(i −1, j +1)+1) � Ch(i, j −1) because the second argument is minimum in (2). A
Ch(i, j) � Ch(i − 1, j) because the third argument is minimum in (3).�
Corollary 1. The possible values of Ch(i, j) are−1,0, and1.

S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303–312 307

Proof. It follows from Lemmas 1 and 2. �

1.

at

n

s

s
o-

f the
of
Lemma 3. For each0 � i � m, let f (i) be the smallest integerj such that Ch(i, j) = −1.
(f (i) = n if Ch(i, j ′) �= −1 for 0 � j ′ < n.) Then, Ch(i, j ′) = −1 for all f (i) � j ′ < n.
Furthermore,f (i) � f (i − 1) for 1 � i � m.

Proof. We use induction oni. Wheni = 0, f (i) = 0 and the lemma holds by Lemma
Assume inductively that the lemma holds fori = k. That is,Ch(k, j ′) �= −1 for 0� j ′ <

f (k) andCh(k, j ′) = −1 for f (k) � j < n.
Let Ch(k + 1, l) be the first entry in rowk + 1 that is−1. ForCh(k + 1, l) to be−1, at

least one ofCh(k, l − 1) andCh(k, l) must be−1 by Lemma 2. Thus, we have shown th
l = f (k + 1) � f (k). It is easy to see thatCh(k + 1, l′) = −1 for f (k + 1) < l′ < n by the
inductive assumption, the condition thatf (k + 1) � f (k), and Lemma 2. �

The following lemma is symmetric to Lemma 3 and it can be similarly proved.

Lemma 4. For each0 � j < n, let g(j) be the smallest integeri such that Ch(i, j) = 1.
(g(j) = m + 1 if Ch(i ′, j) �= 1 for 0 � i ′ � m.) Then, Ch(i ′, j) = 1 for all g(j) � i ′ � m.
Furthermore,g(j) � g(j − 1) for 1� j < n.

We say that an entryCh(i, j) is affectedif the values ofCh(i − 1, j − 1),Ch(i − 1, j),
and Ch(i, j − 1) are not the same. We also say thatDR′(i, j) is affected ifCh(i, j) is
affected.

Lemma 5. If DR′(i, j) is not affected, then DR′(i, j) equals DR(i, j + 1).

Proof. If DR′(i, j) is not affected, then the value ofCh(i, j) is the same as the commo
value ofCh(i − 1, j − 1),Ch(i − 1, j), andCh(i, j − 1) by Lemma 2. ThenDR′(i, j).U =
D′(i, j) − D′(i − 1, j) = D(i, j + 1) + Ch(i, j) − (D(i − 1, j + 1) + Ch(i − 1, j)) =
DR(i, j + 1).U . Similarly,DR′(i, j).L = DR(i, j + 1).L. �

We say that an entryCh(i, j) is a (−1)-boundary(respectively 1-boundary) entry if
Ch(i, j) is of value−1 (respectively 1) and at least one ofCh(i, j − 1),Ch(i + 1, j), and
Ch(i + 1, j − 1) (respectivelyCh(i, j + 1),Ch(i − 1, j), andCh(i − 1, j + 1)) is not of
value−1 (respectively 1).

By Lemma 5 we can conclude that in computingDR′ from DR, only the affected entrie
need be changed. See Fig. 1 again. Because the entries whose values are−1 (or 1) appear
contiguously in theCh-table, the affected entries are either(−1)- or 1-boundary entrie
themselves or appear adjacent to(−1)- or 1-boundary entries. The key idea of our alg
rithm is to scan the(−1)- and 1-boundary entries starting from the upper-left corner o
DR-table when we compute the affected entries. Lemmas 3 and 4 imply that the number
(−1)- and 1-boundary entries in theDR-table is O(m + n).

308 S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303–312

3. Boundary scan algorithm

e

-scan

er,
les

)

b-
es

al
r

In this section we show how to computeDR′ from DR. First, we describe how w
scan the boundary entries starting from the upper-left corner of theDR′-table within the
proposed time complexity. Then, we will mention the modifications to the boundary
algorithm which leads to an algorithm that convertsDR to DR′.

For simplicity we will use theCh-table in the description of our algorithm. Howev
theCh-table is not explicitly constructed but accessed through the one-dimensional tab
f () andg(). The details will be given later.

Lemma 6. Ch(i, j) = min{−DR(i, j + 1).UL + Ch(i − 1, j − 1) + δi,j+1,−DR(i,

j + 1).U + Ch(i − 1, j) + 1,−DR(i, j + 1).L + Ch(i, j − 1) + 1} (i.e., Ch(i − 1,

j − 1),Ch(i − 1, j),Ch(i, j − 1), and DR(i, j + 1) are needed to compute Ch(i, j)).

Proof. Recall that Ch(i, j) = D′(i, j) − D(i, j + 1). Substituting recurrence (1.1
for D′(i, j) and distributingD(i, j + 1) into the min function, we haveCh(i, j) =
min{. . . ,D′(i − 1, j) − D(i, j + 1) + 1, . . .} (only the second argument is shown). Su
stituting D(i − 1, j + 1) + Ch(i − 1, j) for D′(i − 1, j), the second argument becom
D(i − 1, j + 1) − D(i, j + 1) + Ch(i − 1, j) + 1= −DR(i, j + 1).U + Ch(i − 1, j) + 1.
The lemma follows from similar calculations for the first and the third arguments.�

Algorithm 1 is the boundary-scan algorithm. In the algorithm, the pair(i−1, j−1) (re-
spectively(i1, j1)) indicates thatCh(i−1, j−1) (respectivelyCh(i1, j1)) is the current(−1)-
boundary (respectively 1-boundary) entry that isbeing scanned. By Lemma 1, their initi
values correspond to boundary entries in theCh-table. The following property holds fo
Ch(i−1, j−1) andCh(i1, j1) by Lemmas 3 and 4. See Fig. 2 for an illustration.

Property 1.

(1) Ch(i, j) �= −1 if i > i−1 andj < j−1.
(2) Ch(i, j) �= 1 if i < i1 andj > j1.

Fig. 2. Boundary entry conditions.

S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303–312 309

Algorithm 1

en-

of
f

1(1).
r to the

will
ously.
Let k be the smallest index inA such thatA[k] = B[1].
(i−1, j−1) ← (0,1); (i1, j1) ← (k,0); f (0) ← 0; g(0) ← k

finished−1 ← false
finished1 ← false
while not finished−1 or not finished1 do

if i−1 < i1 − 1 then {case 1}
ComputeCh(i−1 + 1, j−1). {See Fig. 4.}
if Ch(i−1 + 1, j−1) = −1 then

i−1 ← i−1 + 1; f (i−1) ← j−1
else

j−1 ← j−1 + 1
fi

else if j1 < j−1 − 1 then {case 2}
Symmetric to case 1.

else{case 3,i1 = i−1 + 1 andj1 = j−1 − 1}
ComputeCh(i−1 + 1, j−1). {See Fig. 5.}
if Ch(i−1 + 1, j−1) = −1 then

i−1 ← i−1 + 1; i1 ← i1 + 1; f (i−1) ← j−1
else if Ch(i−1 + 1, j−1) = 1 then

j−1 ← j−1 + 1; j1 ← j1 + 1; g(j1) ← i1
else

j−1 ← j−1 + 1; i1 ← i1 + 1
fi

fi
if i−1 = m or j−1 = n then finished−1 ← true fi
if i1 = m + 1 or j1 = n − 1 then finished1 ← true fi

od

Fig. 3. Algorithm 1.

In one iteration of the loop in Algorithm 1, one or both of the current boundary
tries are moved to the next boundary entries. For example, the current(−1)-boundary
entry is moved to the next(−1)-boundary entry which can be down or to the right
the current(−1)-boundary entry. We maintain the following invariants in each iteration o
Algorithm 1.

Invariant 1.

(1) i−1 < i1 andj−1 > j1.
(2) All values off (0), . . . , f (i−1) are known.
(3) All values ofg(0), . . . , g(j1) are known.

One iteration of Algorithm 1 has three cases. Case 1 applies when the current(−1)-
boundary can be moved by one entry (down or to the right) without violating Invariant
Case 2 applies when the current 1-boundary can be moved by one entry (down o
right) without violating Invariant 1(1). Case 3 applies when moving the(−1)-boundary
entry down by one entry or moving the 1-boundary entry to the right by one entry
violate Invariant 1(1), and thus both boundary entries have to be moved simultane
What Algorithm 1 does in each case is described in Fig. 3.

310 S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303–312

e
es
e

se is

sy

cases

,

Fig. 4. Case 1.

What remains to show is the methods to obtain the values of theCh-table entries that ar
used to compute a newCh-table entry, e.g.,Ch(i−1 + 1, j−1) in case 1. The two subcas
for case 1 are depicted in Fig. 4. The first subcase is whenj−1 > j1 + 1. See Fig. 4(a). Th
unknown values of theCh-table entries areX andY . By Invariant 1(2) the value off (i−1)

is known. Iff (i−1) < j−1, thenX = −1. Otherwise (f (i−1) = j−1), X = 0 becauseX is
not 1 by Property 1(1). It is easy to see thatY = 0 becauseY is inside the region in which
there are no(−1)’s (by Property 1(1)) and no 1’s (by Property 1(2)). The second subca
whenj−1 = j1 + 1. See Fig. 4(b). We can compute the value ofX as−1 if f (i−1) < j−1;
1 if g(j1) � i−1; 0, otherwise. We know thatY �= −1 by Property 1(1). Thus,Y = 1 if
g(j1) � i−1 + 1; Y = 0, otherwise. Case 3 is depicted in Fig. 5. The value ofX can be
computed as we computed the value ofX in the second subcase of case 1.

We now show that all affectedCh-table entries are computed by Algorithm 1. It is ea
to see that each affected entryCh(i, j), 1 � i � m and 1� j < n, falls into one of the
following types by Lemmas 3 and 4. For each of the types we can easily check which
in our algorithm computeCh(i, j).

1. Ch(i, j) is a (−1)-boundary entry such thatCh(i, j − 1) �= −1: Ch(i, j) is computed
by case 1 ifCh(i, j − 1) = 0; by case 3, otherwise.

2. Ch(i, j) is an 1-boundary entry such thatCh(i − 1, j) �= 1: Ch(i, j) is computed by
case 2 ifCh(i − 1, j) = 0; by case 3, otherwise.

3. Ch(i, j) = 0 and eitherCh(i − 1, j) = −1 or Ch(i, j − 1) = 1: Ch(i, j) is computed
by case 1 ifCh(i, j − 1) = 0; by case 2 ifCh(i − 1, j) = 0; by case 3, otherwise.

To computeDR′ from DR, we first discard the first column fromDR. Then, we run a
modified version of Algorithm 1. The modifications to Algorithm 1 is to computeDR′(i, j)

whenever we compute the value ofCh(i, j). OnceCh(i, j) is computed using Lemma 6
the fields inDR′(i, j) can be easily computed. That is,DR′(i, j).L = DR(i, j + 1).L +
Ch(i, j) − Ch(i, j − 1) andDR′(i, j).U = DR(i, j + 1).U + Ch(i, j) − Ch(i − 1, j).

S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303–312 311

t it in-
m

n

ion
o the
ble edit

d
in
only
are
fied.)
ge the

xity 4

0)

8)

78.
Fig. 5. Case 3.

We can easily check that one iteration of the loop takes only constant time and tha
creases at least one ofi−1, j−1, i1, j1 by one. Hence, the time complexity of our algorith
is O(m + n).

Theorem 1. LetA andB be two strings of lengthsm andn, respectively, andB ′ = B[2..n].
Given the difference representation DR betweenA and B, the difference representatio
DR′ betweenA andB ′ can be computed inO(m + n) time.

4. Conclusion

We have presented an O(m+n)-time algorithm for the incremental/decremental vers
of the edit distance problem. With slight modifications, our algorithm also applies t
Levenstein distance where only insertions and deletions are considered as possi
operations. First, we have to modify the definition ofδij such thatδij = 0 if A[i] = B[j]
andδij = 2, otherwise. It turns out that the possible values forCh-table entries are 1 an
−1 with the Levenstein distance. (Corollary1 needs to be modified accordingly.) Also,
the first columns ofCh-tables for the edit distance and the Levenstein distance, the
differences are at the places where theCh-table for the edit distance have zeros; they
all −1’s in the Ch-table for the Levenstein distance. (Lemma 1 needs to be modi
However, all other lemmas apply without changes. Thus, all we have to do is to chan
initial value of(i−1, j−1) in Algorithm 1 to be(k − 1,1).

References

[1] Z. Galil, R. Giancarlo, Data structures and algorithms for approximate string matching, J. Comple
(1988) 33–72.

[2] Z. Galil, K. Park, An improved algorithm for approximate string matching, SIAM J. Comput. 19 (6) (199
989–999.

[3] G.M. Landau, E.W. Myers, J.P. Schmidt, Incremental string comparison, SIAM J. Comput. 27 (2) (199
557–582.

[4] G.M. Landau, U. Vishkin, Fast string matching withk differences, J. Comput. System Sci. 37 (1988) 63–

312 S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303–312

[5] G.M. Landau, U. Vishkin, Fastparallel and serial approximate string matching, J. Algorithms 10 (1989)

.

4.
(1974)
157–169.
[6] J.P. Schmidt, All highest scoring paths in weightedgraphs and their applications to finding all approximate

repeats in strings, SIAM J. Comput. 27 (4) (1998) 972–992.
[7] J.S. Sim, C.S. Iliopoulos, K. Park, W.F. Smyth,Approximate periods of strings, Theoret. Comput

Sci. 262 (1–2) (2001) 557–568.
[8] E. Ukkonen, Algorithms for approximate string matching, Inform. and Control 64 (1985) 100–118.
[9] E. Ukkonen, Finding approximate patterns in strings, J. Algorithms 6 (1985) 132–137.

[10] E. Ukkonen, D. Wood, Approximate string matching with suffix automata, Algorithmica 10 (1993) 353–36
[11] R.A. Wagner, M.J. Fisher, The string-to-string correction problem, J. Assoc. Comput. Mach. 21

168–173.

	A dynamic edit distance table
	Introduction
	Preliminary properties
	Boundary scan algorithm
	Conclusion
	References

