-

metadata, citation and similar papers at core.ac.uk brought to you by . C

<

provided by Elsevier - Publisher Conr

Available online at www.sciencedirect.com

SCIENCE CbD'REcTE JOURNAL OF
C DISCRETE
ESER Journal of Discrete Algorithms 2 (2004) 303-312 ALGORITHMS

www.elsevier.com/locate/jda

A dynamic edit distance table

Sung-Ryul Kim?*1, Kunsoo Park?

@ Division of Internet & Media and Multidisciplinary Aerospace System Design Team, Konkuk University,
Seoul 143-701, South Korea
b School of Computer Science and Engineeringubblational University, Seoul 151-742, South Korea

Abstract

In this paper we consider the incremental/decremental version of the edit distance problem: given a
solution to the edit distance between two stridgand B, find a solution to the edit distance between
A andB’ whereB’ = aB (incremental) obB’ = B (decremental). As a solution for the edit distance
betweenA and B, we define the difference representation of iwable, which leads to a simple
and intuitive algorithm for the incremental/decremental edit distance problem.
0 2003 Elsevier B.V. All rights reserved.

Keywords:String matching; Edit distance; Incremental/decremental edit distance

1. Introduction

Given two stringsA[1..m] and B[1..n] over an alphabeX, theedit distancdetweenA
and B is the minimum number oddit operationsieeded to convert to B. The edit dis-
tance problem is to find the edit distance betwdesnd B. Most common edit operations
are the following:

1. changereplace one character dfby another single character 8f
2. deletion delete one character frony,
3. insertion insert one character intB.

* Corresponding author.
E-mail addresseskimsr@konkuk.ac.kr (S.-R. Kim), kpark@theory.snu.ac.kr (K. Park).
1 Supported by Korea ReasearchuRdation Grant KRF-2002-003-D00304.
2 Work supported by Brain Korea 21 Project, theTRDOO Project AB02, and the MOST grant M6-0203-00-
0039.

1570-8667/$ — see front mattét 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S1570-8667(03)00082-0

https://core.ac.uk/display/82329548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jda

304 S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303-312

D D’ Ch
bbababbab bababbab bababbab
of1]2]3]4]5]6[7]8]9 of1[2]3]4]5]6]7]8 [SESESESES sy

alt|1]|2]2]3]4]5]6[7]8 alf11]1]2]3]4[5]6]7 aflobibibibipr bk
b2]1|1]2]2]3]4[5]6]7 b 21]2]1]2]3]4]5]6 bidifolofiFi i b hr
al3]|2]2]1]2]2]3]4][5]6 af3]2]1]2]1]2]3]4]5 alf1|ojolohi il
bl4[3]2]2]1]2]2]3]4]5 bil4[3]2]1]2]1]2]3]4 bili[1]oJoJofrifiF1 H1
bl|s|4]3]3]2]2]2]2]3]4 bIsl4(3[2]2]2]1]2]3 b 1[1]0]0[0[0}1F1EL
ale]|5[4]3]3]2]3[3]2]3 al6[5]4][3]2]3[2]1]2 al1]1]1]oJoJofi 11
b(7]6|5]a]3]3]2[3]3]2 b 7]6]5]4]3]2]3]2]1 b1t]ifofolofi Ft
b(8|7]e]5]4]4]3[2]3]3 b8 7]6]5]4[3[2]3]2 b1 11]1]ofololof1

Fig. 1. An exampleCh-table.

A well-known method for solving the edit distance problem i(m@) time uses the
D-table[1,11]. LetD(i, j), 0<i <m and 0< j < n, be the edit distance betwedil..i]
and B[1..j]. Initially, D(i,0) =i for0<i <m andD(0, j) = j for0< j < n. An en-
try D(i, j), 1 <i <m and 1< j < n, of the D-table is determined by the three entries
Di-1,j-1),D@(-1, j),andD(i, j — 1). The recurrence for thB-table is as follows:
forall1<i <mand 1< j <n,

D@, j)y=min{DG(—1,j -1 +8;, DG —1,j)+1,DG j—1+1} ()

wheres;; = 0if A[i] = B[j]; §;; = 1, otherwise.

In this paper we consider the following incremental (respectively decremental) version
of the edit distance problem: given a solution for the edit distance betweand B,
compute a solution for the edit distance betweeanda B (respectivelyB’ where B =
bB'), wherea (respectivelyb) is a symbol inX'. By asolutionwe mean some encoding
of the D-table computed betweet and B. Since essentially the same techniques can be
used to solve both incremental and decremental versions of the edit distance problem, we
will consider only the decremental version.

Consider the symmetric problems whe®ds changed at the end: given a solution for
the edit distance betweef and B, compute a solution for the edit distance between
and Ba (respectivelyB’ where B = B’b). Given the D-table betweem and B, these
problems are easily solved in(@) time by computing just one more column (respectively
removing one column) at the end of tiietable. However, it is impossible to solve the
problems considered in this paper in less tlkamn) time when we are given thB-table
as the solutiorbecause thé-table betweem and B and the D-table betweem and
aB (respectivelyB’ where B = B’b) can be different ir® (mn) places. (See the example
in Fig. 1.) For an algorithm for incrementa¢/dremental version to be useful, it needs to
compute the new solution in time much less titan), since® (mn) is the time required
to compute the new solution from scratch.

As a solution for the edit distance betwe#grand B, we define the difference represen-
tation of theD-table OR-table for short). Each entR(, j) in the DR-table betweem
andB has two fields defined as follows: forli <m and 1< j <n,

1. DR(, j).U = D(, j) — DG —1, j),
2. DR(, j).L = D(i, j) — D@, j — 1).

S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303—-312 305

A third field DR(, j).U L, which is defined to béd (i, j) — D(i — 1, j — 1), will be used
later, but it need not be stored DR(, j) because it can be computed@R(, j).U +
DR(i — 1, j).L. Because the possible values that eacBRB(i, j).U andDR(, j).L can
have are-1, 0, and 1 [9], we need only four bits to store an entry inBtietable. It is easy
to see that thé-table can be converted to tBER-table in Qmn) time, and vice versa. We
can also compute one row (respectively column) ofhtable from theDR-table in Qn)
(respectively @mn)) time. For example, if we want to compute réywve can set the value
of D(i, 0) from the definition and then sequentially compute each ebtiy j), 1 < j < n,
asD(i, j — 1)+ DR, j).L.

The incremental/decremental version of the edit distance problem was first considered
by Landau et al. [3]. They used tlgtable [2,4,5,8,10] (represented with linked lists) as
a solution for the edit distance betweérand B. Given a threshold@ on the edit distance,
their algorithm runs in @) time. (If the threshold is not given, it runs in @n +n) time.)

Also, Schmidt [6] gave an algorithm based on weighted grid graphs that work@in-@)
time for the same problem. However, the results in [3,6] are quite complicated.

In this paper we present an(®@ + n)-time algorithm for the incremental/decremental
edit distance problem. Our result is much simpler and more intuitive than those of Landau
et al. [3] and Schmidt [6]. A key tool in our algorithm is tlvhange tablébetween the
two D-tables before and after an increment/decrement. The change table is not actually
constructed in our algorithm, but it is central in understanding our algorithm.

The incremental/decremental edit distance problem finds a variety of applications,
which include the longest prefix match problem, the approximate overlap problem, the
cyclic string comparison problem, and the text screen update problem [3,6]. Another appli-
cation can be found in computing an approximate period of a string [7]. To verify whether
a stringp is an approximate period of another stringone needs to find the edit distance
betweenp and every substring of [7]. A naive method that computesia-table of size
O(| p|?) for each position of will take O(| p|?|x|) time, but our algorithm as well as those
in [3,6] reduces the time complexity to(®]| - |x|).

This paper is organized as follows. In Section 2, we describe the important properties of
the change table. In Section 3, we present our algorithm for the incremental/decremental
edit distance problem.

2. Preliminary properties

Let X be a finitealphabetof symbols A string over X is a finite sequence of symbols
in X. The length of a string\ is denoted byA|. Theith symbol inA is denoted byA[i]
and the substring consisting of thila through thejth symbols ofA is denoted byA[:../].

Let A and B be strings of lengths: andn, respectively, ovel, and letB’ = B[2..n].
Let D be theD-table betweem and B and letD’ be theD-table betweem andB’. Also
let DR be theDR-table betweem and B and letDR' be theDR-table betweem and B’.

In this section, we prove the key properties betw@eand D’ that enables us to compute
efficiently DR from DR.

One key tool in understanding our algorithm is tleange tablgCh-table for short)
from D to D’'. Later, when we computeR from DR, the first column oDR is discarded

306 S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303-312

and each entrfpR(, j + 1), 0<i < m and 0< j < n, will be converted taDR (i, j).
Thus, each entry in th€h-tableCh from D to D’ is defined as follows:

Ch(i, j)=D'(i, j) — D@, j +1).

The Ch-table is not actually constructed in our algorithm because the initialization of the
Ch-table will require® (mn) time. It will be used only for the description of the algorithm.
See Fig. 1 for an exampléh-table.

Fig. 1 suggests a property of tiédr-table: the entries of valuel (respectively 1) appear
contiguously in the upper-right (respectively lower-left) part of @etable in astaircase-
shapedegion. This property is formally proved in the following series of lemmas.

Lemma 1. In the Ch-table Ch, the following properties hold.

1. Ch@©, j)=—-1forall 0< j <n.
2. Ch(i,0) =0forall 1 <i < k, wherek is the smallestindex iA such thatA[k] = B[1].
3. Ch(;,0)=1forall k <i <m.

Proof. Immediate from the definition of thB-table. O

Lemma 2. For 1 <i <m and 1 < j < n, the possible values of Chj) are in
the rangemin{Ch(i — 1,j — 1),Ch(i — 1, j),Ch(i, j — 1D)}..maXCh(i@ — 1, — 1),
Chi -1, j),Ch(, j — D}.

Proof. Recall thatCh(i, j) is defined to beD’(i, j) — D(, j + 1). By recurrence (1),
D@, j+1)is

min{ DG — 1, j)+8; j+1. DG — 1, j + 1) + 1, DG, j) + 1}. (2)

Also, D'(i, j) is min{D'(i — 1,j — 1) + 8;1., D'(i—1,/)+1,D'(i,j — 1) + 1} where
8;1. =0if A[i]= B'[j]; 8;1. =1, otherwise. Becausk'[j] is the same symbol aB[j + 1],
8;]. =4, j+1. Hence,D'(i, j) can be rewritten as

D(i—1,j)+Ch(i —1,j — 1)+ j+1,
min DG —1,j+1)+Chi —1,j)+1, . (3)
D@, j))+Chi, j-D+1

Note that the only differences between (2) and (3) are additional t€Hs— 1,
j—1,Ch(i —1,;), andCh(i, j — 1) in (3). Assume without loss of generality that
the second argument is minimum in (2). If the second argument is minimum in (3), the
lemma holds becauseh(i, j) = Ch(i — 1, j). Otherwise, assume without loss of general-
ity that the third argumentis minimum in (3). Thé&h(, j) = D(, j)+Ch(G, j —1)+1—
(D@ -1, j+1)+1) > Ch(i, j — 1) because the second argument is minimum in (2). Also,
Ch(i, j) < Ch(— 1, j) because the third argument is minimum in (3)1

Corollary 1. The possible values of Gh j) are —1, 0, and 1.

S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303—-312 307
Proof. It follows from Lemmas 1 and 2. O

Lemma 3. For eachO < i < m, let f (i) be the smallest integegrsuch that Cki, j) = —1.
(f@) =nif Ch(i, j) #—1for 0< j’ <n.) Then, Chii, j) = —1for all f(i) < j' <n.
Furthermore,f (i) > f(i — 1) for1 <i <m.

Proof. We use induction on. Wheni =0, f(i) = 0 and the lemma holds by Lemma 1.
Assume inductively that the lemma holds foe k. That is,Ch(k, j) # —1 for 0< j' <
f (k) andCh(k, j") = —1for f(k) < j <n.

Let Ch(k + 1,1) be the first entry in row + 1 thatis—1. ForCh(k + 1,1) to be—1, at
least one ofch(k, ! — 1) andCh(k, /) must be—1 by Lemma 2. Thus, we have shown that
= f(k+1) > f(k).Itis easy to see th&@@h(k +1,I'") = —1for f(k+1) <!’ <n bythe
inductive assumption, the condition thatk + 1) > f(k), and Lemma 2. O

The following lemma is symmetric to Lemma 3 and it can be similarly proved.

Lemma 4. For eachO < j < n, let g(j) be the smallest integérsuch that Cky, j) = 1.
(g(j)=m+1if Ch(i’, j) # 1for 0<i’ <m.) Then, Cli’, j) = 1 for all g(j) <i’ <m.
Furthermoreg(j) > g(j — D for1<j <n.

We say that an entr@€h(i, j) is affectedf the values ofCh(i — 1, j — 1), Ch(i — 1, j),
andCh(i, j — 1) are not the same. We also say ti¥R (i, j) is affected ifCh(, j) is
affected.

Lemmab. If DR'(i, j) is not affected, then DR, j) equals DR, j + 1).

Proof. If DR (i, j) is not affected, then the value @h(, j) is the same as the common
value ofCh(i — 1, j — 1), Ch(i — 1, j), andCh(i, j — 1) by Lemma 2. The®R (i, j).U =
D'(i,j)—D'(i —1,j) = DG, j+1) +ChG, j) — (DG — 1, j + 1) + Chii — 1,)) =
DR(, j +1).U. Similarly, DR (i, j).L =DR(, j +1).L. O

We say that an entrZh(i, j) is a (—1)-boundary(respectively iboundary entry if
Ch(i, j) is of value—1 (respectively 1) and at least one@ifi(i, j — 1), Ch(i + 1, j), and
Ch(@ +1, j — 1) (respectivelyCh(i, j + 1), Ch(i — 1, j), andCh(i — 1, j 4+ 1)) is not of
value—1 (respectively 1).

By Lemma 5 we can conclude that in computDB from DR, only the affected entries
need be changed. See Fig. 1 agaiac&use the entries whose values-ale(or 1) appear
contiguously in theCh-table, the affected entries are eitherl)- or 1-boundary entries
themselves or appear adjacent(tel)- or 1-boundary entries. The key idea of our algo-
rithm is to scan thé—1)- and 1-boundary entries starting from the upper-left corner of the
DR-table when we compute the affected &gr Lemmas 3 and 4 imply that the number of
(—1)- and 1-boundary entries in tizR-table is Qm + n).

308 S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303-312

3. Boundary scan algorithm

In this section we show how to compuBR from DR. First, we describe how we
scan the boundary entries starting from the upper-left corner ob&igable within the
proposed time complexity. Then, we will mention the modifications to the boundary-scan
algorithm which leads to an algorithm that convéd® to DR .

For simplicity we will use theCh-table in the description of our algorithm. However,
the Ch-table is not explicitly constructed but assed through the one-dimensional tables
f0 andg(). The details will be given later.

Lemma 6. Ch(i, j) = min{—DR(, j + D.UL + Ch(i — 1,j — 1) + §; j+1, —DR(,
J+1D.U+Chi—-1,j)+ 1 -DRGj+D.L+Ch@i,j —1) +1} (e, ChG — 1,
j—D1,Ch(i —1,j),Ch@ j—1),and DRi, j + 1) are needed to compute Ghj))).

Proof. Recall thatCh(i, j) = D'(i, j) — D(i,j + 1). Substituting recurrence (1.1)
for D'(i, j) and distributingD(i, j + 1) into the min function, we haveCh(, j) =
min{...,D'(i — 1, j) — D@, j +1) +1,...} (only the second argument is shown). Sub-
stituting DG — 1, j + 1) + Ch(i — 1, j) for D'(i — 1, j), the second argument becomes
Di-1j+1)-DG,j+D)+Chi—1,j)+1=-DR@ j+1).U+Chi—-1,,)+1.
The lemma follows from similar calculations for the first and the third argumernts.

Algorithm 1 is the boundary-scan algorithm. In the algorithm, the gait, j_1) (re-
spectively(i1, j1)) indicates thaCh(i_1, j_1) (respectivel\Ch(i1, j1)) is the current—1)-
boundary (respectively 1-boundary) entry thabésng scanned. By Lemma 1, their initial
values correspond to boundary entries in @tetable. The following property holds for
Ch(i-1, j—1) andCh(i1, j1) by Lemmas 3 and 4. See Fig. 2 for an illustration.

Property 1.

(1) Ch(i, j)# —1ifi >i_randj < j_1.
(2) Ch(i, j)#1ifi <irandj > ji.

! o o
Ch(i,.j,) —~Ch(i,,j)
1 2J 121

(a) (b)

Fig. 2. Boundary entry conditions.

S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303—-312 309

Algorithm 1
Let k be the smallest index iA such thatA[k] = B[1].
(i—1,j-1) < (0, 1); (i1, j1) < (k,0); f(0) <~ 0; g(0) <k
finished_; < false
finished <« false
while not finished_; or not finished do
if i_q <ip —1then {case }
ComputeCh(i_1 + 1, j_1). {See Fig. 4.
if Ch(i_1+1,j—1) = —1then
i <ia+1 fli) < j-1
ese
Jo1<j1+1
fi
eseif j; < j_1 — 1then {case 2}
Symmetric to case 1.
elsg{case 3,i1 =i_1+1landj; =j_1 -1}
ComputeCh(i_1 + 1, j_1). {See Fig. 5.}
if Ch(i_1+1,j-1) = —1then
i <ig+liip«<in+1; fic) < ja
dseif Ch(i_1 + 1, j_1) = 1then
Joi<j—1+hji< 1+ 180D < in
ese
jr1<ja+liip<in+1
fi
fi
if i_1 =m or j_1 =nthen finished_1 < truefi
if i1t =m + 1 or j; =n — 1then finished <« truefi
od

Fig. 3. Algorithm 1.

In one iteration of the loop in Algorithm 1, one or both of the current boundary en-
tries are moved to the next boundary entries. For example, the curémtboundary
entry is moved to the next—1)-boundary entry which can be down or to the right of
the current{—1)-boundary entry. We maintain the folling invariants in each iteration of
Algorithm 1.

Invariant 1.

Q) ic1<irgandj_1> j1.
(2) All values off(0), ..., f(i—1) are known.
(3) All values ofg(0), ..., g(j1) are known.

One iteration of Algorithm 1 has three cases. Case 1 applies when the curBnt
boundary can be moved by one entry (down or to the right) without violating Invariant 1(1).
Case 2 applies when the current 1-boundary can be moved by one entry (down or to the
right) without violating Invariant 1(1). Case 3 applies when moving thé)-boundary
entry down by one entry or moving the 1-boundary entry to the right by one entry will
violate Invariant 1(1), and thus both boundary entries have to be moved simultaneously.
What Algorithm 1 does in each case is described in Fig. 3.

310 S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303—312

X Ch(i,,j,) X Ch(i,,Jj,)
) s

Yy,
Ch(i, +1,j,) KCh(i.. +1,7,)
Ch(i, Jl)) Ch(i, ,j,))

(a) b

Fig. 4. Case 1.

What remains to show is the methods to obtain the values @lthable entries that are
used to compute a ne@h-table entry, e.gCh(i_1 + 1, j_1) in case 1. The two subcases
for case 1 are depicted in Fig. 4. The first subcase is when- j1 + 1. See Fig. 4(a). The
unknown values of th€h-table entries ar& andY. By Invariant 1(2) the value of (i—1)
is known. If f(i_1) < j_1, thenX = —1. Otherwise {(i_1) = j_1), X = 0 becaus« is
not 1 by Property 1(1). It is easy to see thfat 0 becaus# is inside the region in which
there are ng—1)’s (by Property 1(1)) and no 1’s (by Property 1(2)). The second subcase is
whenj_1 = j1 + 1. See Fig. 4(b). We can compute the valu&ads—1 if f(i_1) < j_1;
1if g(j1) <i-1; 0, otherwise. We know that # —1 by Property 1(1). Thusy =1 if
g(j1) <i-1+1;Y =0, otherwise. Case 3 is depicted in Fig. 5. The valu&afan be
computed as we computed the valueXoin the second subcase of case 1.

We now show that all affecte@h-table entries are computed by Algorithm 1. It is easy
to see that each affected entth(i, j), 1 <i <m and 1< j < n, falls into one of the
following types by Lemmas 3 and 4. For each of the types we can easily check which cases
in our algorithm comput€h(, ;).

1. Ch(, j) is a(—1)-boundary entry such th&h(i, j — 1) # —1: Ch(i, j) is computed
by case 1ifCh(i, j — 1) = 0; by case 3, otherwise.

2. Ch(i, j) is an 1-boundary entry such th@h(i — 1, j) # 1: Ch(i, j) is computed by
case 2ifCh(i — 1, j) = 0; by case 3, otherwise.

3. Ch(i, j) =0 and eithelCh(i — 1, j) = —1 or Ch(i, j — 1) = 1: Ch(i, j) is computed
by case 1ifCh(i, j — 1) = 0; by case 2 ilCh(i — 1, j) = 0; by case 3, otherwise.

To computeDR’ from DR, we first discard the first column froR. Then, we run a
modified version of Algorithm 1. The modifications to Algorithm 1 is to comIR(;, j)
whenever we compute the value ©h(i, j). OnceCh(i, j) is computed using Lemma 6,
the fields inDR (i, j) can be easily computed. That BR (i, j).L = DR(, j + 1).L +
Ch(i, j) — Ch(i, j — 1) andDR (i, j).U =DR(, j + 1).U + Ch(i, j) — Ch(i — 1, j).

S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303—-312 311

X Ch(i, ,j,)
Ch(il ':j]) C“h(l-l +1 !j.[)
Fig. 5. Case 3.

We can easily check that one iteration of the loop takes only constant time and that it in-
creases at least oneiofy, j_1, i1, j1 by one. Hence, the time complexity of our algorithm
is O(m + n).

Theorem 1. Let A and B be two strings of lengtha andn, respectively, an®’ = B[2..n].
Given the difference representation DR betweeand B, the difference representation
DR betweem and B’ can be computed i®(m + n) time.

4. Conclusion

We have presented an@+ n)-time algorithm for the incremental/decremental version
of the edit distance problem. With slight modifications, our algorithm also applies to the
Levenstein distance where only insertions and deletions are considered as possible edit
operations. First, we have to modify the definitiondgf such thats;; = 0 if A[i]1= B[]
andé;; = 2, otherwise. It turns out that the possible valuesGbrtable entries are 1 and
—1 with the Levenstein distance. (Corollatyneeds to be modified accordingly.) Also, in
the first columns ofCh-tables for the edit distance and the Levenstein distance, the only
differences are at the places where @tetable for the edit distance have zeros; they are
all —1's in the Ch-table for the Levenstein distance. (Lemma 1 needs to be modified.)
However, all other lemmas apply without changes. Thus, all we have to do is to change the
initial value of (i_1, j_1) in Algorithm 1 to be(k — 1, 1).

References

[1] Z. Galil, R. Giancarlo, Data structures and algorithms for approximate string matching, J. Complexity 4
(1988) 33-72.

[2] z. Galil, K. Park, An improved algorithm for appximate string matching, SIAM J. Comput. 19 (6) (1990)
989-999.

[3] G.M. Landau, E.W. Myers, J.P. Schmidt, Incrertarstring comparison, SIAM J. Comput. 27 (2) (1998)
557-582.

[4] G.M. Landau, U. Vishkin, Fast string matching witdifferences, J. Comput. System Sci. 37 (1988) 63-78.

312 S.-R. Kim, K. Park / Journal of Discrete Algorithms 2 (2004) 303—312

[5] G.M. Landau, U. Vishkin, Fasparallel and serial approximateriag matching, J. Algorithms 10 (1989)
157-1609.
[6] J.P. Schmidt, All highest scoring paths in weightgdphs and their applicatis to finding all approximate
repeats in strings, SIAM J. Comput. 27 (4) (1998) 972—-992.
[7] 3.S. Sim, C.S. lliopoulos, K. Park, W.F. SmytApproximate periods of ghgs, Theoret. Comput.
Sci. 262 (1-2) (2001) 557-568.
[8] E. Ukkonen, Algorithms for approximate stg matching, Inform. and Control 64 (1985) 100-118.
[9] E. Ukkonen, Finding approximate patts in strings, J. Algorithms 6 (1985) 132-137.
[10] E. Ukkonen, D. Wood, Approximate string mhbeg with suffix automata, Algorithmica 10 (1993) 353—-364.
[11] R.A. Wagner, M.J. Fisher, The string-to-string correction problem, J. Assoc. Comput. Mach. 21 (1974)
168-173.

	A dynamic edit distance table
	Introduction
	Preliminary properties
	Boundary scan algorithm
	Conclusion
	References

