
2015 IEEE International Conference on Bioinformatics and Biomedicine (BTBM)

A New Algorithm for "The LC S Problem" with Application in Compressing

Genome Resequencing Data

Richard Beal, Tazin Afrin, Aliya Farheen, and Don Adjeroh
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, wv, US

r.beal@computer.org, don@csee.wvu.edu

Abstract-The longest common subsequence (LCS) problem
is a classical problem in computer science, and forms the basis
of the current best-performing reference-based compression
schemes for genome resequencing data. First, we present a
new algorithm for the LCS problem. Then, we introduce
an LCS-motivated reference-based compression scheme using
the components of the LCS, rather than the LCS itself. For
the Homo sapiens genome (original size 3,080,436,051 bytes),
our proposed scheme compressed the genome to 5,267,656
bytes). This can be compared with the previous best results
of 19,666,791 bytes (Wang and Zhang, 2011) and 17,971,030
bytes (Pinho, Pratas, and Garcia, 2011). Thus, our compression
ratio is about 3.73 to 3.41 times better than those from the
state-of-the-art reference-based compression algorithms.

Keywords-longest common subsequence, LCS, longest previ­
ous factor, LPF, compression, biology, genome resequencing

I. INTRODUCTION AND BACKGROUND

Measuring similarity between sequences, be it DNA,
RNA, or protein sequences, is at the core of various prob­
lems in molecular biology. An important approach to this
problem is computing the longest common subsequence
(LCS) between two strings Sl and S2, i.e. the longest
ordered list of symbols common between Sl and S2. For
example, when Sl = abba and S2 = abab, we have the
following LCSs: abb and aba. The LCS has been used
to study various string analysis problems [1], [2]. Biological
applications of the LC S and similarity measurement are var­
ied, from sequence alignment [3] in comparative genomics
[4], to phylogenetic construction and analysis, to rapid
search in huge biological sequences [5], to compression and
efficient storage of the rapidly expanding genomic data sets
[6], to re-sequencing a set of strings given a target string
[7], which is important in efficient genome assembly.

Finding the LCS between the n-Iength Sl and m-Iength
S2 is relatively easy, the real challenge is to do this in a
time- and space-efficient manner. The LC S computation
is a classical computer science problem with a dynamic
programming solution on an m-by-n grid (see [1], [2]). The
grid is populated and a trace back is used to compute the
LCS in O(mn) time and O(mn) space. This trace back was
proposed as a minimum cost path determination problem by
Myers et at. [8] and Ukkonen [9]. Hunt and Szymanski [10]
earlier used an essentially similar approach to solve the LC S

978-1-4673-6799-8/15/$31.00 ©2015 IEEE 69

problem in (r + n) log n time, with n « m, where r is the
number of pairwise symbol matches. When two non-similar
files are compared, we will have r « mn, or r in O(n),
leading to a practical O(n log n) time algorithm. However,
for very similar files, we have r ;::::: mn, or an O(mn log n)
algorithm. Space-efficient algorithms for the LC S problem
has also been considered (see [11], [12]).

The LC S has been used in some recent algorithms to
compress genome resequencing data [13], [14]. Compression
of biological sequences is an important but difficult problem,
which has been studied for decades by various authors
(see [6], [5], [15]). Most of the earlier studies focused on
lossless compression and generally exploited self-contained
redundancies, without using a reference sequence. Lossy
compression was proposed in [16], [17] for high throughput
sequences admitting limited errors.

More recent methods ([14], [13]) have considered loss­
less compression of re-sequencing data by exploiting the
significant redundancies between the genomes from related
species, reporting compression ratios in the order of 80 to
18,000 without loss. The LCS is the hallmark of these
reference-based approaches. In this work, we first intro­
duce a new algorithm for the LC S problem, using suffix
trees and shortest-path graph algorithms. Motivated by our
LC S algorithm, we introduce an improved reference-based
compression scheme for resequencing data using the longest
previous factor (LPF) data structure [18], [19], [20].

II. PRELIMINARIES

A string T is a sequence of symbols from some alphabet
�. We append a terminal symbol $ f. � to strings for
completeness. A string or data structure D has length I D I ,
and its ith element i s indexed by D[i], where 1 ::; i ::; ID I .
A prefix of a string T i s T[l...i] and a suffix is T[i ... IT I],
where 1 ::; i ::; IT I . The suffix tree (ST) on the n-Iength T is
a compact trie (with O(n) nodes constructed in O(n) time
[2]) that represents all of the suffixes of T. Suffixes with
common prefixes share nodes in the tree until the suffixes
differentiate and ultimately, each suffix T[i ... n] will have its
own leaf node to denote i. A generalized suffix tree (CST)
is an ST for a set of strings. A substring of T is T[i ... j],

where I � i � j � n. The longest common subsequence is
defined below in terms of length-l common substrings.

Definition 1: Longest common subsequence (LC S):
For the n-Iength SI and m-Iength S2, the LCS between
SI and S2 is the length of the longest sequence of pairs
M = {ml, ... , mM}, where mi = (u, v) such that
SI[mh.u] = S2[mh.v] for I � h � M and mi.u <
mHl.u 1\ mi.V < mi+l'v for I � i < M.

III. LCS ALGORITHM

Below, we compute the LCS between S I and S2 in the
following way. (i) We use the CST to compute the common
substrings (CSSs) shared between SI and S2. (ii) We use
the CSSs to construct a directed acyclic graph (DAG) of
maximal CSSs. (iii) We compute LCS by finding the longest
path in the DAG. Steps (i) and (iii) are standard tasks. For
step (ii), we develop new algorithms and data structures.

A. Computing the CSSs

We now briefly describe finding the common substrings
(CSSs) between SI and S2. In our LCS algorithm, for
simplicity of discussion, we will only use CSSs of length-I.

Let A = 0. Compute the CST on SI$1 0 S2$2, for
terminals {$1' $2}. Consider a preorder traversal of the
CST. When at depth-1 for a node N, let S = 0. During
the pre order traversal from N, we collect in S all of the
suffix index leaves descending from N, which represent the
suffixes that share the same first symbol. Let SI = S2 = 0.
For 8 E S, if 8 � ISl l , then store 8 in SI. Otherwise,
store 8 in S2. We represent all of our length-1 matches
in the following structure: MATCH {id, pI, p2}. The id
is a unique number for the MATCH, and PI and P2 are
respectively the positions in SI and S2 where the CSS exists.
Let id = 2. Now, for each 81 E SI, we create a new MATCH
m = (id++, 81, 82) for each 82 E S2. Store each m in A.

The running time is clearly the maximum of the CST
construction and the number of length-l CSSs.

Lemma 2: Say n= ISl l and m= I S21, then computing the 'T}

CSSs of length-l between S I and S2 requires O(max{n +

m, 'T}}) time.

B. DAG Construction

Given all of the MATCHes found in A, our task now is
to construct the DAG for A. For all paths of the DAG to
start and end at a common node, we make MATCHes S and
E to respectively precede and succeed the MATCHes in A.
(Let S have id = I and E have id = IA + 21 and then store
S and E in A.) The goal of the DAG is to represent all
maximal CSSs between S I and S2 as paths from S to E.
We will later find the LCS, the longest such path.

In the DAG, the nodes will be the MATCH ids and
the edges between MATCHes, say m l and m 2, represent
that SI[ml.pl] = S2[ml.p2] is chosen in the maximal
common subsequence followed by SI[m2.pl] = S2[m2.p2].

70

The DAG is acyclic because, by Definition 1, the LCS is a
list of ordered MATCHes. Since we cannot choose mi E M
and then mh E M with h < i, then no cycle can exist.

Our DAG construction, displayed in Algorithm 1, operates
in the following way. We initialize the DAG dag by first
declaring dag.gr of size IA I , since gr will represent all of
the nodes. All outgoing edges for say the node N E A are
represented by dag.gr[N.id][1...dag.8z[N.idlJ. By setting
dag.8z = {O, ... , O}, we clear the edges in our dag. Now,
setting these edges is the main task of our algorithm.

We can easily construct the edges by assuming that there
exists a data structure PREY pv that can tell us the set
of parents for each node a E A. That is, we can call
getPrnts(pv, L) to get the set of nodes P that directly

precede MATCH LE A in the final dag. By "directly
precede", we mean that in the final dag, there is connection
from each pEP to a, i.e. each p is in series with a, meaning
that both p AND a are chosen in a maximal CSS. Further,
no p, p2 E P can be in series with one another, and rather,
they are in parallel with one another, meaning that either p
OR p2 is chosen in a maximal common subsequence.

With P, we can build an edge from a2 E P to a by
first allocating a new space in dag.gr[a2.id] by incrementing
dag.8z[a2.id] and then making a directed edge from parent
to child, i.e. dag.gr[a2.id][dag.8z[a2.idlJ = a.id. After
computing the incoming edges for each node a E A, the
dag construction is complete.

1) PREV Data Structure: The simplicity of the DAG
construction is due to the PREY pv, detailed here. The pv
is composed of four attributes.

HashMap<int,int> pI. Suppose that all a.pl values (for
a E A) are placed on an integer number line. It is very
unlikely that all a.pl values will be consecutive and so, there
will be unused numbers (gaps) between adjacent values.
Since we later declare matrices on the MATCH pI (and p2)
values, these gaps will be wasteful. With a scan of the a.pl
values (say using a Set), we can rename them consecutively
without gaps; these renamed values are found by accessing
HashMap<int,int> pI with the original a.pl value.

HashMap<int,int> p2. This is the same as the afore­
mentioned pI, but with respect to the a.p2 values.

MATCH tbll[][l A fundamental data structure to support
the getP rnt s function is the tbll, defined below.

Definition 3: Max Table w.r.t. PI (tbll): Given the
set of all MATCH values A and PREY pv on A (with
pv.pl and pv.p2), the tbll[lpv.pl l][l pv.p21] is defined such
that each tbll[i][j] is the a E A with the maximum

pv.pI.get(a.pl) � i, where pv.p2.get(a.p2) � j. In the
case that multiple such a exist, tbll [i][j] is the a with
the rightmost pv.p2.get(a.p2) � j. If no such a exists,
tbll [i][j] = null.

In other words, the tbll [i][j] stores the "closest"
MATCH a with respect to the PI values (i.e. we maxi­
mize a.pl before a.p2). To construct tbll, we first declare

Aloorithm 1
I MAlCH { int id ,pi ,p2 }
2 DRCTPRNTS { MAlCH ml ,m2 }
3 DAG { int gr [][] , sz [] }
4 PREV{MAlCHtbll [][] ,tbI2[][] ; HashMap<int,int>pl,p2}
5
6
7
8
9

10
II
12
13
14
15
16
17

DAG constructDAG(Set<MATCI-t> A) {
in t num=A. s i z e (), s z [num] = { 0, .. ,O}; MATCH a, a2
PREV pv=constructPREV(A)
DAG dag={ new int [num] [] , sz }
for each a in A {

Set<MA1CI-t> P=getPrnts(pv,L)
for each a2 in P {

dag. sz[a2. id]++
dag. gr[a2. id][dag. sz[a2. idll=a. id

}
} return dag

1 MAlCH getDPrnt(PREV pv, MAlCH L, bool wrtSI){
2 return getDPrnt(pv,pv pl.get(L.pl),pv.p2.get(L.p2),wrtSI
3
4
5 MATCH getDPrnt(PREV pv, int i, int j, bool wrtS I){
6 if(i:C;1 V j:C;l) return null
7 if(wrtSI) return pv.tbll[i-I][j-I]
8 else return pv.tbI2[i- l][j-l]
9

I Set<MA1CI-t> getPrnts(PREV pv, MAlCH c) {
2 Set<MA1CI-t> P; int i=pv.pl.get(c.pl), j=pv.p2.get(c.p2)
3 in t q, ii, I I, i 2, 12, j I, J I, j 2, J 2
4 MATCH y, ddl, dd2
5 MAlCH dl=getDPrnt(pv,c,true), d2=getDPrnt(pv,c,false)
6 if (d I = null A d I =d2) P. add (d I)
7 else if(dl=null){
8 P. add (d I), P. add (d2)
9 il=d2.pl, I 1 =pv.pl.get(il), i2=dl.pl, 12=pv.pl.get(i2)

10 jl=dl.p2, JI=pv.p2.get(jl), j2=d2 p2, J2=pv.p2.get(j2)
II for(q=II+1 t o 12) {
12 ddl=getDPrnt(pv,q,j ,true), dd2=getDPrnt(pv,q,j ,false
13 if(valid(ddl,il ,i2,jl ,j2)) P.add(ddl)
14 if(valid(dd2,il ,i2 ,jl ,j2)) P.add(dd2)
15 }for(q=JI+1 to J2) {
16 ddl=getDPrnt(pv,i ,q,true), dd2=getDPrnt(pv,i ,g, false
17 if (valid(ddl ,il ,i2 ,jl ,j2)) P.add(ddl)
18 if(valid(dd2,il ,i2 ,jl ,j2)) P.add(dd2)
19 }for each y in P {
20 dd I =getDPrnt (pv, y, true), dd2=getDPrnt (pv, y, false)
21 if(P. contains (ddl)) P.remove(ddl)
22 if(P.contains (dd2)) P.remove(dd2)
23 }
24 }return P
25
26
27 bool valid(MATCH m, int ii, int i2, int j I, int j2){
28 return (m#null A il<m.pl<il A jl<m.p2<j2)
29

the table, tbll[lpv.p11][l pv.p21] and initialize all elements
tbll [i] [j] = null, signifying that no MATCHes are found.
Next, we insert each a E A into the list by setting
tbll[pv.pI.get(a.pl)][pv.p2.get(a.p2)] = a. Now, each
tbll [i] [j] = null needs to be set as the rightmost MATCH
m with the maximum m.pl in the subtable tbll[l...i][l...j].
This is easily computed by first moving vertically in tbll
and setting tbll[i][j] = tbll[i - l][j] if tbll[i][j] = null to
propagate the maximum values vertically. Finally, we need to
move horizontally in tbll and store in tbll [i][j] the rightmost
tbll[i][v] (1 :s; v :s; j) with the maximum tbll[i][v].pI. This
is done by a left-to-right scan of each row, comparing the

71

adjacent elements, and setting tbll[i][v] = tbll[i][v - 1] if
tbll [i][v - 1].pl > tbll [i][v].pI.

MATCH tbI2[][]. The tbl2 is the same as tbll except that
we define "closest" to mean that the a.p2 value is maximized
before the a.pI.

Definition 4: Max Table w.r.t. P2 (tbI2): Given the
set of all MATCH values A and PREY pv on A (with
pv.pl and pv.p2), the tbl2[lpv.p11][l pv.p21] is defined such
that each tbI2[i][j] is the a E A with the maximum

pv.p2.get(a.p2) :s; j, where pv.pI.get(a.pl) :s; i. In the
case that multiple such a exist, tbI2[i] [j] is the a with
the rightmost pv.pI.get(a.pl) :s; i. If no such a exists,
tbI2[i][j] = null.

The construction of tbl2 is the same as tbll, except
that in the final horizontal scan, we compare tbl2[i][v].p2
and tbI2[i][v - 1].p2.

In terms of construction time, if we assume that adding
and accessing HashMap entries are constant time operations,
and the Set is implemented with a HashMap, then the
PREY pv on A from the n-length Sl and m-length S2 is
constructed in O(lpv.pl l x I pv.p21) time. While pv.pl and
pv.p2 eliminate the gaps between the respective pI and p2
values of A, we have I pv.pl l E O(n) and I pv.p21 E O(m)
in the very worst case.

Theorem 5: Given the n-Iength Sl and m-Iength S2, and
the set of all MATCHes A, PREY pv on A is constructed
in O(nm) time.

2) getPrnts Function: Given the PREY pv data
structure on all MATCHes A, we call getPrnts(pv, L) in
line 11 of constructDAG to retrieve the set of parent
MATCHes P of the MATCH LE A. Recall that these
parents P of the MATCH L are all MATCHes that directly
precede L in the DAG, i.e. each pEP is in series with L
and no p, p2 E P are in series with one another. Using pv,
we can compute, for any MATCH C E A, two direct parents

that are closest to c with respect to the pI and p2 values.
Definition 6: Direct Parents: Given the PREY pv on the

MATCHes in A between the n-Iength Sl and the m-Iength
S2, and a MATCH c E A, let i = pv.pI.get(c.pl) and
j = pv.p2.get(c.p2). The direct parent of c W.r.t. pI is:

dl =
{ null, if i :s; 1 V j :s; 1 Vi> Ipv.pl l V j > Ipv.p21

pv. tbll [i - l][j - 1], otherwise
The direct parent of c W.r.t. p2 is:

d2 =
{ null, if i :s; 1 V j :s; 1 Vi> Ipv.pl l V j > Ipv.p21

pv.tbl2[i - l][j - 1], otherwise
The first getDPrnt in Algorithm 2 implements Defi­

nition 6 to return the direct parents for any MATCH say
LEA. In cases where we want to find the direct parent for
a MATCH at a certain location in the pv.tbll or pv.tbI2, say
pv.tbll[i][j] or pv.tbI2[i][j], we overload getDPrnt.

The direct parents computation (getDPrnt) is the cor­
nerstone of the getp rnt s function. The following lenuna,
implemented in Algorithm 3, proves that the direct parents
of c can be used to determine all parents of c.

Lemma 7: Given A, the MATCHes between Sl and S2,
and a MATCH c E A, the two direct parents of c can be
used to compute the set P with all parents of c.

Proof Let dl and d2 be the direct parents of c (Def­
inition 6). By Definition 3, dl is a direct parent because it
directly precedes c with the maximum pI and the rightmost
p2 value. Similarly by Definition 4, d2 is a direct parent of
c because it directly precedes c with the maximum p2 and
the rightmost pI value. To find the remaining parents of c,

we now find other MATCHes that precede c, which are also
parallel with dl and d2. There are three cases.

Case (a). When dl = null, then also d2 = null since
there cannot be another MATCH preceding c. Thus, P = 0.

Case (b). When dl = d2, the nearest parents to c are
the same MATCH. There are only two types of MATCHes
that are parallel with dl. First, we need to consider all
MATCHes, say ml, with the same endpoint ml.pl = dl.pl
and ml.p2 E {I, 2, ... , dl.p2 - I}. Second, we need to
consider the MATCHes, say m2, with the same endpoint
m2.p2 = dl.p2 and m2.p2 E {I, 2, ... , dl.pl - I}. In the
LCS computation, suppose that we chose, w.l.o.g., ml (with
ml.p2 = dl.p2 - 2) instead of dl. Then, we cannot choose
a MATCH m3 with m3.pl < dl.pl and m3.p2 = dl.p2 - l.
So, having any ml or m2 parallel to dl will only lead to
suboptimal CSSs. Thus, only P = {dl} is a parent of c.

Case (c). Otherwise, dl =I- d2 and we have two different
direct parents of c. Set P = {dl, d2}. Let us collect the
endpoints of dl and d2: il = d2.pl, i2 = dl.pl, jl =

dl.p2, and j2 = d2.p2. What MATCH, say m3, is parallel
to dl and d2? By Definition 6, there cannot be any MATCH
m3 directly preceding c with endpoints after i2 or j2. By (b),
we do not need to consider other MATCHes with endpoints
on either dl or d2. So, all the possible MATCHes parallel
to dl and d2 are those with (m3.pl E w /\ m3.p2 EX),
where w = {il + l, il + 2, ... , i2 - I} and x = {jl +
l, jl + 2, ... , j2 - I}. To find such m3, we only need to find
direct parents (by (b», say ddl and dd2, for a theoretical
MATCH m with (m.pl E w /\ m.p2 = j) V (m.pl = i
/\ m.p2 E x). Then, when we have il < ddl.pl < i2 and
jl < ddl.p2 < j2, this is a possible MATCH parallel with
dl and d2, which is also a possible parent of c, so we add
ddl to P. We do the same process for dd2.

Since we computed all the possible parents in P,
additional processing on P is needed to ensure that no pair
of MATCHes in P are in series; if any are in series, delete
the MATCH furthest from c. With the pv and getDPrnt,
this task is simple. We simply check the direct parents (say
ddl and dd2) for each yEP, and remove ddl if ddl E P
and remove dd2 if dd2 E P. •

C. Computing the LC S

Since our dag has a single source S (and all paths end
at E), the longest path between S and E, i.e. the LCS, is

72

computed by giving all edges a weight of -1 and finding
the shortest path from S to E via a topological sort [21J.

D. Complexity Analysis

Our LCS algorithm: (i) finds the length-l CSSs, (ii)
computes the DAG on the CSSs, and (iii) reports the longest
DAG path. Here, we analyze the overall time complexity.

Step (i). First, we find (and store in A) the TJ length-l
CSSs in O(max{n + m, TJ}) time by Lemma 2.

Step (ii). We then construct the DAG dag on these
a E A with constructDAG. In constructDAG, we
initially compute the newly proposed PREY pv data struc­
ture in O(nm) time by Theorem 5. After constructing
pv, the computeDAG iterates through each a E A and
creates an incoming edge between the parents of a and
a. So, computeDAG executes in time O(max{ nm, TJ x

tgetprnts}), where tgetPrnts is the time of getPrnts. The
getprnts running time is in O((i2 - il)+(j2 - jl)), with
respect to the local variables il, i2, jl, and j2. However, it
may be the case that il = jl = 1, i2 = n, and j2 = m,
and so O(n + m) time is required by getPrnts. Below
we formalize the worst case result and the case for average
strings from a uniform distribution.

Lemma 8: For the n-Iength Sl and the m-Iength S2, the
getPrnts function requires O(n + m) time.

Lemma 9: For average case strings Sl and S2 with sym­
bols uniformly drawn from alphabet �, the getP rnt s
function requires O(I� I) time.

Proof Since dl and d2 are the direct parents of c (see
Definitions 3, 4, and 6), and since the uniformness of Sl
and S2 means that for any symbol say Sl [s] we can find
every (J E � in S2[S - � ... s + �] with � E O(I� I), then
(i2 - il) E O(I� I) and (j2 - jl) E O(I� I). •

So, the overall constructDAG time follows.
Theorem 10: Given A, the length-l MATCHes in the

n-Iength Sl and the m-Iength S2, the constructDAG
requires O(max{nm, TJ x max{n, m}}) time in the worst
case and O(max{nm, TJ x I� I}) on average.

Step (iii). We find the LC S with a topological sort in
time linear to the dag size [21], which cannot require more
time than that needed to build the dag (see Theorem 10).

Overall, (i) and (iii) do not add to the complexity of (ii).
Theorem 11: The LC S between the n-Iength Sl and

the m-Iength S2 can be computed in O(max{nm, TJ x

max{n, m}}) time in the worst case and O(max{nm, TJ x

I � I }) on average.

IV. COMPRESSING RESEQUENCING DATA

When data is released, modified, and re-released over
a period of time, a large amount of commonality exists
between these releases. Rather than maintaining all un­
compressed versions of the data, it is possible to keep
one uncompressed version, say D, and compress all fu­
ture versions Di with respect to D. We refer to Di as

Table I
Arabidopsis thaliana GENOME: RESULTS (IN BYTES) FOR COMPRESSING
CHROMOSOME U INTO C, WHERE lL AND IF' RESPECTIVELY REPRESENT

LZMA2 AND PPMD FROM 7-zlP.

U lUI Our Scheme GRS GReEn

ICi IlL(CJI IIF'\CJI [13] [14]

1 30 427 671 1 086 963 1 037 715 1 551
2 19 698 289 504 584 605 385 937
3 23 459 830 746 759 803 2 989 1 097
4 18 585 056 4 555 2 507 3 156 1 951 2 356
5 26 975 502 433 502 520 604 618

Sum 119 146 348 7 324 5 315 6 121 6 644 6 559

Table II
Homo sapiens GENOME: RESULTS (IN BYTES) FOR COMPRESSING

CHROMOSOME U INTO C.
U lUI OUf Scheme GRS GReEn

ICI [13] [14]

1 247 249 719 381 577 1 336 626 1 225 767
2 242 951 149 356 526 1 354 059 1 272 105

3 199 501 827 284 096 1 011 124 971 527
4 191 273 063 330 381 1 139 225 1 074 357
5 180 857 866 259 922 988 070 947 378

6 170 899 992 265 222 906 116 865 448

7 158 821 424 292 797 1 096 646 998 482
8 146 274 826 222 972 764 313 729 362

9 140 273 252 309 512 864 222 773 716
10 135 374 737 245 264 768 364 717 305
11 134 452 384 222 735 755 708 716 301
12 132 349 534 214 123 702 040 668 455
13 114 142 980 148 938 520 598 490 888
14 106 368 585 141 128 484 791 451 018
15 100 338 915 138 219 496 215 453 301
16 88 827 254 151 606 567 989 510 254

17 78 774 742 136 168 505 979 464 324

18 76 117 153 113 469 408 529 378 420
19 63 811 651 130 468 399 807 369 388
20 62 435 964 94 273 282 628 266 562
21 46 944 323 71 121 226 549 203 036
22 49 691 432 81 329 262 443 230 049
M 16 571 64 183 127
X 154 913 754 523 282 3 231 776 2 712 153
Y 57 772 954 152 464 592 791 481 307

Sum 3 080 436 051 5 267 656 19 666 791 17 971 030

the target and D as the reference. This idea is used to
compress resequencing data in [13], [14], primarily using
the LCS. The LCS, however, has two core problems with
respect to compression. For very similar sequences, the LC S
computation time is almost quadratic, or worse, potentially
leading to long compression time. Secondly, the LC S may
not always lead to the best compression, especially when
some CSS components are very short.

Rather than focusing on the LCS, we consider the
maximal CSSs that make up the common subsequences.
To intelligently choose which of the CSS's are likely to
lead to improved compression, we use the longest previous
factor (LP F). Consider compressing the target T with
respect to the reference R; let Z = RoT. Suppose we
choose exactly IT I maximal length CSSs, specifically, for
(3 = Z[i··· IZ I] we have a = Z[h··· IZ I] such that (1) CSSs
a[l...k] = (3[l...k] and (2) this is the maximal k for h < i,
where IR I + 1 � i � IZ I . These ks are computed in the
LP F data structure on Z at LP F[i] = k and the position

73

of this CSS is at POS[i] = h [18]. (Note that LPF and
POS are constructed in linear time [18], [19], [20].) The
requirement that h < i suits dictionary compression and
compressing resequencing data because the CSS beginning
at i is compressed by referencing the same CSS at h,
occurring earlier in target T or anywhere in the reference R.
Our idea is to use the LP F and POS to represent or encode

CSSs that make up the target T with tuples. We will then
compress these tuples with standard compression schemes.

Our Compression Scheme. We now propose a reference­
based compression scheme which scans the LP F and POS
on Z in a left-to-right fashion to compress T with respect to
R. This scheme is similar to the LZ factorization [18], but
differs in how we will encode the CSSs. Our contribution
here is (1) using two files to compress T, (2) only encoding
CSSs with length at least k, and (3) further compressing the
resulting files with standard compression schemes.

Initially, the two output files, triples and symbols, are
empty. Let i = IR I + 1.

(*) If LP F[i] < k, we simply encode the symbol; append
the (say I-byte) char T[i - IR I] to symbols and increment i.
Otherwise LP F[i] � k, so we will encode this CSS with the
triple (pT, pZ, l), where pT = i - IR I is the starting position
of the CSS in T, pZ = POS[i] is the starting position of
the CSS in Z[l...i - 1] , and l = LPF[i] is the length of the
CSS. We write three long (say 4-byte) words pT, pZ, and l
to triples. Since the triple encodes an i-length CSS, we set
i = i + l to consider compressing the suffix following the
currently encoded CSS. Lastly, if i � IZ I , continue to (*) .

The resulting files triples and symbols are binary se­
quences that can be further compressed with standard com­
pression schemes (so, decompression will start by first
reversing this process). The purpose of the k and the two
files (one with byte symbols and one with long triples) is to
introduce flexibility into the system and encode CSSs with
triples (12 bytes) only when beneficial and otherwise, encode
a symbol with a byte. For convenience, our implementation
encodes each symbol with a byte, but we acknowledge that
it is possible to work at the bit-level for small alphabets.

The decompression is also a left-to-right scan. Let i = 1
and point to the beginning of triples and symbols.

(t) Consider the current long word WI in triples. Ac­
cording to the triple encoding, this will be the position
of the CSS in T. If i = WI, then we pick up the next
two long words W2 and W3 in triples. We now know
T[i ... i +W3 - 1] = Z[W2 ... W2 +W3 - 1]. Since we only have
access to Rand T[l...i - 1], then we pick up each symbol
of Z[W2 ... W2 + W3 - 1] by picking up R[j] if j � IR I and
picking up T[j - IR I] otherwise, for W2 � j � W2 + W3 - 1.
We next will consider i = i+W3. Else i i= WI, so we pick up
the next char c in symbols since T[i] = c; we next consider
i++. If i � IT I , go to (t).

Compression Results. We implemented the aforemen­
tioned compression scheme and ran our program to com-

press, like [13], [14], the Arabidopsis thaliana genome
chromosomes in TAIR9 (target) with respect to TAIR8
(reference). For chromosome 1, we found that k = 31
performs best; we used this same k for all chromosomes.
In Table I, we display the compression results. We see that
all of our results are competitive with the GRS and GReEn
systems, except for chromosome 4, which has the smallest
average CSS length of about 326K. Nonetheless, we are able
to further compress our results with compression schemes in
7-zip to achieve better compression than GRS and GReEn.

In Table II, we show results for the Homo sapiens genome
compression (with k = 31), using KOREF _20090224 as the
target and KOREF _20090131 as the reference. All of our
results are better than GRS and GReEn. Note that these
results can be further improved by applying 7-zip as in
Table I. Theoretically, our compression scheme requires time
linear in the uncompressed text length, since we perform one
scan of the LP F, which is constructed in linear time via the
suffix array SA [18]. We ran our programs in an AW S EC2
m4.4xlarge environment. For the larger chromosomes from
the Homo sapiens genome, the SA construction required
2,376 seconds and the LP F construction required 399
seconds. Depending on the application, the SA and LP F
may already be available. Given the LP F, our compression
and decompression algorithms completed in less than one
second. Our future plan includes using more efficient SA
and LP F constructions.

V. CONCLUSION

We proposed a new algorithm to compute the LCS.
Motivated by our algorithm, we introduced a new reference­
based compression scheme for genome resequencing data
using the LP F. For the Arabidopsis thaliana genome
(originally 119,146,348 bytes), our scheme compressed the
genome to 5,315 bytes, an improvement over the best
performing state-of-the-art methods (6,644 bytes [13] and
6,559 bytes [14]). For the Homo sapiens genome (originally
3,080,436,051 bytes), our scheme compressed the genome to
5,267,656 bytes, an improvement over the 19,666,791 bytes
and 17,971,030 bytes achieved in [13] and [14], respectively.

REFERENCES

[1] D. Gusfield, Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, 1997.

[2] D. Adjeroh, T. Bell, and A. Mukherjee, The Burrows- Wheeler
Transform: Data Compression, Suffix Ar rays, and Pattern
Matching, 1st ed. Springer, 2008.

[3] T. F. Smith and M. S. Waterman, "Identification of common
molecular subsequences," lournal of Molecular Biology, vol.
147, pp. 195-197, 1981.

[4] J. Aach, M. Bulyk, G. Church, J. Comander, A. Derti,
and J. Shendure, "Computational comparison of two draft
sequences of the human genome," Nature, vol. 26, no. 1, pp.
5-14, 2001.

74

[5] S. Wandelt and U. Leser, "Fresco: Referential compression of
highly similar sequences," IEEEIACM Trans. Comput. Biol.
Bioinformatics, vol. 10, no. 5, pp. 1275-1288, Sep. 2013.

[6] R. Giancarlo, D. Scaturro, and F. Utro, "Textual data com­
pression in computational biology: Algorithmic techniques,"
Computer Science Review, vol. 6, no. 1, pp. 1-25, 2012.

[7] C.-E. Kuo, Y.-L. Wang, J.-J. Liu, and M.-T. Ko, "Resequenc­
ing a set of strings based on a target string," Algorithmica,
vol. 72, no. 2, pp. 430-449, Jun. 2015.

[8] E. W. Myers, "An O(N D) difference algorithm and its
variations." Algorithmica, vol. 1, no. 2, pp. 251-266, 1986.

[9] E. Ukkonen, "Algorithms for approximate string matching,"
Inform and Control, vol. 64, pp. 100-118, 1985.

[10] J. W. Hunt and T. G. Szymanski, "A fast algorithm for
computing longest subsequences." Commun. ACM, vol. 20,
no. 5, pp. 350-353, 1977.

[11] D. S. Hirschberg, "A linear space algorithm for computing
maximal common subsequences," Commun. ACM, vol. 18,
no. 6, pp. 341-343, Jun. 1975.

[12] 1. Yang, Y. Xu, Y. Shang, and G. Chen, "A space-bounded
anytime algorithm for the multiple longest common subse­
quence problem," IEEE Trans. Knowl. Data Eng., vol. 26,
no. 11, pp. 2599-2609,2014.

[13] c. Wang and D. Zhang, "A novel compression tool for
efficient storage of genome resequencing data," Nucleic Acids
Res., vol. 39, no. 4, 2011.

[14] A. J. Pinho, D. Pratas, and S. P. Garcia, "GReEn: A tool for
efficient compression of genome resequencing data," Nucleic

Acids Research, vol. 40, no. 4, 2012.

[15] D. Adjeroh and F. Nan, "On compressibility of protein
sequences." in DCC. IEEE Computer Society, 2006, pp.
422-434.

[16] M. Fritz, R. Leinonen, G. Cochrane, and E. Birney, "Effi­
cient storage of high throughput DNA sequencing data using
reference-based compression," Genome Research, vol. 21, pp.
734-40, 2011.

[17] F. Hach, I. Numanagic, C. Alkan, and S. C. Sahinalp, "Scalce:
boosting sequence compression algorithms using locally con­
sistent encoding." Bioinformatics, vol. 28, no. 23, pp. 3051-
3057,2012.

[18] M. Crochemore and L. Hie, "Computing longest previous
factor in linear time and applications," Information Processing
Letters, vol. 106, no. 2, pp. 75 - 80, 2008.

[19] R. Beal and D. Adjeroh, "Parameterized longest previous
factor," Theoretical Computer Science, vol. 437, pp. 21 - 34,
2012.

[20] --, "Variations of the parameterized longest previous fac­
tor," lournal of Discrete Algorithms, vol. 16, pp. 129 - 150,
2012.

[21] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson,
Introduction to Algorithms, 2nd ed. McGraw-Hill, 2001.

