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Abstract-The longest common subsequence (LCS) problem 
is a classical problem in computer science, and forms the basis 
of the current best-performing reference-based compression 
schemes for genome resequencing data. First, we present a 
new algorithm for the LCS problem. Then, we introduce 
an LCS-motivated reference-based compression scheme using 
the components of the LCS, rather than the LCS itself. For 
the Homo sapiens genome (original size 3,080,436,051 bytes), 
our proposed scheme compressed the genome to 5,267,656 
bytes). This can be compared with the previous best results 
of 19,666,791 bytes (Wang and Zhang, 2011) and 17,971,030 
bytes (Pinho, Pratas, and Garcia, 2011). Thus, our compression 
ratio is about 3.73 to 3.41 times better than those from the 
state-of-the-art reference-based compression algorithms. 

Keywords-longest common subsequence, LCS, longest previ­
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I. INTRODUCTION AND BACKGROUND 

Measuring similarity between sequences, be it DNA, 
RNA, or protein sequences, is at the core of various prob­
lems in molecular biology. An important approach to this 
problem is computing the longest common subsequence 
(LCS) between two strings Sl and S2, i.e. the longest 
ordered list of symbols common between Sl and S2. For 
example, when Sl = abba and S2 = abab, we have the 
following LCSs: abb and aba. The LCS has been used 
to study various string analysis problems [1], [2]. Biological 
applications of the LC S and similarity measurement are var­
ied, from sequence alignment [3] in comparative genomics 
[4], to phylogenetic construction and analysis, to rapid 
search in huge biological sequences [5], to compression and 
efficient storage of the rapidly expanding genomic data sets 
[6], to re-sequencing a set of strings given a target string 
[7], which is important in efficient genome assembly. 

Finding the LCS between the n-Iength Sl and m-Iength 
S2 is relatively easy, the real challenge is to do this in a 
time- and space-efficient manner. The LC S computation 
is a classical computer science problem with a dynamic 
programming solution on an m-by-n grid (see [1], [2]). The 
grid is populated and a trace back is used to compute the 
LCS in O(mn) time and O(mn) space. This trace back was 
proposed as a minimum cost path determination problem by 
Myers et at. [8] and Ukkonen [9]. Hunt and Szymanski [10] 
earlier used an essentially similar approach to solve the LC S 
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problem in (r + n) log n time, with n « m, where r is the 
number of pairwise symbol matches. When two non-similar 
files are compared, we will have r « mn, or r in O(n), 
leading to a practical O( n log n) time algorithm. However, 
for very similar files, we have r ;::::: mn, or an O( mn log n) 
algorithm. Space-efficient algorithms for the LC S problem 
has also been considered (see [11], [12]). 

The LC S has been used in some recent algorithms to 
compress genome resequencing data [13], [14]. Compression 
of biological sequences is an important but difficult problem, 
which has been studied for decades by various authors 
(see [6], [5], [15]). Most of the earlier studies focused on 
lossless compression and generally exploited self-contained 
redundancies, without using a reference sequence. Lossy 
compression was proposed in [16], [17] for high throughput 
sequences admitting limited errors. 

More recent methods ([14], [13]) have considered loss­
less compression of re-sequencing data by exploiting the 
significant redundancies between the genomes from related 
species, reporting compression ratios in the order of 80 to 
18,000 without loss. The LCS is the hallmark of these 
reference-based approaches. In this work, we first intro­
duce a new algorithm for the LC S problem, using suffix 
trees and shortest-path graph algorithms. Motivated by our 
LC S algorithm, we introduce an improved reference-based 
compression scheme for resequencing data using the longest 
previous factor (LPF) data structure [18], [19], [20]. 

II. PRELIMINARIES 

A string T is a sequence of symbols from some alphabet 
�. We append a terminal symbol $ f. � to strings for 
completeness. A string or data structure D has length I D I ,  
and its ith element i s  indexed by D[i], where 1 ::; i ::; ID I .  
A prefix of a string T i s  T[l...i] and a suffix is T[i ... IT I ], 
where 1 ::; i ::; IT I .  The suffix tree (ST) on the n-Iength T is 
a compact trie (with O(n) nodes constructed in O(n) time 
[2]) that represents all of the suffixes of T. Suffixes with 
common prefixes share nodes in the tree until the suffixes 
differentiate and ultimately, each suffix T[i ... n] will have its 
own leaf node to denote i. A generalized suffix tree (CST) 
is an ST for a set of strings. A substring of T is T[i ... j], 



where I � i � j � n. The longest common subsequence is 
defined below in terms of length-l common substrings. 

Definition 1: Longest common subsequence (LC S ): 
For the n-Iength SI and m-Iength S2, the LCS between 
SI and S2 is the length of the longest sequence of pairs 
M = {ml, ... , mM}, where mi = (u, v) such that 
SI[mh.u] = S2[mh.v] for I � h � M and mi.u < 
mHl.u 1\ mi.V < mi+l'v for I � i < M. 

III. LCS ALGORITHM 

Below, we compute the LCS between S I  and S2 in the 
following way. (i) We use the CST to compute the common 
substrings (CSSs) shared between SI and S2. (ii) We use 
the CSSs to construct a directed acyclic graph (DAG) of 
maximal CSSs. (iii) We compute LCS by finding the longest 
path in the DAG. Steps (i) and (iii) are standard tasks. For 
step (ii), we develop new algorithms and data structures. 

A. Computing the CSSs 

We now briefly describe finding the common substrings 
(CSSs) between SI and S2. In our LCS algorithm, for 
simplicity of discussion, we will only use CSSs of length-I. 

Let A = 0. Compute the CST on SI$1 0 S2$2, for 
terminals {$1' $2}. Consider a preorder traversal of the 
CST. When at depth-1 for a node N, let S = 0. During 
the pre order traversal from N, we collect in S all of the 
suffix index leaves descending from N, which represent the 
suffixes that share the same first symbol. Let SI = S2 = 0. 
For 8 E S, if 8 � ISl l ,  then store 8 in SI. Otherwise, 
store 8 in S2. We represent all of our length-1 matches 
in the following structure: MATCH {id, pI, p2}. The id 
is a unique number for the MATCH, and PI and P2 are 
respectively the positions in SI and S2 where the CSS exists. 
Let id = 2. Now, for each 81 E SI, we create a new MATCH 
m = (id++, 81, 82) for each 82 E S2. Store each m in A. 

The running time is clearly the maximum of the CST 
construction and the number of length-l CSSs. 

Lemma 2: Say n= ISl l and m= I S21, then computing the 'T} 

CSSs of length-l between S I  and S2 requires O(max{n + 

m, 'T}}) time. 

B. DAG Construction 

Given all of the MATCHes found in A, our task now is 
to construct the DAG for A. For all paths of the DAG to 
start and end at a common node, we make MATCHes S and 
E to respectively precede and succeed the MATCHes in A. 
(Let S have id = I and E have id = IA  + 21 and then store 
S and E in A.) The goal of the DAG is to represent all 
maximal CSSs between S I  and S2 as paths from S to E. 
We will later find the LCS, the longest such path. 

In the DAG, the nodes will be the MATCH ids and 
the edges between MATCHes, say m l  and m 2, represent 
that SI[ml.pl] = S2[ml.p2] is chosen in the maximal 
common subsequence followed by SI[m2.pl] = S2[m2.p2]. 
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The DAG is acyclic because, by Definition 1, the LCS is a 
list of ordered MATCHes. Since we cannot choose mi E M 
and then mh E M with h < i, then no cycle can exist. 

Our DAG construction, displayed in Algorithm 1, operates 
in the following way. We initialize the DAG dag by first 
declaring dag.gr of size IA I ,  since gr will represent all of 
the nodes. All outgoing edges for say the node N E A are 
represented by dag.gr[N.id][1...dag.8z[N.idlJ. By setting 
dag.8z = {O, ... , O}, we clear the edges in our dag. Now, 
setting these edges is the main task of our algorithm. 

We can easily construct the edges by assuming that there 
exists a data structure PREY pv that can tell us the set 
of parents for each node a E A. That is, we can call 
getPrnts(pv, L) to get the set of nodes P that directly 

precede MATCH LE A in the final dag. By "directly 
precede", we mean that in the final dag, there is connection 
from each pEP to a, i.e. each p is in series with a, meaning 
that both p AND a are chosen in a maximal CSS. Further, 
no p, p2 E P can be in series with one another, and rather, 
they are in parallel with one another, meaning that either p 
OR p2 is chosen in a maximal common subsequence. 

With P, we can build an edge from a2 E P to a by 
first allocating a new space in dag.gr[a2.id] by incrementing 
dag.8z[a2.id] and then making a directed edge from parent 
to child, i.e. dag.gr[a2.id][dag.8z[a2.idlJ = a.id. After 
computing the incoming edges for each node a E A, the 
dag construction is complete. 

1) PREV Data Structure: The simplicity of the DAG 
construction is due to the PREY pv, detailed here. The pv 
is composed of four attributes. 

HashMap<int,int> pI. Suppose that all a.pl values (for 
a E A) are placed on an integer number line. It is very 
unlikely that all a.pl values will be consecutive and so, there 
will be unused numbers (gaps) between adjacent values. 
Since we later declare matrices on the MATCH pI (and p2) 
values, these gaps will be wasteful. With a scan of the a.pl 
values (say using a Set), we can rename them consecutively 
without gaps; these renamed values are found by accessing 
HashMap<int,int> pI with the original a.pl value. 

HashMap<int,int> p2. This is the same as the afore­
mentioned pI, but with respect to the a.p2 values. 

MATCH tbll[][l A fundamental data structure to support 
the getP rnt s function is the tbll, defined below. 

Definition 3: Max Table w.r.t. PI (tbll): Given the 
set of all MATCH values A and PREY pv on A (with 
pv.pl and pv.p2), the tbll[ lpv.pl l ][ l pv.p21] is defined such 
that each tbll[i][j] is the a E A with the maximum 

pv.pI.get(a.pl) � i, where pv.p2.get(a.p2) � j. In the 
case that multiple such a exist, tbll [i][j] is the a with 
the rightmost pv.p2.get(a.p2) � j. If no such a exists, 
tbll [i][j] = null. 

In other words, the tbll [i][j] stores the "closest" 
MATCH a with respect to the PI values (i.e. we maxi­
mize a.pl before a.p2). To construct tbll, we first declare 



Aloorithm 1 
I MAlCH { int id ,pi ,p2 } 
2 DRCTPRNTS { MAlCH ml ,m2 } 
3 DAG { int gr [][] , sz [] } 
4 PREV{MAlCHtbll [][] ,tbI2[][] ; HashMap<int,int>pl,p2} 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 

DAG constructDAG( Set<MATCI-t> A) { 
in t num=A. s i z e (), s z [num ] = { 0, .. ,O}; MATCH a, a2 
PREV pv=constructPREV(A) 
DAG dag={ new int [num ] [] , sz } 
for each a in A { 

Set<MA1CI-t> P=getPrnts(pv,L) 
for each a2 in P { 

dag. sz[a2. id ]++ 
dag. gr[a2. id ][dag. sz[a2. idll=a. id 

} 
} return dag 

1 MAlCH getDPrnt(PREV pv, MAlCH L, bool wrtSI){ 
2 return getDPrnt(pv,pv pl.get(L.pl),pv.p2.get(L.p2),wrtSI 
3 
4 
5 MATCH getDPrnt(PREV pv, int i, int j, bool wrtS I){ 
6 if(i:C;1 V j:C;l) return null 
7 if(wrtSI) return pv.tbll[i-I][j-I] 
8 else return pv.tbI2[i- l][j-l] 
9 

I Set<MA1CI-t> getPrnts(PREV pv, MAlCH c) { 
2 Set<MA1CI-t> P; int i=pv.pl.get(c.pl), j=pv.p2.get(c.p2) 
3 in t q, ii, I I, i 2, 12, j I, J I, j 2, J 2 
4 MATCH y, ddl, dd2 
5 MAlCH dl=getDPrnt(pv,c,true), d2=getDPrnt(pv,c,false) 
6 if (d I = null A d I =d2) P. add (d I ) 
7 else if(dl=null){ 
8 P. add (d I ), P. add (d2) 
9 il=d2.pl, I 1 =pv.pl.get(il), i2=dl.pl, 12=pv.pl.get(i2) 

10 jl=dl.p2, JI=pv.p2.get(jl), j2=d2 p2, J2=pv.p2.get(j2) 
II for(q=II+1 t o  12) { 
12 ddl=getDPrnt(pv,q,j ,true), dd2=getDPrnt(pv,q,j ,false 
13 if(valid(ddl,il ,i2,jl ,j2)) P.add(ddl) 
14 if(valid(dd2,il ,i2 ,jl ,j2)) P.add(dd2) 
15 }for(q=JI+1 to J2) { 
16 ddl=getDPrnt(pv,i ,q,true), dd2=getDPrnt(pv,i ,g, false 
17 if (valid(ddl ,il ,i2 ,jl ,j2)) P.add(ddl) 
18 if(valid(dd2,il ,i2 ,jl ,j2)) P.add(dd2) 
19 }for each y in P { 
20 dd I =getDPrnt (pv, y, true), dd2=getDPrnt (pv, y, false) 
21 if(P. contains (ddl)) P.remove(ddl) 
22 if(P.contains (dd2)) P.remove(dd2) 
23 } 
24 }return P 
25 
26 
27 bool valid(MATCH m, int ii, int i2, int j I, int j2){ 
28 return (m#null A il<m.pl<il A jl<m.p2<j2) 
29 

the table, tbll[ lpv.p11][ l pv.p21] and initialize all elements 
tbll [i] [j] = null, signifying that no MATCHes are found. 
Next, we insert each a E A into the list by setting 
tbll[pv.pI.get(a.pl)][pv.p2.get(a.p2)] = a. Now, each 
tbll [i] [j] = null needs to be set as the rightmost MATCH 
m with the maximum m.pl in the subtable tbll[l...i][l...j]. 
This is easily computed by first moving vertically in tbll 
and setting tbll[i][j] = tbll[i - l][j] if tbll[i][j] = null to 
propagate the maximum values vertically. Finally, we need to 
move horizontally in tbll and store in tbll [i][j] the rightmost 
tbll[i][v] (1 :s; v :s; j) with the maximum tbll[i][v].pI. This 
is done by a left-to-right scan of each row, comparing the 
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adjacent elements, and setting tbll[i][v] = tbll[i][v - 1] if 
tbll [i][v - 1].pl > tbll [i][v].pI. 

MATCH tbI2[][]. The tbl2 is the same as tbll except that 
we define "closest" to mean that the a.p2 value is maximized 
before the a.pI. 

Definition 4: Max Table w.r.t. P2 (tbI2): Given the 
set of all MATCH values A and PREY pv on A (with 
pv.pl and pv.p2), the tbl2[ lpv.p11][ l pv.p21] is defined such 
that each tbI2[i][j] is the a E A with the maximum 

pv.p2.get(a.p2) :s; j, where pv.pI.get(a.pl) :s; i. In the 
case that multiple such a exist, tbI2[i] [j] is the a with 
the rightmost pv.pI.get( a.pl) :s; i. If no such a exists, 
tbI2[i][j] = null. 

The construction of tbl2 is the same as tbll, except 
that in the final horizontal scan, we compare tbl2[i][v].p2 
and tbI2[i][v - 1].p2. 

In terms of construction time, if we assume that adding 
and accessing HashMap entries are constant time operations, 
and the Set is implemented with a HashMap, then the 
PREY pv on A from the n-length Sl and m-length S2 is 
constructed in O(lpv.pl l x I pv.p21) time. While pv.pl and 
pv.p2 eliminate the gaps between the respective pI and p2 
values of A, we have I pv.pl l E O(n) and I pv.p21 E O(m) 
in the very worst case. 

Theorem 5: Given the n-Iength Sl and m-Iength S2, and 
the set of all MATCHes A, PREY pv on A is constructed 
in O(nm) time. 

2) getPrnts Function: Given the PREY pv data 
structure on all MATCHes A, we call getPrnts(pv, L) in 
line 11 of constructDAG to retrieve the set of parent 
MATCHes P of the MATCH LE A. Recall that these 
parents P of the MATCH L are all MATCHes that directly 
precede L in the DAG, i.e. each pEP is in series with L 
and no p, p2 E P are in series with one another. Using pv, 
we can compute, for any MATCH C E A, two direct parents 

that are closest to c with respect to the pI and p2 values. 
Definition 6: Direct Parents: Given the PREY pv on the 

MATCHes in A between the n-Iength Sl and the m-Iength 
S2, and a MATCH c E A, let i = pv.pI.get(c.pl) and 
j = pv.p2.get(c.p2). The direct parent of c W.r.t. pI is: 

dl = 
{ null, if i :s; 1 V j :s; 1 Vi> Ipv.pl l V j > Ipv.p21 

pv. tbll [i - l][j - 1], otherwise 
The direct parent of c W.r.t. p2 is: 

d2 = 
{ null, if i :s; 1 V j :s; 1 Vi> Ipv.pl l V j > Ipv.p21 

pv.tbl2[i - l][j - 1], otherwise 
The first getDPrnt in Algorithm 2 implements Defi­

nition 6 to return the direct parents for any MATCH say 
LEA. In cases where we want to find the direct parent for 
a MATCH at a certain location in the pv.tbll or pv.tbI2, say 
pv.tbll[i][j] or pv.tbI2[i][j], we overload getDPrnt. 

The direct parents computation (getDPrnt) is the cor­
nerstone of the getp rnt s function. The following lenuna, 
implemented in Algorithm 3, proves that the direct parents 
of c can be used to determine all parents of c. 



Lemma 7: Given A, the MATCHes between Sl and S2, 
and a MATCH c E A, the two direct parents of c can be 
used to compute the set P with all parents of c. 

Proof Let dl and d2 be the direct parents of c (Def­
inition 6). By Definition 3, dl is a direct parent because it 
directly precedes c with the maximum pI and the rightmost 
p2 value. Similarly by Definition 4, d2 is a direct parent of 
c because it directly precedes c with the maximum p2 and 
the rightmost pI value. To find the remaining parents of c, 

we now find other MATCHes that precede c, which are also 
parallel with dl and d2. There are three cases. 

Case (a). When dl = null, then also d2 = null since 
there cannot be another MATCH preceding c. Thus, P = 0. 

Case (b). When dl = d2, the nearest parents to c are 
the same MATCH. There are only two types of MATCHes 
that are parallel with dl. First, we need to consider all 
MATCHes, say ml, with the same endpoint ml.pl = dl.pl 
and ml.p2 E {I, 2, ... , dl.p2 - I}. Second, we need to 
consider the MATCHes, say m2, with the same endpoint 
m2.p2 = dl.p2 and m2.p2 E {I, 2, ... , dl.pl - I}. In the 
LCS computation, suppose that we chose, w.l.o.g., ml (with 
ml.p2 = dl.p2 - 2) instead of dl. Then, we cannot choose 
a MATCH m3 with m3.pl < dl.pl and m3.p2 = dl.p2 - l. 
So, having any ml or m2 parallel to dl will only lead to 
suboptimal CSSs. Thus, only P = {dl} is a parent of c. 

Case (c). Otherwise, dl =I- d2 and we have two different 
direct parents of c. Set P = {dl, d2}. Let us collect the 
endpoints of dl and d2: il = d2.pl, i2 = dl.pl, jl = 

dl.p2, and j2 = d2.p2. What MATCH, say m3, is parallel 
to dl and d2? By Definition 6, there cannot be any MATCH 
m3 directly preceding c with endpoints after i2 or j2. By (b), 
we do not need to consider other MATCHes with endpoints 
on either dl or d2. So, all the possible MATCHes parallel 
to dl and d2 are those with (m3.pl E w /\ m3.p2 EX), 
where w = {il + l, il + 2, ... , i2 - I} and x = {jl + 
l, jl + 2, ... , j2 - I}. To find such m3, we only need to find 
direct parents (by (b», say ddl and dd2, for a theoretical 
MATCH m with (m.pl E w /\ m.p2 = j) V (m.pl = i 
/\ m.p2 E x). Then, when we have il < ddl.pl < i2 and 
jl < ddl.p2 < j2, this is a possible MATCH parallel with 
dl and d2, which is also a possible parent of c, so we add 
ddl to P. We do the same process for dd2. 

Since we computed all the possible parents in P, 
additional processing on P is needed to ensure that no pair 
of MATCHes in P are in series; if any are in series, delete 
the MATCH furthest from c. With the pv and getDPrnt, 
this task is simple. We simply check the direct parents (say 
ddl and dd2) for each yEP, and remove ddl if ddl E P 
and remove dd2 if dd2 E P. • 

C. Computing the LC S 

Since our dag has a single source S (and all paths end 
at E), the longest path between S and E, i.e. the LCS, is 
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computed by giving all edges a weight of -1 and finding 
the shortest path from S to E via a topological sort [21J. 

D. Complexity Analysis 

Our LCS algorithm: (i) finds the length-l CSSs, (ii) 
computes the DAG on the CSSs, and (iii) reports the longest 
DAG path. Here, we analyze the overall time complexity. 

Step (i). First, we find (and store in A) the TJ length-l 
CSSs in O(max{n + m, TJ}) time by Lemma 2. 

Step (ii). We then construct the DAG dag on these 
a E A with constructDAG. In constructDAG, we 
initially compute the newly proposed PREY pv data struc­
ture in O(nm) time by Theorem 5. After constructing 
pv, the computeDAG iterates through each a E A and 
creates an incoming edge between the parents of a and 
a. So, computeDAG executes in time O(max{ nm, TJ x 

tgetprnts}), where tgetPrnts is the time of getPrnts. The 
getprnts running time is in O((i2 - il)+(j2 - jl)), with 
respect to the local variables il, i2, jl, and j2. However, it 
may be the case that il = jl = 1, i2 = n, and j2 = m, 
and so O(n + m) time is required by getPrnts. Below 
we formalize the worst case result and the case for average 
strings from a uniform distribution. 

Lemma 8: For the n-Iength Sl and the m-Iength S2, the 
getPrnts function requires O(n + m) time. 

Lemma 9: For average case strings Sl and S2 with sym­
bols uniformly drawn from alphabet �, the getP rnt s 
function requires O( I� I)  time. 

Proof Since dl and d2 are the direct parents of c (see 
Definitions 3, 4, and 6), and since the uniformness of Sl 
and S2 means that for any symbol say Sl [s] we can find 
every (J E � in S2[S - � ... s + �] with � E O( I� I ), then 
(i2 - il) E O( I� I )  and (j2 - jl) E O( I� I). • 

So, the overall constructDAG time follows. 
Theorem 10: Given A, the length-l MATCHes in the 

n-Iength Sl and the m-Iength S2, the constructDAG 
requires O(max{nm, TJ x max{n, m}}) time in the worst 
case and O(max{nm, TJ x I� I}) on average. 

Step (iii). We find the LC S with a topological sort in 
time linear to the dag size [21], which cannot require more 
time than that needed to build the dag (see Theorem 10). 

Overall, (i) and (iii) do not add to the complexity of (ii). 
Theorem 11: The LC S between the n-Iength Sl and 

the m-Iength S2 can be computed in O(max{nm, TJ x 

max{n, m}}) time in the worst case and O(max{nm, TJ x 

I � I }) on average. 

IV. COMPRESSING RESEQUENCING DATA 

When data is released, modified, and re-released over 
a period of time, a large amount of commonality exists 
between these releases. Rather than maintaining all un­
compressed versions of the data, it is possible to keep 
one uncompressed version, say D, and compress all fu­
ture versions Di with respect to D. We refer to Di as 



Table I 
Arabidopsis thaliana GENOME: RESULTS (IN BYTES) FOR COMPRESSING 
CHROMOSOME U INTO C, WHERE lL AND IF' RESPECTIVELY REPRESENT 

LZMA2 AND PPMD FROM 7-zlP. 

U lUI Our Scheme GRS GReEn 

ICi IlL(CJI IIF'\CJI [13] [14] 

1 30 427 671 1 086 963 1 037 715 1 551 
2 19 698 289 504 584 605 385 937 
3 23 459 830 746 759 803 2 989 1 097 
4 18 585 056 4 555 2 507 3 156 1 951 2 356 
5 26 975 502 433 502 520 604 618 

Sum 119 146 348 7 324 5 315 6 121 6 644 6 559 

Table II 
Homo sapiens GENOME: RESULTS (IN BYTES) FOR COMPRESSING 

CHROMOSOME U INTO C. 
U lUI OUf Scheme GRS GReEn 

ICI [13] [14] 

1 247 249 719 381 577 1 336 626 1 225 767 
2 242 951 149 356 526 1 354 059 1 272 105 

3 199 501 827 284 096 1 011 124 971 527 
4 191 273 063 330 381 1 139 225 1 074 357 
5 180 857 866 259 922 988 070 947 378 

6 170 899 992 265 222 906 116 865 448 

7 158 821 424 292 797 1 096 646 998 482 
8 146 274 826 222 972 764 313 729 362 

9 140 273 252 309 512 864 222 773 716 
10 135 374 737 245 264 768 364 717 305 
11 134 452 384 222 735 755 708 716 301 
12 132 349 534 214 123 702 040 668 455 
13 114 142 980 148 938 520 598 490 888 
14 106 368 585 141 128 484 791 451 018 
15 100 338 915 138 219 496 215 453 301 
16 88 827 254 151 606 567 989 510 254 

17 78 774 742 136 168 505 979 464 324 

18 76 117 153 113 469 408 529 378 420 
19 63 811 651 130 468 399 807 369 388 
20 62 435 964 94 273 282 628 266 562 
21 46 944 323 71 121 226 549 203 036 
22 49 691 432 81 329 262 443 230 049 
M 16 571 64 183 127 
X 154 913 754 523 282 3 231 776 2 712 153 
Y 57 772 954 152 464 592 791 481 307 

Sum 3 080 436 051 5 267 656 19 666 791 17 971 030 

the target and D as the reference. This idea is used to 
compress resequencing data in [13], [14], primarily using 
the LCS. The LCS, however, has two core problems with 
respect to compression. For very similar sequences, the LC S 
computation time is almost quadratic, or worse, potentially 
leading to long compression time. Secondly, the LC S may 
not always lead to the best compression, especially when 
some CSS components are very short. 

Rather than focusing on the LCS, we consider the 
maximal CSSs that make up the common subsequences. 
To intelligently choose which of the CSS's are likely to 
lead to improved compression, we use the longest previous 
factor (LP F). Consider compressing the target T with 
respect to the reference R; let Z = RoT. Suppose we 
choose exactly IT I  maximal length CSSs, specifically, for 
(3 = Z[i··· IZ I ]  we have a = Z[h··· IZ I ]  such that (1) CSSs 
a[l...k] = (3[l...k] and (2) this is the maximal k for h < i, 
where IR I  + 1 � i � IZ I .  These ks are computed in the 
LP F data structure on Z at LP F[i] = k and the position 
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of this CSS is at POS[i] = h [18]. (Note that LPF and 
POS are constructed in linear time [18], [19], [20].) The 
requirement that h < i suits dictionary compression and 
compressing resequencing data because the CSS beginning 
at i is compressed by referencing the same CSS at h, 
occurring earlier in target T or anywhere in the reference R. 
Our idea is to use the LP F and POS to represent or encode 

CSSs that make up the target T with tuples. We will then 
compress these tuples with standard compression schemes. 

Our Compression Scheme. We now propose a reference­
based compression scheme which scans the LP F and POS 
on Z in a left-to-right fashion to compress T with respect to 
R. This scheme is similar to the LZ factorization [18], but 
differs in how we will encode the CSSs. Our contribution 
here is (1) using two files to compress T, (2) only encoding 
CSSs with length at least k, and (3) further compressing the 
resulting files with standard compression schemes. 

Initially, the two output files, triples and symbols, are 
empty. Let i = IR I  + 1. 

( *) If LP F[i] < k, we simply encode the symbol; append 
the (say I-byte) char T[i - IR I ]  to symbols and increment i. 
Otherwise LP F[i] � k, so we will encode this CSS with the 
triple (pT, pZ, l), where pT = i - IR I  is the starting position 
of the CSS in T, pZ = POS[i] is the starting position of 
the CSS in Z[l...i - 1] , and l = LPF[i] is the length of the 
CSS. We write three long (say 4-byte) words pT, pZ, and l 
to triples. Since the triple encodes an i-length CSS, we set 
i = i + l to consider compressing the suffix following the 
currently encoded CSS. Lastly, if i � IZ I ,  continue to (*) . 

The resulting files triples and symbols are binary se­
quences that can be further compressed with standard com­
pression schemes (so, decompression will start by first 
reversing this process). The purpose of the k and the two 
files (one with byte symbols and one with long triples) is to 
introduce flexibility into the system and encode CSSs with 
triples (12 bytes) only when beneficial and otherwise, encode 
a symbol with a byte. For convenience, our implementation 
encodes each symbol with a byte, but we acknowledge that 
it is possible to work at the bit-level for small alphabets. 

The decompression is also a left-to-right scan. Let i = 1 
and point to the beginning of triples and symbols. 

(t) Consider the current long word WI in triples. Ac­
cording to the triple encoding, this will be the position 
of the CSS in T. If i = WI, then we pick up the next 
two long words W2 and W3 in triples. We now know 
T[i ... i +W3 - 1] = Z[W2 ... W2 +W3 - 1]. Since we only have 
access to Rand T[l...i - 1], then we pick up each symbol 
of Z[W2 ... W2 + W3 - 1] by picking up R[j] if j � IR I  and 
picking up T[j - IR I ]  otherwise, for W2 � j � W2 + W3 - 1. 
We next will consider i = i+W3. Else i i= WI, so we pick up 
the next char c in symbols since T[i] = c; we next consider 
i++. If i � IT I ,  go to (t). 

Compression Results. We implemented the aforemen­
tioned compression scheme and ran our program to com-



press, like [13], [14], the Arabidopsis thaliana genome 
chromosomes in TAIR9 (target) with respect to TAIR8 
(reference). For chromosome 1, we found that k = 31 
performs best; we used this same k for all chromosomes. 
In Table I, we display the compression results. We see that 
all of our results are competitive with the GRS and GReEn 
systems, except for chromosome 4, which has the smallest 
average CSS length of about 326K. Nonetheless, we are able 
to further compress our results with compression schemes in 
7-zip to achieve better compression than GRS and GReEn. 

In Table II, we show results for the Homo sapiens genome 
compression (with k = 31), using KOREF _20090224 as the 
target and KOREF _20090131 as the reference. All of our 
results are better than GRS and GReEn. Note that these 
results can be further improved by applying 7-zip as in 
Table I. Theoretically, our compression scheme requires time 
linear in the uncompressed text length, since we perform one 
scan of the LP F, which is constructed in linear time via the 
suffix array SA [18]. We ran our programs in an AW S EC2 
m4.4xlarge environment. For the larger chromosomes from 
the Homo sapiens genome, the SA construction required 
2,376 seconds and the LP F construction required 399 
seconds. Depending on the application, the SA and LP F 
may already be available. Given the LP F, our compression 
and decompression algorithms completed in less than one 
second. Our future plan includes using more efficient SA 
and LP F constructions. 

V. CONCLUSION 

We proposed a new algorithm to compute the LCS. 
Motivated by our algorithm, we introduced a new reference­
based compression scheme for genome resequencing data 
using the LP F. For the Arabidopsis thaliana genome 
(originally 119,146,348 bytes), our scheme compressed the 
genome to 5,315 bytes, an improvement over the best 
performing state-of-the-art methods (6,644 bytes [13] and 
6,559 bytes [14]). For the Homo sapiens genome (originally 
3,080,436,051 bytes), our scheme compressed the genome to 
5,267,656 bytes, an improvement over the 19,666,791 bytes 
and 17,971,030 bytes achieved in [13] and [14], respectively. 
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