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a b s t r a c t 

This paper considers a single-machine scheduling problem with power-down mechanism to minimize 

both total energy consumption and maximum tardiness. The aim is to find an optimal processing se- 

quence of jobs and determine if the machine should be executed a power-down operation between two 

consecutive jobs. To formulate the problem, a mixed-integer linear programming (MILP) model is devel- 

oped. Then a basic ε−constraint method is proposed to obtain the complete Pareto front of the prob- 

lem. Considering the particularity of the problem, we also develop local search, preprocessing technique 

and valid inequalities to strengthen the basic ε−constraint method. Finally, to obtain approximate Pareto 

fronts for large-size problems, we utilize the method of cluster analysis to divide the jobs into several 

sorted clusters according to their release times and due dates. Any job in a preceding cluster must be 

processed before all jobs in a subsequent cluster. Thus, the solution space is reduced significantly. Com- 

putational experiments on benchmark and randomly generated instances demonstrate the effectiveness 

of the proposed exact and approximation approaches. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Energy has made our lives easier. Ever since people began to

utilize energy, the world has been changed significantly. With rapid

industrialization and development of civilization, energy is obvi-

ously one of the crucial elements that affects the overall economic

performance of almost all businesses. Since the majority of re-

sources we utilize to generate energy are nonrenewable ( Tacconi,

20 0 0 ) and energy consumption has increased by 300% in the last

50 years due to massive usage ( Park et al., 2010 ), energy has be-

come more scarce and precious than ever before. More impor-

tantly, the process of generating energy is polluting the environ-

ment and accelerating global warming. Based on a recent survey

conducted by the International Energy Agency (2015) , the world-

wide demand for energy will increase by 37% by 2040. Accordingly,

the total emitted CO 2 will increase by around 80% in the next 40–

50 years ( Marchal & Dellink, 2011 ). With the aim of achieving sus-

tainable development, it is essential to reduce energy consumption

and improve the quality of environment. 
∗ Corresponding author. 
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As the backbone of the industrialized society, manufacturing

ectors consume half of the energy that is available globally and

mit the most greenhouse gases ( Ross, 1992; Jovane et al., 2008 ).

o achieve the goal of sustainable development, the manufactur-

ng sectors should focus on the endeavor to reduce resource us-

ge as well as energy consumption ( Sudarsan et al., 2010 ). How-

ver, they have concentrated most of their attention on the effi-

iency and quality of production systems over the past 60 years

e.g. Altiok, 1997; Li and Meerkov, 2010 ). With the ever-increasing

emand for ecological resources protection and energy saving, it

s of vital importance that the manufacturing sectors control their

nergy consumption during the production process in an effective

anner ( Rajemi et al., 2010 ). 

Various methods have been proposed to reduce energy con-

umption and greenhouse gases emission, such as implement-

ng management tools, innovative technologies and new policies

 Abdelaziz et al., 2011 ). As a widely used planning and manage-

ent method, scheduling is an effective approach in controlling

nergy consumption. In general, scheduling is a strategy to allo-

ate limited resources to a number of tasks in an efficient way.

pecifically, machine scheduling decides when and how to allocate

achines to jobs. In other words, it is used to determine the start-

ng times of processing jobs on the machines. Ever since the first

http://dx.doi.org/10.1016/j.cor.2017.04.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.04.004&domain=pdf
mailto:yanpy@uestc.edu.cn
http://dx.doi.org/10.1016/j.cor.2017.04.004
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ublication of scheduling in 1954 ( Johnson, 1954 ), more attention

as been paid to use the machine scheduling as a strategy to con-

rol energy consumption. This is mainly because that the machine

cheduling can exert significant impact on the production perfor-

ance in terms of energy saving. 

As for single-machine scheduling, the majority of researches fo-

us on time-related objectives, such as makespan ( Kasap et al.,

006; Xu et al., 2013 ), total completion time ( Xu et al., 2015 )

nd tardiness ( Kolliopoulos and Steiner, 2006 ). These objectives

re identified to reflect the efficiency of the production process.

ith the increasing concern over the energy consumption and en-

ironmental issues, the objective related to energy-saving has been

dentified recently. To achieve the objective of energy-saving by

eans of machine scheduling, several directions can be pursued,

mong which power-down mechanism is quite an effective ap-

roach (e.g., Dai et al., 2013; Pach et al., 2014 ). The idea of the

ower-down mechanism is that if the total energy consumption

ill be reduced, then a machine will be shut down instead of run-

ing idle when it is not processing any jobs. For example, for one

ichita, Kansas aircraft supplier of small parts, it was reported

 Drake et al., 2006 ) that the machines are kept idle for 16% of

n eight-hour shift. According to their research, by simply turn-

ng off the machines rather than keeping them running idle, one

ould achieve at least 13% energy savings. Mouzon and Yildirim

2008) proposed that if the duration of machine idleness lasts

onger than a breakeven duration, significant energy savings can be

chieved by shutting down the machine. In a nutshell, the power-

own mechanism determines whether and when to shut down a

achine or to leave it idle in order to improve energy efficiency

uring the course of production. The power-down mechanism has

roader applicability. For example, Swaminathan and Chakrabarty

2003) discovered that a control system installed in computer and

ortable devices for changing the state of battery can save energy

nd extend its lifespan. 

We now conduct a literature review for single-machine

cheduling with power-down mechanism. Mouzon et al.

2007) proposed several dispatching rules for single-machine

cheduling with power-down mechanism to minimize energy

onsumption. In particular, these rules are set to shut down

on-bottleneck machines when they are kept idle for a certain

uration in order for minimizing the energy consumption and

otal completion time. Mouzon and Yildirim (2008) developed

 framework based on a greedy randomized adaptive search

etaheuristic to resolve a single-machine scheduling problem

imed at minimizing total energy consumption and total tardiness.

ildirim and Mouzon (2012) developed a mathematical model

nd a multi-objective genetic algorithm to minimize total energy

onsumption and total completion time. Dominance rules and a

euristic are used in their study to increase the efficiency of the

lgorithm. Similarly, Liu et al. (2014) proposed a multi-objective

ptimization model to minimize the total carbon dioxide emis-

ions and total completion time. They assumed that the jobs to be

rocessed follow the First-Come-First-Serve rule and developed a

on-dominated sorting genetic algorithm (NSGA) II to obtain an

pproximate Pareto front of the problem. Shrouf et al. (2014) pro-

osed a mathematical model for single-machine scheduling with

ower-down mechanism under time-of-use electricity tariffs to

inimize the total energy consumption cost. They assumed that

he processing sequence of jobs is fixed and applied genetic

lgorithm to obtain the near-optimal solution of the problem. 

Another useful technique to reduce energy consumption for

achine scheduling problems is speed scaling ( Yao et al., 1995 ).

n this mechanism, the machine (or processor) can vary its pro-

essing speed, resulting in different processing times and energy

onsumption rates. The speed-scaling problems have been stud-

ed by many scholars (e.g. Bansal et al., 2007; Pruhs et al., 2008;
ngel et al., 2011; Fang et al., 2011; Fang et al., 2013 ). Wierman

t al., (2012) provided a comprehensive review on algorithms for

peed-scaling problems. Another technique is based on the obser-

ation that the electricity price for industry users usually varies

rom hour to hour during a day (time-of-use tariffs). To tackle this

ew dynamic pricing scheme, several works were conducted to re-

uce the total electricity cost (e.g. Babu and Ashok, 2008; Luo et

l., 2013; Fang et al., 2016; Che et al., 2016; Che et al., 2017a; Zeng

t al., 2017 ). 

In this paper, we investigate a single-machine bi-objective

cheduling problem with power-down mechanism to minimize

oth total energy consumption and maximum tardiness. Differ-

nt from total tardiness, maximum tardiness indicates the max-

mum degree to which the completion times of jobs exceed

heir due dates. As for the single-machine scheduling problem

ith power-down mechanism, to the best of our knowledge, the

eta-heuristics, such as greedy randomized multi-objective adap-

ive search metaheuristic ( Mouzon and Yildirim, 2008 ) and non-

ominated sorting genetic algorithm II ( Liu et al., 2014 ), can only

chieve near-optimal Pareto front within reasonable time. There

s still lack of research on finding the exact Pareto fronts of such

roblems. This study fills this gap. 

To achieve this, we first formulate a mixed integer linear

rogramming model for the single-machine scheduling problem

ith power-down mechanism. Then a basic ε−constraint method

 Berube et al., 2009; Feng et al., 2014 ) is developed to obtain the

xact Pareto front of the problem. Considering the specific proper-

ies of the problem, we develop local search, preprocessing tech-

ique and valid inequalities to strengthen the proposed method.

o enable the proposed model to solve large-size problems, we

se cluster analysis to divide jobs into several sorted clusters in

erms of their release times and due dates. In this case, any job

n a preceding cluster must be processed before the jobs in subse-

uent clusters. This significantly narrows down the solution space.

omputational results show that the proposed exact approach is

ble to obtain the exact Pareto front and the clustering procedure

an greatly enhance the effectiveness of our approach. 

The rest of this paper is organized as follows. We present a

lear description of the problem to be addressed and formulate

 mathematical model in Section 2 . In Section 3 , we propose an

dvanced ε−constraint method combined with local search, pre-

rocessing technique and valid inequalities to solve the model and

ntroduce the procedure of job clustering. In Section 4 , we use

enchmark and randomly generated instances to test the proposed

lgorithms and present the computational results. Finally, a con-

lusion is presented in Section 5 . 

. Problem description and formulation 

.1. Problem definition 

The problem addressed in this paper is a single machine

cheduling problem to process a set of n jobs with the objective

f minimizing the total energy consumption and maximum tardi-

ess. Each job to be processed on the machine has its unique re-

ease time r i , processing time t i and due date d i , 1 ≤ i ≤ n . For any

ob, it can be processed only after it is released. If the completion

ime of a job exceeds its due date, then tardiness appears. No pre-

mption is allowed. When the machine is working (i.e. processing

 job), its energy consumption rate is denoted as P w 

, and when the

achine stands idle (i.e. not processing any jobs but still running),

t consumes P v . 

Due to different release times for different jobs, the machine

ay run idle for a period of time when it has finished processing

 job and the next job is not yet available. When the machine is

dle, it still consumes energy. So one might think of turning the
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machine off during the idle period and then turning it on again

when the next job needs to be processed to save energy. But since

the operation of turning off and subsequently turning on the ma-

chine requires extra time and energy, there should be a breakeven

period. Only when the idle duration lasts longer than this period,

turning off and subsequently turning on the machine will save en-

ergy. Since turning off and turning on the machine always appear

in pairs during the processing horizon, we consider them as an in-

tegrated turn-off-on operation. Let T s be the time for a turn-off-on

operation and E s its amount of energy consumption. 

To determine the duration of this breakeven period, two facets

have to be considered. On one hand, if the idle time between two

successive jobs is shorter than T s , then it is impossible to perform

a turn-off-on operation; on the other hand, if the energy consumed

for the idle machine between two successive jobs is less than E s ,

then a turn-off-on operation is not necessary in terms of energy-

saving. So to define this breakeven period denoted by T B , we have

T B = max ( E s P v 
, T s ) ( Mouzon et al., 2007 ). Note that we assume that

r i , t i , d i , P v , E s and T B are all integers. 

Generally, the total energy consumption during the whole pro-

cessing course is comprised of four parts: energy required to turn

on the machine initially and turn it off ultimately, energy con-

sumed when it is processing jobs, energy consumed for the idle

machine and energy required by all turn-off-on operations. Since

the sum of the first two types of energy consumption is constant

and not dependent on the jobs’ processing sequence, we only fo-

cus on the last two types. That is, it is sufficient to minimize the

amount of energy consumption for the idle machine and all turn-

off-on operations. 

There are two objectives in this study: minimizing the total en-

ergy consumption and maximum tardiness. Our aim is to find an

optimal processing sequence of jobs as well as their starting and

completion times and determine if the machine should be exe-

cuted a turn-off-on operation between two consecutive jobs. Gen-

erally, there are two approaches to formulating such optimization

problems: discrete and continuous time formulations ( Mendez et

al., 2006 ). For discrete time formulations, the time horizon is di-

vided into many time units and then binary variables are defined

with respect to each time unit. As for continuous time formula-

tions, two main methods are often used to formulate the job pro-

cessing sequence: immediate and general precedence ( Mendez et

al., 2006 ). The two methods determine if a job is processed im-

mediately before or after another job and simply it is processed

before or after another job, respectively. In this study, we formu-

late the processing sequence of jobs based on the position as-

signment ( Tseng and Stafford, 2008 ), which directly identifies the

processing position of a job in a processing sequence. Our initial

computational experiments demonstrate that this formulation sig-

nificantly outperforms the formulation with immediate or general

precedence in terms of computational time. 

2.2. MILP model based on position assignment 

In our model, each job is assigned to a position in the process-

ing sequence. The decision variables in this model are described as

follows: 

x ik : Binary variable. If job i is processed in position k , then

x ik =1; otherwise, x ik =0, for 1 ≤ i ≤ n , 1 ≤ k ≤ n 

y k : Binary variable. If there is a turn-off-on operation immedi-

ately after the k th job (i.e. the job processed in position k ),

then y k =1; otherwise y k =0, for 1 ≤ k ≤ n −1 

C k : The completion time of the k th job, for 1 ≤ k ≤ n 

D k : The tardiness of the k th job, for 1 ≤ k ≤ n 

E k : The energy consumed by the machine between the comple-

tion of the k th job and the start of the ( k + 1)th job, for 1 ≤
k ≤ n −1 
With the notations above, the MILP model can be presented as

ollows: 

in 

n −1 ∑ 

k =1 

E k (1)

in D max (2)

ubject to 

 k −
n ∑ 

i =1 

x ik ∗ t i ≥
n ∑ 

i =1 

x ik ∗ r i , for 1 ≤ k ≤ n (3)

 k ≥ C k −
n ∑ 

i =1 

x ik ∗ d i , for 1 ≤ k ≤ n (4)

 max ≥ D k , for 1 ≤ k ≤ n (5)

 k ≥ C k −1 + 

n ∑ 

i =1 

x ik ∗ t i + y k −1 ∗ T B , for 2 ≤ k ≤ n (6)

 k −1 ≥
( 

C k − C k −1 −
n ∑ 

i =1 

x ik ∗ t i 

) 

∗ P v − y k −1 ∗ M, for 2 ≤ k ≤ n 

(7)

 k ≥ E s ∗ y k , for 1 ≤ k ≤ n − 1 (8)

n 
 

i =1 

x ik = 1 , for 1 ≤ k ≤ n (9)

n 
 

k =1 

x ik = 1 , for 1 ≤ i ≤ n (10)

 k ≥ 0 , for 1 ≤ k ≤ n (11)

Eqs. (1) and ( 2 ) formulate the two objectives of minimizing to-

al energy consumption and maximum tardiness, respectively. We

ow identify the relation between the two objectives. Suppose that

 max is fixed in the model. It is understandable that constraint ( 5 )

ecomes tighter when D max decreases and all the other constraints

f the model remain the same. This implies that the optimal value

f the total energy consumption shows a non-decreasing trend as

 max decreases. Therefore, there is a trade-off between the two ob-

ectives. 

Eq. (3) ensures that the k th job should be processed after it is

eleased. Eqs. (4) and ( 5 ) ensure that the maximum tardiness is

ell defined. Eq. (6) states that if a turn-off-on operation is car-

ied out after the ( k − 1)th job, the starting time of the k th job

hould be no less than the completion time of the k th job plus the

reakeven duration T B ; when there is no turn-off-on operation, it

hould be no less than the completion time of the previous job. If

 k −1 =0, Eq. (7) means that the energy consumed between the ( k

 1)th job and the k th job should be no less than P v multiplied by

he duration between the completion time of the ( k − 1)th job and

he starting time of the k th job. Note that if y k −1 =1, Eq. (7) be-

omes redundant, where M is a very large number. Eq. (8) tells

hat if a turn-off-on operation is performed, then the energy con-

umption at this position should be no less than E s . Finally, Eqs.

9) and ( 10 ) ensure that each position can be assigned with only

ne job and each job can be only processed in one position, re-

pectively. 
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Note that there is no constraint in the model to ensure

 k + 1 −C k − t k + 1 < T B holds when y k =0. In fact, such a constraint

an be relaxed as stated below. 

heorem 1. For any optimal solution to the MILP model, there exists

o k, 1 ≤ k ≤ n −1 , such that y k =0 and C k + 1 −C k − t k + 1 ≥ T B hold

t the same time. 

roof. We prove the theorem by contradiction. Suppose that there

xists an optimal solution such that y k =0 and C k + 1 −C k − t k + 1 ≥
 B . The fact that y k =0 means there is no turn-off-on operation ex-

cuted immediately after the k th job. On the other hand, relation

 k + 1 −C k − t k + 1 ≥ T B means the idle time between the k th job and

he ( k + 1)th job lasts longer than the breakeven period T B . For this

eason, if we change the value of y k from 0 to 1 (i.e. the machine

s shut down between the two jobs), we can obtain a solution with

ower energy consumption. This is in contradiction with the opti-

ality of the solution. This ends the proof. �

orollary 1. For any optimal solution to the model, if y k =0, then

 k + 1 −C k − t k + 1 < T B must hold and vice versa. 

Therefore, there is no need to formulate an extra constraint

o guarantee that if y k =0, then C k + 1 −C k − t k + 1 < T B . Note that

f such a disjunctive constraint is included in the model, then a

ig M must be introduced to transform the constraint to a lin-

ar one. It is understandable that an MILP model without a big

 is tighter than the one with a big M . The less the number of

ig M’ s in an MILP model, generally the tighter the model will be.

hus, the model becomes more compact without such a disjunc-

ive constraint. Computational experiment also demonstrates that

he model runs faster after the removal of such a constraint with

 big M while the optimal solutions remain unchanged. 

. An advanced ε –constraint method 

.1. Basic ε –constraint method 

The problem considered in this paper is a bi-objective combi-

atorial optimization problem, which can be generally formulated

s below: 

min { f 1 ( x ) , f 2 ( x ) } , 
ubject to xεX, 

here x is the solution vector and X stands for the space of solu-

ion vectors that satisfy the constraint set. 

Since the two objectives are conflicting, there is no method of

ptimizing both of them simultaneously. Hence our aim is to find a

easonable trade-off between the two objectives such that no bet-

er solution exists. The following are some basic definitions related

o bi-objective optimization (e.g. Miettinen, 1998 ). 

efinition 1. For any pair of solutions x 1 and x 2 ∈ X , we say x 1 
ominates x 2 if f 1 ( x 1 ) ≤ f 1 ( x 2 ) and f 2 ( x 1 ) < f 2 ( x 2 ) hold or f 1 ( x 1 ) <

 1 ( x 2 ) and f 2 ( x 1 ) ≤ f 2 ( x 2 ) hold. 

efinition 2. A Pareto optimal solution is the one that no solution

 ∈ X dominates it. 

efinition 3. All the Pareto optimal points over the objective space

or a problem are called its Pareto front. 

There have been many popular approaches to solving bi-

bjective optimization problems, such as the weighted sum scalar-

zation method and the ε–constraint method ( Berube et al., 2009;

eng et al., 2014; Wu et al., 2015; Che et al., 2017b ). In the

eighted sum scalarization method, different objectives are mul-

iplied by different weights and transformed into a single ob-

ective by calculating the sum. The key step of this method is

o change the weights of different objectives in order to ob-

ain the whole Pareto front. Since this method only changes the
eights of objectives and no additional constraints are imposed,

he sub-problems can be easily solved as long as the correspond-

ng single-objective optimization problem can be easily solved.

ifferent from the weighted sum scalarization method, the ε–

onstraint method transforms a bi-objective optimization problem

nto a single-objective problem by making one objective to be min-

mized a constraint bounded from above by a parameter ε and

orms the so-called ε–constraint problem. By varying the value of

according to some specific rule, we may obtain all the Pareto

ptimal points for the problem. To implement the ε–constraint

ethod, for simplicity, we use P E ( ε 1 ) (or P D ( ε 2 )) to denote the ε –
onstraint problem: 

in E (or min D ) , 

ubject to 

εX, 

 ≤ ε 1 (or E ≤ ε 2 ) , 

nd P ′ 
E 
( ε 1 ) (or P ′ 

D 
( ε 2 ) ) to denote the problem: 

in E (or min D ) , 

ubject to 

εX, 

 = ε 1 (or E = ε 2 ) , 

For a given ε1 , we use E ( ε1 ) (or E ′ ( ε1 )) to represent the objec-

ive value obtained by solving P E ( ε1 ) (or P ′ E ( ε 1 ) ). Similarly, for a

iven ε2 , we use D ( ε2 ) (or D 

′ ( ε2 )) to represent the objective value

btained by solving P D ( ε2 ) (or P ′ 
D 
( ε 2 ) ). 

heorem 2. For given ε1 and ε ′ 
1 

(resp. ε2 and ε ′ 
2 
), if ε 1 < ε ′ 

1 
(resp.

 2 < ε ′ 2 ), then E ( ε 1 ) ≥ E ( ε ′ 1 ) (resp. D ( ε 2 ) ≥ D ( ε ′ 2 ) ) must hold. 

roof. If ε 1 < ε ′ 1 (resp. ε 2 < ε ′ 2 ), all the constraints in the formula-

ion of P E ( ε1 ) (resp. P D ( ε2 )) remain the same except D ≤ ε1 (resp.

 ≤ ε2 ), which becomes tighter as ε1 (resp. ε2 ) decreases. There-

ore, the optimal objective value of P E ( ε1 ) (resp. P D ( ε2 )) should be

o less than P E ( ε 
′ 
1 ) (resp. P D ( ε 

′ 
2 ) ). This ends the proof. �

To better fix the interval of ε, we give the definitions of ideal

oint and Nadir point ( Berube et al., 2009 ), which depict the pre-

ise area we need to explore in order to obtain the whole Pareto

ront. 

efinition 4. The ideal point of the bi-objective optimization

roblem addressed is defined as ( E I , D 

I ) = {( E, D )| E = min x ∈ X ( E ),
D = min x ∈ X ( D )}. The Nadir point is defined as ( E N , D 

N ) = {( E,

 )| E = E ′ ( D 

I ), D = D 

′ ( E I )}. 

heorem 3. The lower bound of E ( i.e. E I ) is zero. 

Generally, the lower bound of E can be obtained by solving the

ILP model without constraint ( 5 ) to minimize E . However, for

ur case, we can derive the lower bound without solving an MILP

odel as explained below. Note that E represents the total energy

onsumed for the idle machine and for all turn-off-on operations.

et us consider a specific situation (schedule) where the first job

s processed at a sufficiently late time such that all the other jobs

an be processed immediately after its previous job has been pro-

essed without any delay. In this way, the machine will not stand

dle or experience any turn-off-on operations in the whole process-

ng course. Naturally in this case, the total energy consumed be-

ween all pairs of consecutive jobs (i.e. E ) is zero. Thus, the lower

ound of E must be zero. 

orollary 2. (0, D 

′ (0)) is a Pareto optimal point of the problem. 

If we remove the objective function of total energy consump-

ion and constraints ( 7 ) and ( 8 ) from the model and then solve the
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Fig. 1. Area division with ideal point and Nadir point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

t  

c  

w

T  

(  

e

P  

e  

t  

t  

t  

t  

w  

o  

n  

b  

c  

h  

d

T  

s  

m  

n

P  

s  

p  

t  

f  

A

r  

t  

b  

T  

e  

t  

s

C  

p  

p

 

i  

s  

l  

P  

d  

t  

a  

d  

v  

h  

w  
corresponding model, we can obtain the smallest objective value of

maximum tardiness, which we denote as D min . It is clear that D min 

is the lower bound of the maximum tardiness for this problem. 

Corollary 3. ( E ′ ( D min ), D min ) is a Pareto optimal point of the prob-

lem. 

From what has been discussed above, the ideal point of the

problem is (0, D min ) while the Nadir point is ( E ′ ( D min ), D 

′ (0)),

which are depicted in Fig. 1 . We can see from Fig. 1 that the whole

area (i.e. E ≥ 0, D ≥ 0) is divided into six segments. Obviously,

points in segments III and VI are infeasible ones. Points in segment

I are dominated by ( E I ,D 

N ), and points in segment V are dominated

by ( E N ,D 

I ). For points in segment IV , they are dominated by both

( E I ,D 

N ) and ( E N ,D 

I ). Finally, segment II contains all the Pareto opti-

mal points. In other words, this segment is the only one we need

to consider. 

In the problem addressed in this paper, we use ( E 0 , D 

0 ) to rep-

resent a Pareto optimal point over the objective space, which de-

notes the total energy consumption and maximum tardiness, re-

spectively. 

To implement the ε–constraint method, we first need to con-

duct a property analysis for our problem. For a Pareto optimal

point ( E 0 , D 

0 ) of the problem, we check its corresponding opti-

mal solution, and divide the n jobs into m groups using the follow-

ing rule. In the same group, the starting time of any job is equal

to the completion time of its previous job (except the first job in

each group). We denote the group as G i , 1 ≤ i ≤ m , where m is

the number of groups. Let N i be the number of jobs in group G i ,

and G 

q 
p represent the job in the q th position of the p th group. For

example, for group G h , the completion time of G 

i 
h 

is equal to the

starting time of G 

i +1 
h 

, 1 ≤ i ≤ N h −1. We now give the definition of

an effective group. 

Definition 5. An effective group G e in the solution corresponding

to ( E 0 , D 

0 ) is the one that satisfies: 

1) The starting time of G 

1 
e exceeds the completion time of G 

N e −1 

e −1 
by no less than T B ; 

2) The starting time of G 

1 
e +1 

exceeds the completion time of G 

N e 
e 

by less than T B ; 

An illustration of an effective group is shown in Fig. 2 . For

the first group (i.e., G 1 ) in a solution, we regard it as an effective

group if it satisfies conditions 2) of Definition 5 . As will be dis-

cussed later, postponing the starting times of the jobs in an effec-
Fig. 2. Illustration of an effective group. 
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ive group will lead to decreased total energy consumption. Note

hat the last group (i.e., G m 

) in a solution is not an effective one be-

ause the above postponing operation performed on the last group

ill not decrease the total energy consumption. 

heorem 4. In the solution corresponding to the Pareto optimal point

E 0 , D 

0 ), there must exist a job with the maximum tardiness D 

0 in any

ffective group. 

roof. We prove the theorem by contradiction. Suppose that in an

ffective group, say G e , the maximum tardiness of its jobs is less

han D 

0 . According to Definition 5 , the starting time of G 

1 
e exceeds

he completion time of G 

N e −1 

e −1 
by no less than T B , which means that

he machine is shut down between the two jobs; and the starting

ime of G 

1 
e +1 exceeds the completion time of G 

N e 
e by less than T B ,

hich means the machine is idle. If we postpone the starting time

f each job in G e by some time units such that the maximum tardi-

ess of jobs in G e is exactly D 

0 . In this case, the energy consumed

etween G 

N e −1 

e −1 
and G 

1 
e remains the same (i.e. E s ), while the energy

onsumed between G 

N e 
e and G 

1 
e +1 

is reduced. This implies that we

ave obtained a new solution that dominates ( E 0 , D 

0 ). This contra-

icts the optimality of ( E 0 , D 

0 ). This ends the proof. �

heorem 5. If there exists an effective group in the solution corre-

ponding to (E 0 , D 

0 ), then for any arbitrarily small value of θ , there

ust exist a feasible point ( E 0 −θ ∗P v , D 

0 +θ ) that cannot be domi-

ated by (E 0 , D 

0 ). 

roof. Suppose that G e is an effective group in the solution corre-

ponding to ( E 0 , D 

0 ). Similar to the proof of Theorem 4 , if we post-

one the starting time of each job in this group by θ time unit,

hen the tardiness of the job with the maximum tardiness D 

0 be-

ore postponement is increased by θ time unit, which is D 

0 +θ .

t the same time, the energy consumed between G 

N e −1 

e −1 
and G 

1 
e 

emains the same, which is E s , while the energy consumed be-

ween G 

N e 
e and G 

1 
e +1 

is reduced by θ ∗P v . That is, we obtain a feasi-

le point ( E 0 −θ ∗P v ,D 

0 +θ ) which cannot be dominated by ( E 0 , D 

0 ).

his implies that for any arbitrarily small value of θ , there must

xist a Pareto optimal solution either with the energy consump-

ion E 0 −θ ∗P v or with the maximum tardiness D 

0 +θ among the

olution space. This ends the proof. �

orollary 4. If there exists an effective group in any Pareto optimal

oint of the problem, then it has infinite number of Pareto optimal

oints. 

From Corollary 4 , since the number of the Pareto optimal points

s infinite, it is impossible to obtain them all. We only consider the

ituation where E and D are restricted to integer values for the fol-

owing three reasons. First, with such a restriction, we can find all

areto optimal integer points via an exact ε-constraint method by

ecreasing the value of ε by one each time. Second, such a restric-

ion also allows us to devise and incorporate specific local search

lgorithms to enhance the basic ε-constraint method. Third, the

ifference between an optimal integer value and an optimal real

alue can be made arbitrarily small by scaling on input data. As to

ow to implement the ε−constraint method to solve our problem,

e have to choose one objective to be the primary one, and use

n ε-constraint to represent the other one. Here, we set maximum

ardiness as the primary objective and use the ε-constraint to for-

ulate the energy consumption, because in this way, local search

nd preprocessing technique, which will be introduced later, can

e much easier to apply and detailed reasons will be presented

ater. 

To obtain the whole integer Pareto front, we use the following

asic ε−constraint method and make ε decrease by one each time

o search for the next optimal point from an obtained one. 
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Algorithm A1 : 

1: Compute the interval [0, E ′ ( D min )] and set ε= E ′ ( D min ); 

2: Set ε= ε−1; 

3: Solve problem P D ( ε) and obtain the corresponding D ( ε); 

4: If D ( ε) is integer, go to Step 5; otherwise, set D ( ε) = � D ( ε) � + 1, where � D ( ε) � 
is the largest integer no more than D ( ε), and then go to Step 5; 

5: Solve problem P ′ E ( D ( ε) ) to obtain the corresponding E ′ ( D ( ε)), and 

set ε= E ′ ( D ( ε)); 

6: If ε= 0, stop; otherwise go to Step 2. 
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Fig. 3. Illustration of a blocked group. 
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Note that D ( ε) in Step 5 must be integer. Hence, the obtained

 

′ ( D ( ε)) must be integer as well due to the structure of the MILP

odel. With Algorithm A1 , we can obtain the exact integer Pareto

ront of the problem. But with it alone, we can only solve small-

cale problems and its computational efficiency is generally low.

onsidering the particularity of the problem, we propose local

earch, preprocessing technique and valid inequalities to enhance

he basic ε−constraint method, which will significantly improve

ts speed. 

.2. Local search 

Due to the particularity of the problem, we develop local search

o strengthen Algorithm A1 . In the algorithm, each iteration in-

olves solving two MILP problems, which consumes considerable

mount of time. The local search improves the algorithm by solv-

ng only one MILP problem in each iteration while keeping the

areto optimality of the solutions obtained. 

The proposed local search starts from a Pareto optimal point,

ay ( E 0 , D 

0 ), and tries to find the next feasible point without miss-

ng out any of the integer Pareto optimal points. Specifically, there

re two types of operations for local search, which are applied

hen there exist effective groups in the Pareto optimal solution

nd no effective group exists, respectively. 

For the condition where there exist effective groups in the so-

ution corresponding to ( E 0 , D 

0 ), the first type of local search lies

n postponing the starting times of all jobs in each effective group

y one time unit. Then we can obtain a feasible solution whose

aximum tardiness is larger than that of the previous Pareto opti-

al point by one (i.e. D 

0 +1) and smaller energy consumption by

t least P v . 

heorem 6. If there exists only one effective group in the solu-

ion corresponding to ( E 0 , D 

0 ) , then we can obtain the feasible point

 E 0 −P v ,D 

0 +1) with local search. 

roof. To prove the theorem, we have to use the concept of effec-

ive group introduced in Definition 5 . If we find an effective group,

ay G e , in the solution corresponding to ( E 0 , D 

0 ), then we can post-

one the starting times of all jobs in G e by one time unit. Similar

o the proof of Theorem 5 , the energy consumed between G 

N e −1 

e −1 

nd G 

1 
e after the postponement will remain the same while that

etween G 

N e 
e and G 

1 
e +1 will be reduced by P v . At the same time,

he maximum tardiness is increased to D 

0 +1 due to the postpone-

ent. Therefore, we obtain the feasible point ( E 0 −P v ,D 

0 +1). This

nds the proof. �

heorem 7. If there exist k 1 ( k 1 ≥ 1) effective groups in the solu-

ion corresponding to ( E 0 , D 

0 ) , then we can obtain the feasible point

 E 0 −k 1 
∗P v ,D 

0 +1) with local search and no integer Pareto optimal

oint is omitted from ( E 0 , D 

0 ) to ( E 0 −k 1 
∗P v ,D 

0 +1) . 

roof. As is discussed in the proof of Theorem 6 , if we postpone

he starting times of all jobs in each of the k 1 effective groups, we

an achieve a reduction of E 0 by k 1 
∗P v contributed by the post-

onement of each effective group and make the previous maxi-

um tardiness D 

0 increase by only one unit, which corresponds
o the feasible point ( E 0 −k 1 
∗P v ,D 

0 +1). Any point ( E 0 −δ∗P v ,D 

0 +1)

or 1 ≤ δ ≤ k 1 −1 is dominated by ( E 0 −k 1 
∗P v ,D 

0 +1). Therefore,

here is no integer Pareto optimal point being omitted from ( E 0 , D 

0 )

o ( E 0 −k 1 
∗P v ,D 

0 +1). This ends the proof. �

The next step after postponement is to check the Pareto opti-

ality of the point ( E 0 −k 1 
∗P v ,D 

0 +1). To achieve this purpose, we

olve P ′ 
E 
( D 

0 + 1 ) and obtain E ′ ( D 

0 +1). It is clear that ( E ′ ( D 

0 +1),

 

0 +1) is the next Pareto optimal point. Note that the above local

earch fails when there exists no effective group in the solution. To

ackle such condition, we first give the definition of blocked group,

n which the second type of local search is based. Similarly, for a

locked group, say group G b , its number of jobs is denoted by N b ,

nd G 

q 

b 
represents the job in its q th position. 

efinition 6. A blocked group G b is the one that satisfies: 

1) The starting time of G 

1 
b 

exceeds the completion time of G 

N b−1 

b−1 
by no less than T B ; 

2) The starting time of G 

1 
b+1 

exceeds the completion time of G 

N b 
b 

by no less than T B ; 

Fig. 3 illustrates a blocked group. Obviously, the turn-off-on op-

ration is executed both before and after a blocked group. For the

rst group (i.e., G 1 ) in a solution, we regard it as a blocked group

f it satisfies condition 2) of Definition 6 . Note that the last group

i.e., G m 

) in a solution is not a blocked group due to the same rea-

on explained for the effective group. Particularly, if there is only

ne group in a solution, then it is neither a blocked group nor an

ffective group. As a result, there is no need to carry out the lo-

al search on it. Therefore, in what follows, we only consider the

olutions with at least two groups. 

heorem 8. If no effective group exists in the solution correspond-

ng to the Pareto optimal point ( E 0 , D 

0 ) , there must exist at least one

locked group. 

roof. Let us consider the first group (i.e., G 1 ) in the solution. By

ssumption, there are at least two groups in the solution and G 1 

s not the last group. Since G 1 is not an effective group, it follows

hat the starting time of G 

1 
2 minus the completion time of G 

N 1 
1 

is no

ess than T B , which means that condition 2) of Definition 6 must

old for G 1 . By definition, G 1 must be a blocked group. This ends

he proof. 

Under the condition where no effective group exists, the sec-

nd type of local search lies in postponing the starting times of

ll jobs in a blocked group, say G b , until the starting time of G 

1 
b+1 

inus the completion time of G 

N b 
b 

is equal to E s 
P v 

− 1 time units.

pecifically, for the condition where E s 
P v 

> T s , the breakeven dura-

ion T B = 

E s 
P v 

. Hence after executing the second type of local search,

he machine is kept idle between the processing of G 

N b 
b 

and G 

1 
b+1 

.

herefore, the energy consumed between G 

N b 
b 

and G 

1 
b+1 

is reduced

o E s −P v . Similar analysis conducted under the conditions where
E s 
P v 

< T s and 

E s 
P v 

= T s show that the energy consumed between G 

N b 
b 

nd G 

1 
b+1 

are both reduced by P v after the second type of local

earch. Note that the energy consumed between G 

N b−1 

b−1 
and G 

1 
b 

re-

ains the same, since the machine is still shut down between the
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t  
processing of them after the postponement. Hence the total energy

consumption becomes smaller than E 0 by P v . At the same time, the

maximum tardiness D 

0 is increased by at least one time unit. Note

that in the second type of local search, we only need to postpone

one blocked group. 

Theorem 9. For any optimal schedule corresponding to ( E 0 , D 

0 ) , af-

ter executing the second type of local search, the job with maximum

tardiness must lie in the postponed blocked group. 

Proof. We prove the theorem by contradiction. Suppose that af-

ter postponement, the job with maximum tardiness lies in other

groups, which remains D 

0 since they are not postponed, then we

can obtain a feasible solution corresponding to ( E 0 −P v ,D 

0 ), which

dominates ( E 0 , D 

0 ). This contradicts the assumption that ( E 0 , D 

0 ) is

a Pareto optimal point. This ends the proof. �

Detailed reasons of deciding which blocked group to postpone

will be presented later. Similar to the first type of local search,

the next step after postponement is to check the Pareto optimal-

ity of the point ( E 0 −P v ,D 

0 +k 2 ), where k 2 is the time units by

which the chosen blocked group has been postponed. Similarly, to

achieve this purpose, we solve P ′ 
D 
( E 0 − P v ) and obtain D 

′ ( E 0 −P v ).

Obviously, ( E 0 −P v ,D 

′ ( E 0 −P v )) is the next Pareto optimal point. 

The whole procedure of local search can be summarized as: 

The procedure of local search 

1: Divide all the jobs in a Pareto optimal solution into groups 

2: If there exist effective groups, then 

2.1: Locate all the k 1 effective groups and 

2.1.1: Postpone the starting times of all jobs in each effective group by 

one time unit and update their completion times and tardiness; 

2.1.2: Check the Pareto optimality of ( E 0 −k 1 
∗P v , D 

0 +1); 

3: Else choose a blocked group G b and 

3.1: Postpone the starting times of all jobs in G b until the starting time of 

G 1 
b+1 

minus the completion time of G 
N b 
b 

is equal to E s 
P v 

− 1 time units; 

3.2: Check the Pareto optimality of ( E 0 −P v ,D 
0 +k 2 ), where k 2 is the 

time units by which the chosen blocked group has been postponed 

3.3. Dynamic preprocessing technique and valid inequalities 

In the MILP model, the binary variable x ik formulates the pro-

cessing sequence of jobs while y k represents whether there should

be a turn-off-on operation between the k th and ( k + 1)th job. Nat-

urally, the number of binary variables in an MILP model can affect

its computational time to a large extent. If we can pre-determine

the values of some binary variables, then the computational time

may be reduced significantly. Inspired by this idea, we propose the

following theorems. 

Theorem 10. Given maximum tardiness D 

∗, for any pair of jobs i and

j, if r i ≥ d j +D 

∗ − t j holds, then job i must be processed after job j. 

Proof. By definition, r i is the earliest starting time for the machine

to process job i , since each job can only be processed after it is re-

leased. Note that d j +D 

∗ − t j is the latest starting time for the ma-

chine to process job j in the solution with the maximum tardiness

being D 

∗. If the relation r i ≥ d j +D 

∗ − t j is satisfied, then the ear-

liest starting time of job i lies after the latest starting time of job

j . This suggests that job i must be processed after job j . This ends

the proof. 

Corollary 5. In the MILP model, x ik =0 for all 1 ≤ k ≤ α, where α
represents the number of jobs that must be processed before job i.

That is, r i ≥ d k +D 

∗ − t k holds for all 1 ≤ k ≤ α. 

Corollary 6. In the MILP model, x jk =0 for all n −β +1 ≤ k ≤ n ,

where β is the number of jobs processed after job j . That is r k ≥
d j +D 

∗ − t j holds for all n −β +1 ≤ k ≤ n . 
heorem 11. At most E ∗
E s 

turn-off-on operations exist in the solution

ith the total energy consumption being E ∗. 

roof. For given total energy consumption E ∗, since each turn-off-

n operation consumes E s , the total times of turn-off-on operations

ust be no more than 

E ∗
E s 

. This ends the proof. �

orollary 7. Given total energy consumption E ∗, 
∑ n −1 

k =1 
y k ≤ E ∗

E s 
olds, which provides an upper bound on the total number of

urn-off-on operations. 

Since r i , d j , t j and E s in equations r i ≥ d j +D 

∗ − t j and 

∑ n −1 
k =1 

y k ≤
E ∗
E s 

are fixed while D 

∗ and E ∗ are dynamically changed with the

teration going on, the relations may vary as well. In Algorithm

1 , the dynamic value of maximum tardiness (i.e. D 

∗) is increasing

hile that of energy consumption (i.e. E ∗) decreasing. 

For the relation r i ≥ d j +D 

∗ − t j , smaller value of D 

∗ yields more

quations described in Corollaries 5 and 6, which can accelerate

he algorithm more. This idea is also the basis of deciding which

locked group to be postponed in the second type of local search.

hen multiple blocked groups can be found in the solution cor-

esponding the Pareto optimal point ( E 0 , D 

0 ), postponing different

locked groups brings about different values of maximum tardi-

ess. If we choose the one with the smallest maximum tardi-

ess, then preprocessing can be the most powerful when solving

 

′ 
D 
( E 0 + P v ) . 

Similarly, for the relation 

∑ n −1 
k =1 

y k ≤ E ∗
E s 

, smaller value of E ∗ will

ake the valid inequalities more efficient. In particular, if there ex-

st k 1 ( k 1 ≥ 1) effective groups in the solution corresponding to

 E 0 , D 

0 ), which means that we can obtain a feasible solution corre-

ponding to ( E 0 −k 1 
∗P v ,D 

0 +1), then 

∑ n −1 
k =1 

y k ≤ E 0 −k 1 ∗P v 
E s 

can be ap-

lied when solving P ′ E ( D 

0 + 1 ) . 

With the preprocessing technique and valid inequalities stated

bove, the original algorithm can be accelerated significantly. The

rocedure of obtaining a new Pareto optimal point from a known

ne based on the advanced ε–constraint method combined with

ocal search, preprocessing technique and valid inequalities is sum-

arized in Fig. 4 . Note that k 1 represents the number of effective

roups in the solution corresponding to ( E, D ) while k 2 is the time

nits by which the chosen blocked group is postponed. 

We now explain why we choose the maximum tardiness as the

rimary objective from the perspective of facilitating local search

nd preprocessing, respectively. 

In terms of local search, if we set E as the primary objective,

hen the crucial step in this situation is to advance the starting

ime of certain jobs in order to make the maximum tardiness re-

uced by one. The problem is that in a Pareto optimal solution,

here may exist multiple jobs with the maximum tardiness D 

0 . In

his case, we have to reduce the maximum tardiness of all these

obs by one time unit while at the same time the total energy con-

umption is allowed to increase by only P v . This can be very hard

o achieve. 

From the perspective of preprocessing, as is introduced before,

t is based on a known maximum tardiness, which means if we

ave no idea of the value of D before solving P D ( E ), preprocessing

annot be applied. In terms of the ε−constraint method, the first

tep is to calculate the effective interval of the secondary objec-

ive. If we set E as the primary objective, then we have to calculate

he effective interval of D (i.e. [ D min ,D 

′ ( E min )]), where preprocessing

annot be applied. However, if we set D as the primary objective,

e can utilize preprocessing to calculate the effective interval of E,

hich may accelerate the algorithm to some extent. 

.4. Clustering of jobs to obtain approximate Pareto front 

With the procedure described in Fig. 4 , as will be presented in

he next section, the problem with up to 25 jobs can be solved to
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Fig. 4. The procedure of obtaining a new Pareto optimal point from a known one. 
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ptimality within reasonable time. Further analysis of optimal so-

utions reveals that the jobs with smaller values of release times

nd due dates tend to be processed earlier. On the other hand,

n terms of preprocessing technique, a given maximum tardiness

lways restricts that jobs with large (or small) values of release

imes and due dates cannot be processed at the earliest (or at

he latest). Inspired by that, to obtain approximate Pareto front

or large-size problems, we utilize the method of cluster analysis

o divide the jobs into several sorted clusters based on their re-

ease times and due dates. Any job in a preceding cluster must be

rocessed before all the jobs in subsequent clusters, thus reducing

he solution space significantly. Although by clustering of jobs, the

areto front we obtained is approximate, the problem scale that

ur algorithm is able to solve increases significantly. 

Specifically, to divide n jobs into m ( m ≤ n ) clusters, we propose

he clustering procedure based on the following analysis. As is dis-

ussed above, the release time and due date of each job play the

ost crucial role when deciding its processing sequence. Hence,

e define the distance between any pair of jobs i and j according

o their release times and due times. 

j

efinition 7. The distance of job i and j , L i, j =
 

( r i − r j ) 
2 + ( d i − d j ) 

2 
. 

Let �a , 1 ≤ a ≤ m , represents the set of indices of jobs assigned

o cluster a . The distance between two clusters, say a and b , is de-

ned as the shortest distance between all the jobs in them, which

s given in Definition 8 . 

efinition 8. The distance of clusters a and b , L a,b =
i n iε�a , jε�b 

{ L i, j } . 

Note that the total number of clusters generated needs to be

re-determined. The proposed clustering procedure is an iterative

rocess. In each iteration, two clusters with the shortest distance

re merged into one until the number of clusters is equal to m .

or simplicity, let 	 be the set of indices of non-empty clusters.

ith the notations above, the clustering procedure of dividing n

obs into m ( m ≤ n ) clusters can be summarized as below. 
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Table 1 

Processing data of the five jobs. 

Jobs 1 2 3 4 5 

Release time (h) 0 30 50 80 150 

Processing time (h) 10 20 20 30 10 

Due date (h) 200 200 200 200 200 

Fig. 5. The Pareto front of a five-job instance. 
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The clustering procedure 

1: Initialization: 	⇐∅ and For a = 1 to n do 

1.1: �a ⇐ { a } 

1.2: 	 ⇐ 	 ∪ { a } 
2: For each a ∈ 	 do 

2.1: For each b ∈ 	 ( b > a ) do 

2.1.1: For each i ∈ �a and j ∈ �b calculate L i,j 
2.1.2: Select the least value of all the obtained L i,j ’s and denote it as L i ′ , j ′ 

2.1.3: L a,b ⇐ L i ′ , j ′ 

3: Select the least value among all L a,b ’s and denote it as L a ′ , b ′ 

4: 	⇐ 	 − { b ′ }, �a ′ ⇐ �a ′ ∪ �b ′ 

5: If 	 contains exactly m elements, then go to Step 7 

6: Else , go to Step 2 

7: Output �a for a ∈ 	

To explain why the above clustering procedure is able to accel-

erate the proposed approach, we assume that the s th cluster con-

tains N s jobs, 1 ≤ s ≤ m . Since the processing sequence of clus-

ters is fixed, all jobs in cluster s must be processed before those

in cluster s + 1 for any 1 ≤ s ≤ m -1. That is, the processing po-

sition for some job in a certain cluster, say job h in cluster s ,

can only be chosen from the positions to which cluster s corre-

sponds, which are positions 
∑ s −1 

j=1 N j + 1 ,..., 
∑ s 

j=1 N j . Hence, job h

cannot be processed in the positions of the clusters before clus-

ter s , which means that x hz = 0 , z = 1 , . . . , 
∑ s −1 

j=1 N j must hold.

Similarly, it cannot be processed in positions of the clusters after

cluster s, which implies that x hz = 0 , z = 

∑ s 
j=1 N j + 1 , . . . , 

∑ m 

j=1 N j 

must hold. Therefore, after examining all the jobs, the values of

considerable quantity of binary variables can be fixed, which sig-

nificantly reduces the computational time for the algorithm to

solve the problem. Note that with less number of clusters, we will

fix the values of less binary variables, which leads to more precise

Pareto front while consuming more computational time. 

4. Computational results 

4.1. Benchmark instances 

To test the proposed algorithm, we use several benchmark in-

stances taken from the literature, for which approximate Pareto

fronts were known. Though the objectives of their models may be

different from ours, we can apply our algorithm to obtain the exact

Pareto front of their problems with slight changes in our model.

All the model formulations in this paper are implemented in C ++
solved by the MIP solver of CPLEX (Version 12.5). The experiments

are performed on a HP PC with an Intel Core i5-2400 CPU operat-

ing at 3.10 GHz. 

Mouzon and Yildirim (2008) presented a two-job benchmark

instance with the objective of minimizing both total energy con-

sumption and total tardiness. The release times of the two jobs are

0 and 4 time units, the processing times being 2 and 1 time unit,

and the due dates being 3 and 6 time units, respectively. The ma-

chine consumes 2 units of power when it is processing jobs and

1 unit when idle. The energy and time for a turn-off-on operation

are 1.5 units of energy and 2 time units, respectively. In their work,

the energy required to turn on the machine initially and turn it

off ultimately and energy consumed when it is processing jobs are

also taken into account. Since they use a greedy randomized multi-

objective adaptive search metaheuristic, two nearly non-dominated

points (7.5, 0) and (6, 1) are obtained. Using our algorithm, we can

obtain two exact Pareto integer points: (7, 0) and (6, 1). 

Yildirim and Mouzon (2012) gave a three-job instance to mini-

mize both total energy consumption and total completion time. In

their instance, the processing times of job 1 and job 3 are both 1

time unit while that of job 2 is 2 time units. They assume that job

1 and job 2 have zero release times and the release time of job

3 is 4 time units. The machine consumes 1 unit of power when

it is idle and 2 units when processing jobs. A turn-off-on opera-
ion takes 1 time unit and costs 1.5 units of energy. With our algo-

ithm, we can obtain the same exact integer Pareto optimal points

s Yildirim and Mouzon (2012) : (9, 9) and (8, 11), which only takes

bout 0.4 s. 

Liu et al. (2014) presented a five-job instance. Their aim is to

inimize the total carbon dioxide emission and the total com-

letion time simultaneously. The carbon dioxide emission is equal

o the amount of energy consumption multiplied by the carbon

onversion coefficient of electricity λ, which takes the value of

.785 kgCO 2 /kwh in their work. The total completion time can be

enoted by 
∑ n 

k =1 C k . The processing of the five jobs follows the

irst-Come-First-Serve rule, whose processing data are shown in

able 1 . 

In their instance, the machine consumes 0.4 kw when it is idle

nd 3 kw when working. Each turn-off-on operation takes 12 h

nd requires 4 kwh of electricity. To implement our ε−constraint

ethod, we set the carbon dioxide emission as the primary ob-

ective and the total completion time is decreased by one hour in

ach iteration. In Fig. 5 , the Pareto front obtained by our ε−con-

traint method is depicted as the black points while Liu et al.’s is

iven with the red square points. We can see from Fig. 5 that our

lgorithm outperforms theirs significantly in terms of the quality

nd number of the Pareto optimal points. The six Pareto optimal

oints reported in Liu et al. (2014) are all dominated by those ob-

ained using our algorithm. 

.2. Randomly generated instances 

To further evaluate the proposed algorithm, we utilize randomly

enerated instances. The way in which our data are generated is

he same as that by Mouzon and Yildirim (2008) . The processing

ime of each job follows a uniform distribution between 1 and 5

ime units. The release time of each job follows an exponential dis-

ribution with a mean of 10 time units. The due date of each job

s the sum of three parts: its release time, processing time and a

lack time ( s i ), which follows a uniform distribution between 0 and

× ∑ n 
i =1 t i . The parameter β reflects the degree of how far the due

ate deviates from the release time. As the value of β increases,

he due dates become more spread over time. 

In this section, we test in total three algorithms. The first two

re Algorithm A1 and Algorithm A1 combined with local search,

reprocessing technique and valid inequalities, called A1LP below.

ote that Berube et al. (2009) also proposed an exact ε−con-

traint method for the bi-objective optimization problem and we
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Table 2 

Comparison of computational times for the three algorithms. 

Number of jobs 

10 15 20 25 

A1LP 5.88 14.53 62.65 1854.46 

β =0.05 A1 14.53 51.09 364.02 —

A2P 26.38 78.14 266.83 —

A1LP 6.51 11.54 58.19 944.61 

β =0.1 A1 13.36 48.85 424.28 —

A2P 33.10 72.84 218.56 —

A1LP 5.29 15.59 53.94 3483.60 

β =0.15 A1 13.57 48.18 269.22 —

A2P 29.08 68.73 347.28 —

A1LP 6.75 12.04 73.82 2769.21 

β =0.2 A1 14.54 45.67 422.27 —

A2P 29.03 87.66 290.62 —

—: Problems that cannot be solved to optimality within reasonable time. 

Table 3 

Numbers of Pareto optimal solution for test instances. 

Average number of jobs 

10 15 20 25 

β =0.05 15.17 20.90 24.00 30.60 

β =0.10 15.67 19.37 23.67 30.20 

β =0.15 14.17 19.53 24.37 26.30 

β =0.20 15.33 17.80 23.00 27.40 
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Table 4 

Computational time of A1LP for small-size problems. 

Number of jobs 

10 15 20 25 

β =0.05 No clustering 5.88 14.53 62.65 1854.46 

n /3 clusters 5.29 8.92 13.29 21.93 

n /2 clusters 4.92 8.24 10.92 17.43 

β =0.1 No clustering 6.51 11.54 58.19 944.61 

n /3 clusters 5.75 7.46 13.04 22.40 

n /2 clusters 5.25 6.87 10.82 17.69 

β =0.15 No clustering 5.29 15.59 53.94 3483.60 

n /3 clusters 4.74 9.43 15.41 20.34 

n /2 clusters 4.29 8.61 11.74 15.25 

β =0.2 No clustering 6.75 12.04 73.82 2769.21 

n /3 clusters 5.97 7.51 13.93 22.53 

n /2 clusters 5.42 7.15 10.86 15.47 

Table 5 

Solution performance of A1LP for small-size problems. 

Number of jobs 

10 15 20 25 

β =0.05 n /3 clusters 100% 100% 100% 100% 

n /2 clusters 100% 100% 100% 100% 

β =0.1 n /3 clusters 100% 100% 100% 100% 

n /2 clusters 99.13% 100% 100% 100% 

β =0.15 n /3 clusters 100% 100% 100% 100% 

n /2 clusters 100% 99.57% 100% 100% 

β =0.2 n /3 clusters 100% 100% 100% 99.67% 

n /2 clusters 100% 98.46% 100% 99.67% 
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lso compare it with our algorithms. Note that due to the particu-

arity of our problem, fractional optimal points may be obtained by

heir algorithm. Hence we need to slightly modify Berube et al.’s

lgorithm and remove the non-integer points from the obtained

areto front. In their algorithm, suppose the two objectives to be

ptimized is z 1 and z 2 , without loss of generality, P z 1 (ε) is solved

n each iteration and then ε is assigned with the corresponding

alue of z ∗2 minus one. Since the obtained z ∗2 may be non-integer,

he modification here is to set ε = � z ∗
2 
� in this case. There is no

uarantee that the solution obtained in each iteration of their al-

orithm is non-dominated. Since the local search proposed in this

aper embarks on a Pareto optimal solution, there is no way that

e can apply local search to it. For simplicity, we denote this algo-

ithm combined with preprocessing technique and valid inequali-

ies as A2P. 

We test the three algorithms using the instances with the num-

er of jobs being 10, 15, 20, 25 and the value of β being 0.05, 0.10,

.15, 0.20 respectively. All the instances are generated in the same

ule, and each setting has been tested for 10 instances and we cal-

ulate their means. Table 2 shows the computational times for the

hree algorithms, and Table 3 gives the average number of Pareto

ptimal points for each setting of instances. 

We can see from Table 2 that, in terms of computational time,

1LP outperforms greatly than A2P. To be more specific, the aver-

ge computational time consumed by A2P is at least four times

f that by A1LP. The comparison between A1 and A1LP reveals

hat the proposed local search, preprocessing technique and valid

nequalities have significantly accelerated the basic ε−constraint

ethod. Table 3 shows that the number of Pareto optimal points

oes not vary significantly with β . 

.3. Approximate Pareto front based on cluster analysis 

To enable our algorithm to solve large-scale problems, we uti-

ize the clustering technique introduced in Section 3 . The solution

erformance measurement of our algorithm (i.e., A1LP) under dif-

erent clustering circumstances is based on the observation that
ess clusters will lead to more precise Pareto front while consum-

ng more computational time. 

For small-size problems, we test the algorithm with the job

umber being 10, 15, 20, 25 under three circumstances. We set

he number of clusters as 1, n /2 and n /3, respectively. Obviously,

hen there is only one cluster (i.e. no clustering is conducted), we

ill obtain the exact Pareto front of the problem. To evaluate the

lgorithm under the other two circumstances, we propose the fol-

owing rule. For any instance, we use �i , i = 1, 2, 3 to denote the

areto front obtained when there is 1, n /2 and n /3 clusters, respec-

ively. Let �′ 
i 
, i = 2 , 3 be the sets of points in �2 and �3 that can-

ot be dominated by any point in �1 , respectively. The solution

erformance of A1LP when there are n /2 and n /3 clusters is mea-

ured as 

pe r i = 

�′ 
i 

�1 

× 100% , i = 2 , 3 

Their computational time and corresponding solution perfor-

ance are shown in Table 4 and Table 5 , respectively. 

From Table 4 , we can see that the computational time has been

ignificantly reduced when we apply the clustering procedure. On

he other hand, Table 5 reveals that the solutions obtained by

1LP under different settings are almost the same (i.e., all non-

ominated). That is, its solution performance is hardly affected by

ob clustering. However, with the help of the clustering procedure

ur algorithm has been accelerated greatly. 

For large-size problems with the job number being 30, 35, 40,

5 and 50, we test three circumstances, namely there are n /3, n /2

nd 2 n /3 clusters, respectively. As is introduced before, less clus-

ers lead to more precise Pareto front. Hence we use the Pareto

ront obtained when there are n /3 clusters to evaluate the algo-

ithm under the other two circumstances utilizing the same rule

or small-size problems. The computational time and solution per-

ormance are shown in Tables 6 and 7 , respectively. 

Tables 6 and 7 indicate that the computational time of A1LP can

e significantly reduced when the number of clusters increases,
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Table 6 

Computational time of A1LP for large-size problems. 

Number of jobs 

30 35 40 45 50 

β =0.05 n /3 32.24 47.56 111.64 118.38 178.30 

n /2 22.02 29.33 42.52 57.91 70.00 

(2 ×n )/3 18.37 23.40 34.20 42.37 50.64 

β =0.1 n /3 29.74 51.97 79.53 138.59 424.11 

n /2 21.83 32.46 41.75 61.22 78.68 

(2 ×n )/3 17.61 24.41 33.01 41.11 55.66 

β =0.15 n /3 32.42 44.46 103.78 156.05 1179.38 

n /2 22.25 27.09 47.07 66.30 93.81 

(2 ×n )/3 19.03 19.13 34.54 41.76 54.11 

β =0.2 n /3 35.09 59.42 95.22 301.53 1464.25 

n /2 24.44 33.89 44.68 80.70 142.73 

(2 ×n )/3 18.36 25.32 32.67 45.03 57.15 

Table 7 

Solution performance of A1LP for large-size problems. 

Number of jobs 

30 35 40 45 50 

β =0.05 n /2 100% 100% 100% 100% 100% 

(2 ×n )/3 100% 99.21% 100% 100% 100% 

β =0.1 n /2 100% 99.63% 100% 100% 98.47% 

(2 ×n )/3 100% 94.40% 96.48% 89.80% 95.93% 

β =0.15 n /2 99.29% 98.40% 98.73% 96.38% 85.94% 

(2 ×n )/3 97.88% 74.34% 84.65% 78.95% 70.47% 

β =0.2 n /2 100% 88.18% 90.32% 92.09% 74.80% 

(2 ×n )/3 87.05% 79.18% 77.37% 71.39% 55.36% 
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but the solutions we obtain are less precise. Another observation

from the two tables is that when dealing with problems with

lower values of β , the A1LP with the clustering procedure can ob-

tain more precise Pareto front of the problem. Generally speaking,

the proposed clustering procedure has significantly accelerated the

algorithm while leaving its solution performance only slightly af-

fected. For example, even for 50-job problems with n /2 clusters

and β =0.2, the algorithm can still reach 74.80% solution perfor-

mance. That is only 25.20% of the Pareto optimal points obtained

with n /2 clusters are dominated by those with n /3 clusters. 

5. Conclusion 

This paper has addressed a single-machine scheduling problem

with power-down mechanism to minimize total energy consump-

tion and maximum tardiness simultaneously. An MILP model based

on position assignment has been developed to formulate the prob-

lem. To obtain the exact Pareto front of the problem, we proposed

a basic ε−constraint method and developed local search, prepro-

cessing technique and valid inequalities to enhance the proposed

model. To solve large-size problems, we applied the cluster anal-

ysis method to divide jobs into several sorted clusters based on

their release times and due dates, which significantly reduces the

solution space of the problem. 

The computational results on several benchmark instances

showed that the proposed exact algorithm is able to obtain the ex-

act Pareto fronts and outperforms the existing approaches in terms

of the quality of the Pareto front. In addition, the computational

experiments on randomly generated instances demonstrated that

the proposed clustering procedure enables the algorithm to solve

larger-size problems with slight loss in solution performance. In

its practical significance, the proposed model and methods provide

production managers with a decision support tool to make reason-

able trade-offs between energy consumption and maximum tardi-

ness in production scheduling. 
Future works on this issue might focus on multi-machine envi-

onments, in which the complexity of the problem will be greatly

ncreased. Another extension of this study is to identify other

bjectives and develop new methods to obtain the exact Pareto

ronts. 
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