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Heads-up limit hold’em poker is solved
Michael Bowling,1* Neil Burch,1 Michael Johanson,1 Oskari Tammelin2

Poker is a family of games that exhibit imperfect information, where players do not
have full knowledge of past events. Whereas many perfect-information games have
been solved (e.g., Connect Four and checkers), no nontrivial imperfect-information game
played competitively by humans has previously been solved. Here, we announce that
heads-up limit Texas hold’em is now essentially weakly solved. Furthermore, this
computation formally proves the common wisdom that the dealer in the game holds
a substantial advantage. This result was enabled by a new algorithm, CFR+, which
is capable of solving extensive-form games orders of magnitude larger than
previously possible.

G
ames have been intertwined with the ear-
liest developments in computation, game
theory, and artificial intelligence (AI). At
the very conception of computing, Babbage
had detailed plans for an “automaton”

capable of playing tic-tac-toe and dreamed of his
Analytical Engine playing chess (1). Both Turing
(2) and Shannon (3)—on paper and in hardware,
respectively—developed programs to play chess
as a means of validating early ideas in compu-
tation and AI. For more than a half century,
games have continued to act as testbeds for new
ideas, and the resulting successes have marked
important milestones in the progress of AI. Ex-
amples include the checkers-playing computer
program Chinook becoming the first to win a
world championship title against humans (4), Deep
Blue defeating Kasparov in chess (5), andWatson
defeating Jennings and Rutter on Jeopardy! (6).
However, defeating top human players is not the
same as “solving” a game—that is, computing a
game-theoretically optimal solution that is in-
capable of losing against any opponent in a fair
game. Notable milestones in the advancement of
AI have also involved solving games, for example,
Connect Four (7) and checkers (8).
Every nontrivial game (9) played competitively

by humans that has been solved to date is a
perfect-information game. In perfect-information
games, all players are informed of everything
that has occurred in the game before making a
decision. Chess, checkers, and backgammon
are examples of perfect-information games. In
imperfect-information games, players do not al-
ways have full knowledge of past events (e.g.,
cards dealt to other players in bridge and poker,
or a seller’s knowledge of the value of an item in
an auction). These games are more challenging,
with theory, computational algorithms, and in-
stances of solved games lagging behind results in
the perfect-information setting (10). And although

perfect information may be a common property
of parlor games, it is far less common in real-
world decision-making settings. In a conversa-
tion recounted by Bronowski, von Neumann, the
founder of modern game theory, made the same
observation: “Real life is not like that. Real life
consists of bluffing, of little tactics of deception,
of asking yourself what is the other man going to
think I mean to do. And that is what games are
about in my theory” (11).
Von Neumann’s statement hints at the quin-

tessential game of imperfect information: the
game of poker. Poker involves each player being
dealt private cards, with players taking struc-
tured turns making bets on having the strongest
hand (possibly bluffing), calling opponents’ bets,
or folding to give up the hand. Poker played an
important role in early developments in the field
of game theory. Borel’s (12) and von Neumann’s

(13, 14) foundational works were motivated by
developing a mathematical rationale for bluffing
in poker, and small synthetic poker games (15) were
commonplace inmany early papers (12, 14, 16, 17).
Poker is also arguably the most popular card
game in the world, with more than 150 million
players worldwide (18).
The most popular variant of poker today is

Texas hold’em. When it is played with just two
players (heads-up) and with fixed bet sizes and a
fixed number of raises (limit), it is called heads-
up limit hold’em or HULHE (19). HULHE was
popularizedby a series of high-stakes games chron-
icled in the book The Professor, the Banker, and the
Suicide King (20). It is also the smallest variant of
poker played competitively by humans. HULHE
has 3.16 × 1017 possible states the game can reach,
making it larger than Connect Four and smaller
than checkers. However, because HULHE is an
imperfect-information game,many of these states
cannot be distinguished by the acting player,
as they involve information about unseen past
events (i.e., private cards dealt to the oppo-
nent). As a result, the game has 3.19 × 1014

decision points where a player is required to
make a decision.
Although smaller than checkers, the imperfect-

information nature of HULHE makes it a far
more challenging game for computers to play
or solve. It was 17 years after Chinook won its
first game against world champion Tinsley in
checkers that the computer program Polaris
won the first meaningful match against profes-
sional poker players (21).Whereas Schaeffer et al.
solved checkers in 2007 (8), heads-up limit Texas
hold’empoker had remained unsolved. This slow
progress is not for lack of effort. Poker has been
a challenge problem for artificial intelligence,
operations research, and psychology, with work
going back more than 40 years (22); 17 years ago,
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Fig. 1. Portion of the
extensive-form game
representation of three-
card Kuhn poker (16).
Player 1 is dealt a queen
(Q), and the opponent is
given either the jack (J) or
king (K). Game states are
circles labeled by the
player acting at each state
(“c” refers to chance,
which randomly chooses
the initial deal). The
arrows show the events
the acting player can
choose from, labeled with
their in-game meaning.
The leaves are square
vertices labeled with the
associated utility for
player 1 (player 2’s utility
is the negation of player
1’s).The states connected by thick gray lines are part of the same information set; that is, player 1 cannot
distinguish between the states in each pair because they each represent a different unobserved card
being dealt to the opponent. Player 2’s states are also in information sets, containing other states not
pictured in this diagram.
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Koller and Pfeffer (23) declared, “We are no-
where close to being able to solve huge games
such as full-scale poker, and it is unlikely that we
will ever be able to do so.” The focus on HULHE
as one example of “full-scale poker” began in
earnest more than 10 years ago (24) and became
the focus of dozens of research groups and hob-
byists after 2006, when it became the inaugural
event in the Annual Computer Poker Competi-
tion (25), held in conjunction with the main con-
ference of the Association for the Advancement
of Artificial Intelligence (AAAI). This paper is the
culmination of this sustained research effort to-
ward solving a “full-scale” poker game (19).
Allis (26) gave three different definitions for

solving a game. A game is said to be ultraweakly
solved if, for the initial position(s), the game-
theoretic value has been determined; weakly
solved if, for the initial position(s), a strategy has
been determined to obtain at least the game-
theoretic value, for both players, under reason-
able resources; and strongly solved if, for all legal
positions, a strategy has been determined to ob-
tain the game-theoretic value of the position, for
both players, under reasonable resources. In an
imperfect-information game, where the game-
theoretic value of a position beyond the initial
position is not unique, Allis’s notion of “strongly
solved” is not well defined. Furthermore, imperfect-
information games, because of stochasticity in
the players’ strategies or the game itself, typically
have game-theoretic values that are real-valued
rather than discretely valued (such as “win,” “loss,”
and “draw” in chess and checkers) and are only
achieved in expectation over many playings of
the game. As a result, game-theoretic values are
often approximated, and so an additional con-
sideration in solving a game is the degree of ap-
proximation in a solution. A natural level of
approximation under which a game is essentially
weakly solved is if a human lifetime of play is not
sufficient to establish with statistical significance
that the strategy is not an exact solution.
In this paper, we announce that heads-up limit

Texas hold’em poker is essentially weakly solved.
Furthermore, we bound the game-theoretic val-
ue of the game, proving that the game is a win-
ning game for the dealer.

Solving imperfect-information games

The classical representation for an imperfect-
information setting is the extensive-form game.
Here, the word “game” refers to a formal model
of interaction between self-interested agents and
applies to both recreational games and serious
endeavors such as auctions, negotiation, and se-
curity. See Fig. 1 for a graphical depiction of a
portion of a simple poker game in extensive
form. The core of an extensive-form game is a
game tree specifying branches of possible events,
namely player actions or chance outcomes. The
branches of the tree split at game states, and
each is associated with one of the players (or
chance) who is responsible for determining the
result of that event. The leaves of the tree sig-
nify the end of the game and have an associated
utility for each player. The states associated with

a player are partitioned into information sets,
which are sets of states among which the acting
player cannot distinguish (e.g., corresponding to
states where the opponent was dealt different
private cards). The branches from states within
an information set are the player’s available ac-
tions. A strategy for a player specifies for each
information set a probability distribution over
the available actions. If the game has exactly
two players and the utilities at every leaf sum to
zero, the game is called zero-sum.
The classical solution concept for games is a

Nash equilibrium, a strategy for each player such
that no player can increase his or her expected
utility by unilaterally choosing a different strat-
egy. All finite extensive-form games have at least
one Nash equilibrium. In zero-sum games, all
equilibria have the same expected utilities for
the players, and this value is called the game-
theoretic value of the game. An e-Nash equilib-
rium is a strategy for each playerwhere no player
can increase his or her utility by more than e by
choosing a different strategy. By Allis’ categories,
a zero-sum game is ultraweakly solved if its game-
theoretic value is computed, and weakly solved if
a Nash equilibrium strategy is computed.We call
a game essentially weakly solved if an e-Nash
equilibrium is computed for a sufficiently small e
to be statistically indistinguishable from zero in
a human lifetime of played games. For perfect-
information games, solving typically involves a
(partial) traversal of the game tree. However,
the same techniques cannot apply to imperfect-
information settings. We briefly review the ad-
vances in solving imperfect-information games,
benchmarking the algorithms by their progress
in solving increasingly larger synthetic poker
games, as summarized in Fig. 2.

Normal-form linear programming

The earliest method for solving an extensive-
form game involved converting it into a normal-
form game, represented as a matrix of values
for every pair of possible deterministic strategies
in the original extensive-form game, and then

solving it with a linear program (LP). Unfor-
tunately, the number of possible deterministic
strategies is exponential in the number of infor-
mation sets of the game. So, although LPs can
handle normal-formgameswithmany thousands
of strategies, even just a few dozen decision
pointsmakes thismethod impractical. Kuhnpoker,
a poker game with three cards, one betting round,
and a one-bet maximum having a total of 12 in-
formation sets (see Fig. 1), can be solved with this
approach. But even Leduc hold’em (27), with six
cards, two betting rounds, and a two-bet maxi-
mum having a total of 288 information sets, is
intractable, having more than 1086 possible de-
terministic strategies.

Sequence-form linear programming

Romanovskii (28) and later Koller et al. (29, 30)
established the modern era of solving imperfect-
information games, introducing the sequence-
form representation of a strategy. With this sim-
ple change of variables, they showed that the
extensive-form game could be solved directly as
an LP, without the need for an exponential con-
version to normal form. Sequence-form linear
programming (SFLP) was the first algorithm to
solve imperfect-information extensive-form games
with computation time that grows as a polyno-
mial of the size of the game representation. In
2003, Billings et al. (24) applied this technique to
poker, solving a set of simplifications of HULHE
to build the first competitive poker-playing pro-
gram. In 2005, Gilpin and Sandholm (31) used
the approach along with an automated tech-
nique for finding game symmetries to solve Rhode
Island hold’em (32), a synthetic poker game with
3.94 × 106 information sets after symmetries are
removed.

Counterfactual regret minimization

In 2006, the Annual Computer Poker Competi-
tion was started (25). The competition drove ad-
vancements in solving larger and larger games,
with multiple techniques and refinements being
proposed in the years that followed (33, 34). One
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Fig. 2. Increasing sizes of imperfect-information games solved over time measured in unique
information sets (i.e., after symmetries are removed).The shaded regions refer to the technique used
to achieve the result; the dashed line shows the result established in this paper.
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of the techniques to emerge, and currently the
most widely adopted in the competition, is
counterfactual regret minimization (CFR) (35).
CFR is an iterative method for approximating
a Nash equilibrium of an extensive-form game
through the process of repeated self-play between
two regret-minimizing algorithms (19, 36). Regret
is the loss in utility an algorithm suffers for not
having selected the single best deterministic
strategy, which can only be known in hindsight.
A regret-minimizing algorithm is one that guar-
antees that its regret grows sublinearly over
time, and so eventually achieves the same utility
as the best deterministic strategy. The key in-
sight of CFR is that instead of storing and
minimizing regret for the exponential number
of deterministic strategies, CFR stores and min-
imizes a modified regret for each information
set and subsequent action, which can be used
to form an upper bound on the regret for any
deterministic strategy. An approximate Nash
equilibrium is retrieved by averaging each play-
er’s strategies over all of the iterations, and the
approximation improves as the number of itera-
tions increases. The memory needed for the al-
gorithm is linear in the number of information
sets, rather than quadratic, which is the case for
efficient LP methods (37). Because solving large
games is usually bounded by available memory,
CFR has resulted in an increase in the size of
solved games similar to that of Koller et al.’s
advance. Since its introduction in 2007, CFR has
been used to solve increasingly complex simpli-
fications of HULHE, reaching as many as 3.8 ×
1010 information sets in 2012 (38).

Solving heads-up limit hold’em

The full game of HULHE has 3.19 × 1014 infor-
mation sets. Even after removing game symme-
tries, it has 1.38 × 1013 information sets (i.e., three
orders ofmagnitude larger thanpreviously solved
games). There are two challenges for established
CFR variants to handle games at this scale: mem-
ory and computation. During computation, CFR
must store the resulting solution and the accu-

mulated regret values for each information set.
Evenwith single-precision (4-byte) floating-point
numbers, this requires 262 TB of storage. Fur-
thermore, past experience has shown that in-
creasing the number of information sets by three
orders of magnitude requires at least three orders
of magnitude more computation. To tackle these
two challenges, we use two ideas recently pro-
posed by a coauthor of this paper (39).
To address the memory challenge, we store

the average strategy and accumulated regrets
using compression. We use fixed-point arith-
metic by first multiplying all values by a scaling
factor and truncating them to integers. The re-
sulting integers are then ordered to maximize
compression efficiency, with compression ratios
around 13-to-1 on the regrets and 28-to-1 on the
strategy. Overall, we require less than 11 TB of
storage to store the regrets and 6 TB to store the
average strategy during the computation, which
is distributed across a cluster of computation
nodes. This amount is infeasible to store in main
memory, and so we store the values on each
node’s local disk. Each node is responsible for a
set of subgames; that is, portions of the game
tree are partitioned on the basis of publicly ob-
served actions and cards such that each infor-
mation set is associated with one subgame. The
regrets and strategy for a subgame are loaded
fromdisk, updated, and saved back to disk, using
a streaming compression technique that decom-
presses and recompresses portions of the sub-
game as needed. By making the subgames large
enough, the update time dominates the total time
to process a subgame. With disk pre-caching, the
inefficiency incurred by disk storage is approxi-
mately 5% of the total time.
To address the computation challenge, we use

a variant of CFR called CFR+ (19, 39). CFR im-
plementations typically sample only portions of
the game tree to update on each iteration. They
also use regret matching at each information set,
which maintains regrets for each action and
chooses among actions with positive regret with
probability proportional to that regret. By con-

trast, CFR+ does exhaustive iterations over the
entire game tree and uses a variant of regret
matching (regret matching+) where regrets are
constrained to be non-negative. Actions that
have appeared poor (with less than zero regret
for not having been played) will be chosen again
immediately after proving useful (rather than
waiting many iterations for the regret to become
positive). Finally, unlike with CFR, we have em-
pirically observed that the exploitability of the
players’ current strategies during the computa-
tion regularly approaches zero. Therefore, we
can skip the step of computing and storing the
average strategy, instead using the players’ cur-
rent strategies as the CFR+ solution. We have
empirically observed CFR+ to require considera-
bly less computation, even when computing the
average strategy, than state-of-the-art sampling
CFR (40), while also being highly suitable for
massive parallelization.
Like CFR, CFR+ is an iterative algorithm that

computes successive approximations to a Nash
equilibrium solution. The quality of the approx-
imation can bemeasured by its exploitability: the
amount less than the game value that the strat-
egy achieves against the worst-case opponent
strategy in expectation (19). Computing the ex-
ploitability of a strategy involves computing this
worst-case value, which traditionally requires a
traversal of the entire game tree. This was long
thought to be intractable for games the size of
HULHE. Recently, it was shown that this calcu-
lation could be accelerated by exploiting the
imperfect-information structure of the game and
regularities in the utilities (41). This is the tech-
nique we use to confirm the approximation qual-
ity of our resulting strategy. The technique and
implementation has been verified on small games
and against independent calculations of the ex-
ploitability of simple strategies in HULHE.
A strategy can be exploitable in expectation

and yet, because of chance elements in the game
and randomization in the strategy, its worst-case
opponent still is not guaranteed to be winning
after any finite number of hands. We define a
game to be essentially solved if a lifetime of play
is unable to statistically differentiate it from be-
ing solved at 95% confidence. Imagine someone
playing 200 games of poker an hour for 12 hours
a day without missing a day for 70 years. Further-
more, imagine that player using the worst-case,
maximally exploitive, opponent strategy and
never making a mistake. The player’s total win-
nings, as a sum of many millions of independent
outcomes, would be normally distributed. Hence,
the observed winnings in this lifetime of poker
would be 1.64 standard deviations ormore below
its expected value (i.e., the strategy’s exploitabil-
ity) at least 1 time out of 20. Using the standard
deviation of a single game of HULHE, which has
been reported to be around 5 bb/g (big-blinds
per game, where the big-blind is the unit of
stakes in HULHE) (42), we arrive at a threshold
of (1.64 × 5)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

200� 12� 365� 70
p

≈ 0.00105.
Therefore, an approximate solution with an ex-
ploitability less than 1 mbb/g (milli-big-blinds
per game) cannot be distinguished with high
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Fig. 3. Exploitability of the approximate solution with increasing computation. The exploitability,
measured in milli-big-blinds per game (mbb/g), is that of the current strategy measured after each
iteration of CFR+. After 1579 iterations or 900 core-years of computation, it reaches an exploitability of
0.986 mbb/g.
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confidence froman exact solution, and indeed has
a 1-in-20 chance ofwinning against its worst-case
adversary even after a human lifetime of games.
Hence, 1 mbb/g is the threshold for declaring
HULHE essentially solved.

The solution

Our CFR+ implementation was executed on a
cluster of 200 computation nodes each with 24
2.1-GHz AMD cores, 32 GB of RAM, and a 1-TB
local disk. We divided the game into 110,565
subgames (partitioned according to preflop bet-
ting, flop cards, and flop betting). The subgames
were split among 199 worker nodes, with one
parent node responsible for the initial portion
of the game tree. The worker nodes performed
their updates in parallel, passing values back to
the parent node for it to perform its update, taking
61 min on average to complete one iteration. The
computation was then run for 1579 iterations,
taking 68.5 days, and using a total of 900 core-
years of computation (43) and 10.9 TB of disk
space, including file system overhead from the
large number of files.
Figure 3 shows the exploitability of the com-

puted strategy with increasing computation. The
strategy reaches an exploitability of 0.986mbb/g,
making HULHE essentially weakly solved. Using
the separate exploitability values for each posi-
tion (as the dealer and nondealer), we get exact
bounds on the game-theoretic value of the game:
between 87.7 and 89.7 mbb/g for the dealer,
proving the common wisdom that the dealer
holds a substantial advantage in HULHE.
The final strategy, as a close approximation to

aNash equilibrium, can also answer some funda-
mental and long-debated questions about game-
theoretically optimal play in HULHE. Figure 4
gives a glimpse of the final strategy in two early
decisions of the game. Human players have dis-
agreed about whether it may be desirable to
“limp” (i.e., call as the very first action rather

than raise) with certain hands. Conventional
wisdom is that limping forgoes the opportunity
to provoke an immediate fold by the opponent,
and so raising is preferred. Our solution emphat-
ically agrees (see the absence of blue in Fig. 4A).
The strategy limps just 0.06% of the time and
with no hand more than 0.5%. In other situa-
tions, the strategy gives insights beyond conven-
tional wisdom, indicating areas where humans
might improve. The strategy almost never “caps”
(i.e., makes the final allowed raise) in the first
round as the dealer, whereas some strong human
players cap the betting with a wide range of
hands. Evenwhen holding the strongest hand—a
pair of aces—the strategy caps the betting less
than 0.01% of the time, and the hand most likely
to cap is a pair of twos, with probability 0.06%.
Perhaps more important, the strategy chooses to
play (i.e., not fold) a broader range of hands as
the nondealer than most human players (see the
relatively small amount of red in Fig. 4B). It is
also muchmore likely to re-raise when holding a
low-rank pair (such as threes or fours) (44).
Although these observations are for only one

example of game-theoretically optimal play (dif-
ferent Nash equilibria may play differently), they
confirm as well as contradict current human
beliefs about equilibria play and illustrate that
humans can learn considerably from such large-
scale game-theoretic reasoning.

Conclusion

What is the ultimate importance of solving
poker? The breakthroughs behind our result
are general algorithmic advances thatmake game-
theoretic reasoning in large-scale models of any
sort more tractable. And, although seemingly
playful, game theory has always been envisioned
to have serious implications [e.g., its early impact
on Cold War politics (45)]. More recently, there
has been a surge in game-theoretic applications
involving security, including systemsbeingdeployed

for airport checkpoints, air marshal scheduling,
and coast guard patrolling (46). CFR algorithms
based on those described above have been used
for robust decision-making in settings where
there is no apparent adversary, with potential
application tomedical decision support (47). With
real-life decision-making settings almost always
involving uncertainty and missing information,
algorithmic advances such as those needed to
solve poker are the key to future applications.
However, we also echo a response attributed to
Turing in defense of his own work in games: “It
would be disingenuous of us to disguise the fact
that the principal motive which prompted the
work was the sheer fun of the thing” (48).
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BATTERIES

In situ visualization of Li/Ag2VP2O8
batteries revealing rate-dependent
discharge mechanism
Kevin Kirshenbaum,1 David C. Bock,2 Chia-Ying Lee,3 Zhong Zhong,1

Kenneth J. Takeuchi,2,4* Amy C. Marschilok,2,4* Esther S. Takeuchi1,2,4*

The functional capacity of a battery is observed to decrease, often quite dramatically, as
discharge rate demands increase. These capacity losses have been attributed to limited ion
access and low electrical conductivity, resulting in incomplete electrode use. A strategy to
improve electronic conductivity is the design of bimetallic materials that generate a silver matrix
in situ during cathode reduction. Ex situ x-ray absorption spectroscopy coupled with in situ
energy-dispersive x-ray diffraction measurements on intact lithium/silver vanadium diphosphate
(Li/Ag2VP2O8) electrochemical cells demonstrate that the metal center preferentially reduced
and its location in the bimetallic cathode are rate-dependent, affecting cell impedance.
This work illustrates that spatial imaging as a function of discharge rate can provide needed
insights toward improving realizable capacity of bimetallic cathode systems.

F
ollowing the introduction of lithium iron
phosphate (1), polyanion framework mate-
rials have emerged as a cathode class of
interest due to increased thermal stability
and higher operating voltage relative to

oxides. Materials with multiple metal centers—
such as LiCo1/3Mn1/3Ni1/3O2 (2), LiMn0.15Fe0.85PO4

(3), and LiNi0.5Mn1.5O4 (4), as well as numerous
bimetallic sulfates (5, 6)—are being explored for
use in high-voltage electrodes; however, high elec-
tronic resistance and low volumetric capacity are
two inherent limitations that have been observed
in these materials. Various strategies have been
implemented to facilitate ion access through the
use of nanosized materials and for mitigation of
resistance on a practical level, including intimate
mixing or coatingwith conductive carbon (7). Sub-

stantial gains in power output were achieved,
albeit at the expense of gravimetric and volumetric
energy density.
An alternate conceptual approach is the ra-

tional design of multifunctional bimetallic poly-
anion frameworkmaterials inwhich a redox active
center offering the opportunity for multiple elec-
tron reductions per formula unit (i.e., vanadium)
is used in conjunction with a redox active center
that reduces to form a conductive metal (i.e., sil-
ver) (8). Design of active cathodematerials that form
conductive networks in situ can reduce or poten-
tially eliminate the need for conductive additives
that do not add to the capacity of the cell and re-
quire additional processing, thereby providing a
greater overall energydensity.One such polyanionic
material, silver vanadiumdiphosphate (Ag2VP2O8),
displays a reduction displacement mechanism (9)
in which both vanadium and silver are reduced
during the discharge process. The overall reduc-
tion processes can be expressed as Ag2V

4+P2O8 +
(x+y)Li0 → Lix+yAg2–yV

(4–x)+P2O8 + yAg0.
Here we seek to determine the effect that dis-

charge rate has on the discharge mechanism, in-
cluding homogeneity and spatial distribution of
dischargedmaterial in the cathode.Determination
of the discharge conditions yielding an optimal
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Heads-up limit hold’em poker is solved
Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin

Science, 347 (6218), • DOI: 10.1126/science.1259433

I'll see your program and raise you mine
One of the fundamental differences between playing chess and two-handed poker is that the chessboard and the
pieces on it are visible throughout the entire game, but an opponent's cards in poker are private. This informational
deficit increases the complexity and the uncertainty in calculating the best course of action—to raise, to fold, or to call.
Bowling et al. now report that they have developed a computer program that can do just that for the heads-up variant of
poker known as Limit Texas Hold 'em (see the Perspective by Sandholm).

Science, this issue p. 145; see also p. 122
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