
1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

A Branch Elimination-based Efficient Algorithm
for Large-scale Multiple Longest Common

Subsequence Problem
Shiwei Wei, Yuping Wang∗, Senior Member, IEEE, and Yiu-ming Cheung, Fellow, IEEE

Abstract—It is a key issue to find out all longest common subsequences of multiple sequences over a set of finite alphabets, namely
MLCS problem, in computational biology, pattern recognition and information retrieval, to name a few. However, it is very challenging to
tackle the large-scale MLCS problem effectively and efficiently due to the high complexity of time and space. To this end, this paper will
therefore propose a Branch Elimination-based Space and Time efficient algorithm called BEST-MLCS, which includes the following four
key strategies: 1) Estimation scheme for the lower bound of the length of MLCS. 2) Estimation scheme for the upper bound of the
length of the paths through the current match point. 3) Branch elimination strategy by finding all useless match points and removing the
branches not on the longest paths. 4) A new Directed Acyclic Graph (DAG) construction method for constructing the smallest DAG
among the existing ones. As a result, the proposed algorithm BEST-MLCS can save a lot of space and time and can handle much
larger scale MLCS problems than the existing algorithms. Extensive experiments conducted on biological DNA sequences show that
the performance of the proposed algorithm BEST-MLCS outperforms three state-of-the-art algorithms in terms of run-time and memory
consumption.

Index Terms—multiple longest common subsequences(MLCS), dominant point-based approach, useless match point detection,
branch elimination, smaller DAG.

F

1 INTRODUCTION

S EARCHING Longest Common Subsequences (LCS) of
Multiple (i.e., three or more) sequences (MLCS for short

[1]) is a fundamental but challenging problem in many areas
such as file comparison [2], pattern recognition [3], [4], dis-
tance metric learning [5], [6], computational biology [7], [8]
and information retrieval [9], [10]. In the literature, Sankoff
[11] presented a dynamic programming (DP) method to
find out the LCS of two sequences (also simply called LCS
without further distinction). DP can handle the LCS problem
in O(n2) running time and memory space, respectively,
where n is the length of the sequences.

Basically, an MLCS problem is more challenging than an
LCS problem. Many methods designed for LCS problems
are not suitable for MLCS problems. In the past decades,
a number of studies have been focused on dealing with
MLCS problems within the DP framework (e.g., see [12]–
[17]), but these DP-type algorithms are ineffective and inef-
ficient for MLCS problems, especially for large-scale MLCS
problems (i.e., a problem with the large number of and long
sequences). In fact, as the number and length of sequences
increase, the consumption of run-time and memory space
will grow exponentially due to their high time and space
complexity of O(nd) [18], where d (d ≥ 2) is the number of

• S. Wei is with the School of Computer Science and Technology, Xidian
University, Xian, Shaanxi, China, and the School of Computer Science
and Engineering, Guilin University of Aerospace Technology, Guilin,
Guangxi, China. E-mail: swwei 2001@163.com.

• Y. Wang (corresponding author) is with the School of Computer Sci-
ence and Technology, Xidian University, Xian, Shaanxi, China. E-mail:
ywang@xidian.edu.cn.

• Y.M. Cheung is with Department of Computer Science, Hong Kong Bap-
tist University, Hong Kong SAR, China. E-mail: ymc@comp.hkbu.edu.hk.

sequences and n is the length of sequences.
Alternatively, the dominant point-based approach, of

which the main idea was presented by Hakata and Imai
[19], [20], is a kind of more effective and efficient algorithms
for the MLCS problem. It is based on the observation that
most points in the dynamic table of DP-type algorithms are
useless, and only the key points, i.e., the so-called dominant
points, need to be computed and stored [18]. Definitely, the
resulted search space of the dominant point-based approach
is much smaller than that of DP-type methods. It turns out
that a lot of run-time and memory space can be saved. In ad-
dition, the dominant point-based approach transforms the
MLCS problem into the problem of finding the longest path
in a Directed Acyclic Graph (DAG). Subsequently, many
existing longest path algorithms for the DAG can be applied
to solve the MLCS. To further improve the performance
of the dominant point-based approach, a number of its
variants have been proposed, e.g., see literature [21]–[24].
Especially, Chen et al. [22] proposed a fast dominant point-
based algorithm, denoted as FAST LCS, in which a special
data structure called successor table is designed to speed up
calculating the successors of the match point. Furthermore,
to speed up the construction of DAG, Wang et al. [24]
presented a new algorithm called Quick-DP by a divide-
and-conquer technique. Quick-DP has a better performance
than FAST LCS in terms of time complexity. Nevertheless, as
the number and the length of sequences increase, the DAG
constructed by FAST LCS and Quick-DP will become larger
and larger. It turns out that FAST LCS and Quick-DP often
get stuck before they finish the construction of DAG. This is
because the time complexity of the non-dominated sorting
technology employed by both algorithms is O(N2), where

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

the number N of match points in the DAG is much larger
than n and d.

Recently, Li et al. [25] presented a novel algorithm called
Top MLCS which designs a new method to construct DAG
and utilizes a forward-and-backward topological sorting
technology to find out the longest paths in the DAG. This
method shows a better performance on time consump-
tion due to the topological sorting technology. To further
improve it, Peng and Wang [26] proposed a Leveled-DAG
approach to reduce the size of DAG by removing outdated
nodes, Wei et al. [27] presented a path recorder method
to eliminate redundant and repeated nodes of DAG, and
Liu et al. [28] designed a character merging algorithm to
shorten the length of DNA sequences by merging consec-
utively repeated characters for MLCS problems. All these
algorithms utilize topological sorting technology instead of
non-dominated sorting technology to construct DAG. The
DAGs constructed by them are much smaller than those
by dominant point-based approaches including FAST LCS
and Quick-DP. Hence, they have a better performance than
FAST LCS and Quick-DP in terms of time and space con-
sumption. Nevertheless, as the size of DAG increases, the
topological sorting based algorithms still consume a large
amount of memory space because they have to store the
whole DAG including all match points and directed edges
(i.e., useless match points and non-longest paths cannot
be identified and removed in time). Therefore, they cannot
effectively solve the large-scale MLCS problem due to the
memory overflow.

In order to deal with large-scale MLCS problems, we
will propose a Branch Elimination-based Space and Time
efficient algorithm called BEST-MLCS, which can eliminate
branches that are not on the longest paths. As a result, we
can construct much smaller DAG than all existing algo-
rithms, thereby handling much larger scale MLCS problems.
The main contributions of this paper are summarized as
follows:

1) An estimation scheme for the lower bound Lmlcs of
the length of MLCS is designed.

2) An estimation scheme for the upper bound U(O,p,∞)

of the length of paths from the starting match
point to the ending match point through the current
match point p is presented.

3) A branch elimination strategy for finding all useless
match points and removing the branches that are
not on the longest paths is proposed (Theorem 2).
Specifically, first, a useless match point detection
scheme (Theorem 2) finds out useless match points
as follows. For the current match point p, if
U(O,p,∞) < Lmlcs, p must not be on any longest
path corresponding to MLCS and is a useless match
point. Then, a branch elimination strategy is pro-
posed, which removes all paths (i.e., branches)
from starting match point O to the useless match
point p. Note that with the increase of the number
and the length of sequences, the number of use-
less match points and the branches through these
useless match points will become very huge. The
useless match point detection scheme can identify
these useless match points promptly and the branch

elimination strategy can remove all branches from
O to them on DAG.

4) A new DAG construction method for constructing
the smallest DAG among the existing ones is pro-
posed. Given a starting match point, the new DAG
is built level by level without putting the useless
match points on DAG, meanwhile removing all
existing branches through useless match points. As
a result, the resulted DAG will be much smaller than
the existing ones (including the DAGs constructed
by the state-of-the-art MLCS algorithms), and its
time and memory space will be greatly saved.

The main difference between the proposed algorithm
and the state-of-the-art algorithms is that, BEST-MLCS de-
signs a novel branch elimination strategy based on the
lower bound and upper bound estimation to remove a lot
of useless match points and non-longest paths from DAG,
avoiding using non-dominates sorting method and topolog-
ical sorting approach which are very time-consuming and
need a huge amount of memory space. Thus, the size of
the constructed DAG is very small, and BEST-MLCS can
efficiently find the longest paths corresponding to MLCSs
from the DAG with less consumption of run-time and
memory space.

The rest of this paper is organized as follows: Section 2
introduces the preliminary of the LCS and MLCS problems.
Section 3 reviews related works for the LCS and MLCS
problems. Section 4 describes the proposed algorithm BEST-
MLCS in detail. Section 5 presents the experimental results
to compare the proposed algorithm with three state-of-the-
art algorithms. Finally, we draw a conclusion in Section 6.

2 PRELIMINARY

2.1 Basic Definitions

Definition 1. Let s = c1c2 · · · cn be a sequence on a character
set Σ, where ci ∈ Σ, 1 ≤ i ≤ n, |Σ| denotes the cardinality of
Σ, and |s| denotes the length of s, i.e., |s| = n. If a sequence
s′ = ci1ci2 · · · cim satisfies 1 ≤ i1 < i2 < · · · < im ≤ n, s′

is called a subsequence of s, denoted by s′ ∈ subseq(s), where
subseq(s) is the set of all subsequences of s [22].

Actually, a subsequence can be obtained by re-
moving zero or more characters from the given se-
quence. For example, the sequences GACT , GAA and
AT are all subsequences of the sequence GAACT , i,e.,
GACT,GAA, and AT ∈ subseq(GAACT).

Definition 2. Given d (d ≥ 2) sequences s1, s2, · · · , sd on
character set Σ, a sequence s′ is called an LCS if it satisfies the
following conditions [22]:

1) For ∀i, 1 ≤ i ≤ d, s′ ∈ subseq(si), i.e., s′ is a common
subsequence of all d sequences.

2) There is no other common subsequence s′′ ∈
subseq(si)(i = 1, 2, · · · , d) longer than s′ (i.e., |s′′| >
|s′|).

If d = 2, the problem of finding LCS is usually called LCS
problem; otherwise, if d >= 3, the problem is called MLCS
problem.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

Obviously, an LCS problem is the simplest case of an
MLCS problem. Given d sequences, there may be more than
one LCSs or MLCSs. For example, for two sequences s1 =
GAAGCGTA and s2 = AGTCTGAC , there are two LCSs:
AGCGA and AGCTA.

2.2 The DP Approach

Definition 3. For a sequence s = c1c2 · · · cn, its subsequence
c1c2 · · · cj is called a prefix sequence of s and denoted by s[1...j]
[22].

The DP approach is a traditional method for tack-
ling LCS and MLCS problems [29]. Given d sequences
s1, s2, ..., sd with the length of n, it will recursively build
a d dimension score table L with n × n × ... × n = nd

elements, where the element L[i1, i2, ..., id] denotes the
length of MLCS of the prefix sequences s1[1...i1], s2[1...i2],
..., sd[1...id], and can be calculated by the following formula
[26]:

L[i1, · · · , id] = 0 if ∃ij = 0, (1 ≤ j ≤ d)
L[i1−1, · · · , id−1]+1 if s1[i1] = · · · = sd[id]
max(L̄) otherwise

(1)

where L̄={L[i1, i2, · · · , (ik − 1), · · · , id]|k = 1, 2, · · · , d}.
Once the score table L is built, the MLCS can be obtained

by traversing from the bottom right element L[n, n, ..., n]
to the top left element L[0, 0, ..., 0]. For instance, the score
table L built for the sequences s1 = GAAGCGTA and s2 =
AGTCTGAC is shown in Figure 1, and the LCS of these
two sequences are obtained by traversing from L[8, 8] to
L[0, 0].

Fig. 1. The score table L for two sequences s1 = GAAGCGTA and
s2 = AGTCTGAC. The LCS can be found out from the score table L
by traversing from shadow number 5 to 1.

Given d sequences with the length of n, both time
complexity and space complexity of the DP approach are up
to O(nd) [14]. As d and n increase, the space and time con-
sumption of these approaches will increase exponentially.
That is, the scalability of a DP approach is limited, which is
therefore essentially unsuitable for dealing with large-scale
MLCS problems.

3 RELATED WORKS

3.1 Dominant Point-based Approach

Before discussing dominant point-based approach in detail,
we first introduce some terminologies [25].

Definition 4. Given d sequences s1, s2, · · · , sd on a character
set Σ, let si[pi] denote the pi-th character of sequence si from
left. If s1[p1] = s2[p2] = ... = sd[pd] = σ ∈ Σ, the vector
p = (p1, p2, ..., pd) is called a match point of these d sequences,
and σ is called a common character of p, denoted by σ = cch(p)
[22]. The match point (p1, p2, · · · , pd) with its common character
σ is represented as σ(p1, p2, · · · , pd).

For example, given two sequences s1 = GAAGCGTA
and s2 = AGTCTGAC in Figure 2, there are many match
points with the form σ(i, j). The common character σ ∈ Σ
linked with dotted line corresponds to its position indexes
i and j in two sequences, i.e., s1[i] = s2[j] = σ, like
A(2, 1), A(3, 1) and G(1, 2). Since cch((2, 1)) = A, match
point A(2, 1) is also denoted by (2, 1) for short. Similarly,
A(3, 1) and G(1, 2) can be represented as (3, 1) and (1, 2),
respectively.

Definition 5. Given two match points p = (p1, p2, · · · , pd) and
q = (q1, q2, · · · , qd) of d sequences, we call [22]

1) p = q, if ∀i, 1 ≤ i ≤ d, pi = qi.
2) p dominates q (denoted by p ⪯ q), if ∀i, 1 ≤ i ≤

d, pi ≤ qi and ∃j, 1 ≤ j ≤ d, pj < qj .
3) p strongly dominates q (denoted by p ≺ q), if ∀i, 1 ≤

i ≤ d, pi < qi.
4) q is called a successor of p with respect to σ, if there is

no other match point r satisfying that p ≺ r ⪯ q and
cch(r) = cch(q) = σ, denoted by q = succσ(p).

In general, a match point p has at most |Σ| succes-
sors. That is, the set of all successors of p, denoted by
succ(p) = {succσ(p)|σ ∈ Σ}, contains at most |Σ| elements,
e.g., succ(A(2, 1)) = {A(3, 7), C(5, 4), G(4, 2), T (7, 3)}. If q
is a successor of p, i.e., q ∈ succ(p), p is called a precursor
of q. For example, A(2, 1) is a precursor of A(3, 7).

Fig. 2. An example about the match points of two sequences s1 =
GAAGCGTA and s2 = AGTCTGAC, where each two dimensional
point σ(i, j) consisting of two numbers (columns) i and j linked by
dotted lines forms a match point, where i and j are the indexes of
common character σ in s1 and s2, i.e., s1[i] = s2[j] = σ.

Definition 6. Given a set of match points P =
{P1, P2, ..., Pm}, for a match point Pj ∈ P , If ¬∃Pi ⪯ Pj ,
1 ≤ i, j ≤ m, i ̸= j, Pj is called a non-dominated point
(dominant point for short) on P [22]. All of dominant points
on P form the dominant set of P .

For the convenience of description, a special match point
(0, 0, · · · , 0) is defined as the starting match point and
denoted as O, and (∞,∞, · · · ,∞) denoted as∞ is defined
as the ending match point.

As the most effective and efficient method, the dominant
point-based approach mainly consists of the following steps
to find out all MLCSs of d sequences:

Step 1) Initialization: Set the initial level number k = 0
and Dk = {O}.

Step 2) Compute the set of all successors of each match
point in Dk, i.e., succ(Dk). All of these successors form

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

Level-(k+1) of DAG, denoted by L(k+1). Connect each match
point in Dk to its each successor by a directed edge.

Step 3) Find out the dominant set D(k+1) of L(k+1) by
non-dominated sorting method [30]. The (k+1)-th character
of any MLCS will come from these common characters of
dominant points in D(k+1).

Here, we use the aforementioned example to describe
the process of dominant point-based approach as shown in
Figure 3.

O(0, 0) is the starting match point and its all successors
form the match points in Level-1 of DAG, i.e., match points
in Level-1 are L1 = {A(2, 1), C(5, 4), G(1, 2), T (7, 3)}.
The dominant points in L1 (i.e., A(2,1) and G(1,2)) de-
picted with white background are then selected by non-
dominated sorting to form the dominant set D1, i.e., D1 =
{A(2, 1), G(1, 2)}. Note that the first character of MLCSs
will come from the common characters of dominant points
in D1 (i.e., A or G), but not from the common characters
of dominated match points in L1 (i.e., C(5, 4) and(T (7, 3)))
which are marked by grey background in Figure 3.

Step 4) Suppose we have gotten the dominant set D(k+1).
Let k = k+1. If some match point in Dk has successor, go to
Step 2), otherwise, each match point in Dk has no successor,
connect each match point in Dk to ∞. The construction of
DAG is completed.

Now we have got D1 in the aforementioned ex-
ample. Compute all successors of each match point
in D1, and all of these successors consist of L2 =
{A(3, 7), C(5, 4), G(4, 2), T (7, 3);A(2, 7), C(5, 4), G(4, 6),
T (7, 3)}. Find out the dominant set of L2, i.e., D2 =
{G(4, 2), A(2, 7)}. Note that the second character of the
MLCSs must come from the match points in D2 instead of
L2. Repeat Steps 2) to 4) until the complete DAG is created
by the dominant point-based approach as shown in Figure 3.
The MLCSs correspond to all longest paths from the starting
point O to the ending point ∞. One can find all longest
path/MLCS (i.e., AGCGA and AGCTA) by traversing back
from∞ to O of DAG.

A
(3,7)

C
(5,4)

G
(4,2)

T
(7,3)

A
(2,1)

(0,0)

C
(5,4)

G
(1,2)

T
(7,3)

A
(2,7)

G
(4,6)

T
(7,3)

C
(5,4)

A
(8,7)

G
(6,6)

T
(7,3)

C
(5,4)

C
(5,8)

A
(8,7)

G
(6,6)

T
(7,5)

A
(8,7)

A
(8,7)

A
(8,7)

(,)

L
1

L
2

L
3

L
4

L
5

L
6

L
0

Fig. 3. The DAG constructed by the dominant point-based approach on
two sequences GAAGCGTA and AGTCTGAC, where the black and
gray nodes are duplicated and dominated match points, respectively.

However, the bottleneck of the dominant point-based
approach is that it has to construct a huge DAG first, while
computer will run out of memory before the construction of
DAG is completed. Specifically, the dominant point-based
approach has two major drawbacks:

1) There may be many repeated match points and dom-
inated points in each level (e.g., C(5,4) repeatedly appears

twice and six points {A(3,7), C(5,4), T(7,3), C(5,4), G(4,6),
T(7,3)} are dominated points in L2), and a match point
appearing in one level may appear many times in the later
levels (e.g., C(5,4) appears in L1-L3) and only it in the latest
level is useful. Thus, the constructed DAG will be very huge
so that the computer has not enough memory to store DAG.

2) To find Dk, the non-dominated sorting method will
take a lot of computation. Its time complexity is O(dN2) in
level k, where N is the number of match points in Lk and d
is the number of sequences. Note that N will be very large
(at the worst case, N = |Σ|k increases exponentially with the
increase of level k). Hence, when the length n, the number d
of sequences and |Σ| are large, i.e., when the MLCS problem
becomes a large-scale problem, the non-dominated sorting
method will be very time consuming.

FAST LCS [22] and Quick-DP [24] are two typical exam-
ples of this kind of algorithms.

3.2 Top MLCS

In order to reduce the time and space consumption,
Top MLCS, as one of the best existing state-of-the-art algo-
rithms, is designed [25], which consists of three main steps.

Step 1) In order to save the storage, Top MLCS avoids the
repeated match points appearing in DAG. Before a match
point p is put on DAG, it is checked whether p has been on
DAG. If not, p will be put on DAG and draw an edge to p
from its precursor. Otherwise, additional p will not be put
on DAG. It only needs to draw an edge to original p from its
precursor. As a result, the constructed DAG will not contain
the repeated match points. That is, it is a non-redundant
DAG.

A
(3,7)

G
(4,2)

A
(2,1)

(0,0)

C
(5,4)

G
(1,2)

T
(7,3)

A
(2,7)

G
(4,6)

A
(8,7)

G
(6,6)

C
(5,8)

T
(7,5)

(,)

Fig. 4. The construction of the non-redundant DAG for GAAGCGTA
and AGTCTGAC by using the topological sorting approach.

Here, we use the aforementioned example to describe
this procedure as shown in Figure 4. Initially, DAG contains
only the starting match point (0,0), and then put its suc-
cessors (2,1), (5,4), (7,3) and (1,2) on DAG directly because
these successors have not been on DAG. Draw a directed
edge from (0,0) to each of its successors. Search successors
of each of these four match points. For example, match point
(2,1) has four successors (5,4), (7,3), (3,7) and (4,2), but (5,4)
and (7,3) have existed on the DAG. Thus, there is no need to
put them again, and we only need to draw directed edges
from (2,1) to them and create new successors (3,7) and (4,2).
For other three match points, we can continue to construct
DAG in the similar way. Repeat the procedure until DAG

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

is constructed completely. Obviously, DAG in Figure 4 has
much fewer match points than the one in Figure 3, but DAG
in Figure 4 destroys the levels of match points. It is not easy
to find MLCS. To redefine the levels of points, Top MLCS
uses a forward topological sorting scheme.

A
(3,7)

G
(4,2)

A
(2,1)

(0,0)

C
(5,4)

G
(1,2)

T
(7,3)

A
(2,7)

G
(4,6)

A
(8,7)

G
(6,6)

C
(5,8)

T
(7,5)

(,)

Fig. 5. The obtained DAG after the forward topological sorting operation
is executed.

G
(4,2)

A
(2,1)

(0,0)
C

(5,4)
A

(8,7)

G
(6,6)

T
(7,5)

(,)

Fig. 6. The final longest paths corresponding to MLCSs are obtained
after the backward parallel topological sorting operation.

Step 2) Define the level of each match point of DAG
(see Figure 4) by a forward topological sorting scheme as
follows. Set the level of the starting match point (0,0) as
0 in Figure 4. Suppose we have defined level k (currently
level-0). Remove all directed edges from match points in
level-k. Identify the math points with indegree 0 and define
their level as (k + 1) (currently the level of (1,2) and (2,1) is
defined as k+1 = 1) and add a directed edge to each match
point in level (k + 1) from its precursor in level k (i.e., from
(0,0) to (1,2) and (2,1), respectively). Repeat this process until
the levels of all match points are defined as shown in Figure
5.

Step 3) Get the final DAG by a backward topological
sorting scheme as follows. From the ending point ∞, find
its precursor(s) (i.e., (8,7) in Figure 5). For each precursor,
successively find its precursor(s) backward until the starting
match point O is reached. If a match point ((7,3) or (5,8) in
Figure 6) cannot be reached by the backward topological
sorting from (∞,∞), it and all paths through it will be
removed. The final DAG is shown in Figure 6. All MLCSs
will be contained in this DAG and can be obtained from
paths from O to∞.

Although Top MLCS greatly improves the performance
of the existing dominant point-based approaches, it still has
the following two main problems:

1) It first needs to construct and stores a large DAG (see
Figure 4), which will consume a huge computer memory
for the large-scale MLCS problem. Usually, the computer
has not enough memory to store it. Thus its scalability is
limited.

2) The forward/backward topological sorting operation
will consume a lot of computation for the large-scale prob-
lem.

4 THE PROPOSED BEST-MLCS
4.1 The Main Framework of BEST-MLCS

As mentioned before, the existing approaches fail to deal
with large-scale MLCS problems due to huge time and
space consumption [27]. The fundamental reason is that, as
the number and length of sequences increase, the size of
DAG to be built becomes larger and larger. It turns out that
the computational time and storage space exceed the max-
imum limits. To overcome these shortcomings, during the
construction of DAG, the proposed BEST-MLCS promptly
identifies the useless match points and non-longest paths,
then removes them in time to reduce the size of the DAG.

To be specific, before obtaining the final MLCS of se-
quences, BEST-MLCS first quickly estimates a lower bound
Lmlcs of the length of the true MLCS. Then, BEST-MLCS
estimates an upper bound U(O,p,∞) of the length of any
path from the starting match point O to the ending match
point ∞ through a match point p before match point p is
added to the DAG. If U(O,p,∞) < Lmlcs, we can judge that
any path through p is not the longest path. Thus, p is a
useless match point, and all paths passing through it are
non-longest paths in the DAG. Based on this observation, all
useless match points and non-longest paths can be removed
promptly, a much smaller DAG than the existing ones will
be constructed.

In summary, the proposed algorithm BEST-MLCS con-
tains four key strategies: 1) Lower bound estimation. Estimate
a lower bound Lmlcs of the length of MLCS; 2) Upper bound
estimation. Estimate an upper bound U(O,p,∞) of the length
of path from O to ∞ through a current match point p; 3)
Branch elimination. Determine whether the current match
point p is a useless match point before it is put on DAG. Any
useless match point p is not put on DAG and all branches
through p are removed from DAG; 4)Smaller DAG construc-
tion. Construct a much smaller DAG than the existing ones.
The details of these key strategies are introduced as follows.

4.1.1 Quick Estimation of Lower Bound Lmlcs

Before the MLCS (or the longest path in DAG) is obtained,
we do not know the true length of MLCS, but we can
get a lower bound Lmlcs of it by finding an approximate
MLCS. Then the length of this approximate MLCS is a
lower bound of the length of the true MLCS. The longer
the approximate MLCS, the better it approaches to the true
MLCS. Our purpose is to find an approximate MLCS as long
as possible, and the approximate MLCS should be searched
quickly. Based on these considerations and inspired by [31]
and [32], a fast heuristic method for estimating the lower
bound Lmlcs is designed. The main steps are given below.

For a d-dimensional match point p = (p1, p2, · · · , pd),
denote sum(p) =

∑d
i=1 pi. Please note that, if a successor

q of p has the smallest value of sum(), q must be a non-
dominate point among all successors of p. A path from O
through p to q can be longer than a path from O through p
to any other successor. Thus a path through p and q is more
possible to be better than a path through p and other succes-
sor. Based on this idea, when finding an approximate MLCS,
we can only select a few successors (e.g., θ successors) with
the first θ smallest values of sum() as the candidates of
next point after point p. In this way, we only consider θ

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

successors as the candidates of the next point on each level
and can quickly find an approximate MLCS and its length
Lmlcs. Details are as follows.

Let θ be a small positive integer (for example, set θ = 2)
and E be a set of θ selected match points with the first θ
smallest values of sum().

1) Initialization: Set O = (0, 0, · · · , 0) as a selected
match point, i.e.,E = {O}, and set Lmlcs = 0.

2) Update Lmlcs: Search all successors of each match
point in E, and select θ successors with the first θ
smallest values of sum() among all successors (if
there are only β successors with β < θ, then let θ =
β). Update E by removing its all current elements
and putting the θ selected successors into it, and let
Lmlcs ← Lmlcs + 1.

3) If E is empty, return Lmlcs; otherwise, goto step 2).

Here, we use the aforementioned example to illustrate
the process in Figure 7. Initially, Lmlcs = 0, and E = {O}.
O has successors (2, 1), (1, 2), (5, 4) and (7, 3). Among these
successors, match points (2, 1) and (1, 2) have the smallest
sum() value 3. Thus, we update E by E = {(2, 1), (1, 2)}
and set Lmlcs = Lmlcs + 1 = 1. The successors (5, 4) and
(7, 3) are not selected into E as shown in Figure 7. For each
match point in E, calculate their successors, and there are
6 successors in total, where two successors (4, 2) and (2, 7)
with the first two smallest sum() values are selected (note
that the smallest sum() value match point is (4, 2), and the
second smallest sum() value match point has two: (2, 7) and
(5, 4) with the same sum() value. In this case, we only need
to randomly select one from (2, 7) and (5, 4), supposing
(2, 7) is selected) and update E by E = {(4, 2), (2, 7)} and
update Lmlcs by Lmlcs = 2. Similarly, when Lmlcs = 3,
the corresponding E = {(5, 4), (7, 3)}. When Lmlcs = 4,
the corresponding E = {(6, 6), (7, 5)}. Finally, we can get
Lmlcs = 5 and the corresponding E = {(8, 7)}.

C(5,4), T(7,3)
not contained.

A(3,7), C(5,4),
T(7,3), G(4,6)
not contained.

C(5,8),
G(6,6), A(8,7)
not contained.

A(8,7)
not contained.

(0,0)

A
(2,1)

G
(1,2)

A
(2,7)

G
(4,2)

C
(5,4)

T
(7,3)

T
(7,5)

G
(6,6)

A
(8,7)

(,)

Lmlcs=0 Lmlcs=1 Lmlcs=2 Lmlcs=3 Lmlcs=4 Lmlcs=5

Fig. 7. The process of estimating a lower bound Lmlcs of the length of
the longest paths in DAG.

During the process of estimating Lmlcs, only two small
sets (E and its updated set) need to be maintained each time.
Hence, the lower bound Lmlcs can be estimated very fast
with little memory consumption. Also, it is worth noting
that Lmlcs is often close to the length of the longest path.
Thus, Lmlcs is usually a good lower bound of the length of
the true MLCS.

4.1.2 Efficient Estimation of Upper Bound U(O,p,∞)

Suppose that p is a current point on DAG and we want to
know the lengths of all paths through p from O to the ending
match point. But it is impossible to know the lengths of these
paths before we complete the construction of these paths.
However, if we can estimate an upper bound U(O,p,∞) of
the lengths of these paths, and know this upper bound is

smaller than the lower bound Lmlcs of the length of true
MLCS (i.e., U(O,p,∞) < Lmlcs), we can judge that these paths
through p are not the longest paths and can be excluded
from DAG. In this way, the DAG constructed will be much
smaller than the existing ones.

Note that the current match point p has been constructed
on DAG, the length of the longest path from O to p can be
computed. In fact, it is the level of p (denoted by lev(p))
on DAG and an efficient method to compute lev(p) will be
given in Subsection 4.1.4.

Also note that the true length dist(p) of the longest path
from the current match point p to the ending match point
∞ is not known. A feasible way is to estimate an upper
bound U(p,∞) of dist(p). Then U(O,p,∞) = lev(p) + U(p,∞)

is an upper bound of the length of any path through p. In
the following, we will design a specific method to quickly
estimate U(p,∞) and make it as close as possible to the true
value dist(p) (i.e., make it as small as possible).

For a sequence s = c1c2· · ·cn on a character set Σ, the
times of appearance of the character σ ∈ Σ after the position
i in s can be easily computed and is denoted by nums(σ, i).
For instance, given a sequence s = GAAGCGTA, the
character A appears three times after the position 1 in s,
thus nums(A, 1) = 3, while the character G appears two
times after the position 3 in s, so nums(G, 3) = 2.

Given d sequences s1, s2, · · · , sd on a character set Σ and
a match point p = (p1, p2, · · · , pd) of them, we have the
following result:

Theorem 1. For any longest path from match point p =
(p1, p2, · · · , pd) to the ending match point ∞, and for any σ ∈
Σ, the times of appearance of σ in this longest path is not greater
than min{nums1(σ, p1), nums2(σ, p2), · · · , numsd(σ, pd)}.
Hence,

U(p,∞) =
∑
σ∈Σ

min{nums1(σ, p1), nums2(σ, p2), · · · ,

numsd(σ, pd)}
(2)

is an upper bound of the length of any longest path from match
point p = (p1, p2, · · · , pd) to the ending match point∞.

U(O,p,∞) = lev(p) + U(p,∞) (3)

is an upper bound of the length of the longest path from O to∞
through p.

Proof. Denote

v(σ) = min{nums1(σ, p1), nums2(σ, p2), · · · , numsd(σ, pd)}.

Obviously numsi(σ, pi) ≥ v(σ) for any pi. This means that
σ appears at least v(σ) times in each sequence si after po-
sition pi and only appears v(σ) times in some sequence(s).
Thus σ can appear at most v(σ) times on any longest path
from match point p = (p1, p2, · · · , pd) to the ending match
point∞. Therefore, v(σ) is an upper bound of the times of
appearance of σ in the longest paths, and the sum of these
v(σ),

U(p,∞) =
∑
σ∈Σ

v(σ), (4)

is an upper bound of the length of the longest path from p
to ∞. Note that U(p,∞) is also an upper bound of the true

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

number of match points on the longest paths from p to the
ending match point∞.

For the match point p, the length of the path from the
starting match point O to p is known, i.e., lev(p). Thus, an
upper bound of the length of the path from O to∞ through
p is estimated by

U(O,p,∞) = lev(p) + U(p,∞). (5)

For example, for two sequences s1 = GAAGCGTA and
s2 = AGTCTGAC , and for a match point p = (1, 2) (see
Figure 2), an upper bound U(p,∞) of the length of the longest
path from p to∞ can be calculated according to Formula 2:

U(p,∞) = min{nums1(A, 1), nums2(A, 2)}
+min{nums1(C, 1), nums2(C, 2)}
+min{nums1(G, 1), nums2(G, 2)}
+min{nums1(T, 1), nums2(T, 2)}

= min{3, 1}+min{1, 2}+min{2, 1}+min{1, 2}
= 4.

In fact, the length of the longest paths from p = (1, 2)
to the ending match point is actually 4. Thus, U(p,∞) is an
appropriate upper bound of the length of the longest path
from p to∞.

4.1.3 Branch Elimination by Finding Useless Match Points
Theorem 2. For any match point p = (p1, p2, · · · , pd), If

U(O,p,∞) < Lmlcs, (6)

p is a useless match point and should not be included in DAG.
Furthermore, all paths (branches) constructed from O to p should
be eliminated.

Proof. If U(O,p,∞) < Lmlcs, we can ensure that all paths
though p are not the longest path. Thus, p must be a useless
match point and should not be included in DAG. Therefore,
all paths constructed from O to p should be eliminated. The
proof is completed.

Let us use the aforementioned example in Figure 7 to
illustrate the scheme of determining useless match points
in details. The estimated lower bound of the length of the
MLCS is known, i.e., Lmlcs = 5, as shown in Figure 7. U(p,∞)

can be computed according to Formula 2, and lev(p) can be
obtained during the construction of DAG as shown in Figure
8.

A
(2,1)

(0,0)

C
(5,4)

G
(1,2)

T
(7,3)

1+3 < Lmlcs=5

1+1 < Lmlcs=5

Fig. 8. An example to identify useless match points. The value lev() is
marked at the bottom left of the match point, and the value U(p,∞) is
marked at the top right of the match point. Useless match points T(7,3)
and C(5,4) are marked with dotted lines and not contained on DAG.

Initially, lev(O) of the starting match point O is de-
fined as 0. O has four successors: (1, 2), (2, 1), (5, 4) and

(7, 3). For its each successor p, set lev(p) = 1, i.e., set
lev((2, 1)) = lev((5, 4)) = lev((1, 2)) = lev((7, 3)) = 1,
because the length of the longest paths from the starting
match point to each of the successors is 1. From Figure 8, it
can be seen that match points (5, 4) and (7, 3) can be easily
determined to be useless match points because they satisfy

U(O,p,∞) = lev(p) + U(p,∞) < Lmlcs = 5,

and all paths (branches) from O to (5, 4) and (7, 3) will not
be contained on DAG.

4.1.4 Construct Smaller DAG
Based on the above branch elimination scheme, we construct
the smaller DAG level by level. First, level zero L0 consists
of only the starting match point O, and then level 1 to level
|MLCS|, denoted by L1, L2, · · · , L|MLCS|, respectively,
are sequentially constructed, where |MLCS| represents the
length of the final MLCS. To save the time and space, we
only construct and store one level each time.

After Lk is constructed (currently, L0 is constructed),
Lk+1 can be constructed by the following steps:

1) Select any match point p ∈ Lk, search its successor
set succ(p).

2) For each successor q ∈ succ(p), check whether q has
already existed in DAG. If not, set the level of q (i.e.,
the length of the current longest path from O to q)
as lev(q) = k+1, go to step 3). Otherwise, compute
the level lev(q) of q in two cases:

• If lev(q) < k + 1, it indicates that the ex-
isting longest path(s) from O to q is (are)
shorter than the new longest path from O to
q through p. Update lev(q) = k + 1 and shift
q from Llev(q) to Lk+1. Remove all existing
paths through q. Go to step 4).

• If lev(q) = k + 1, it indicates that the path
from O to q through p is also a new longest
path from O to q, keep lev(q) unchanged. Go
to step 4).

3) Identify whether q is a useless match point accord-
ing to Theorem 2. If yes, do not put q in DAG, go to
setp 5). Otherwise, put q into Lk+1.

4) Add a directed edge from p to q in DAG.
5) If successors of all match points in Lk have been

checked, the construction of Lk+1 is finished. Oth-
erwise, go to step 1).

By using the above procedure, we can construct a smaller
DAG than the existing ones. For easily understanding the
process, we use the aforementioned example to construct
DAG in detail.

Initially, level zero L0 = {(0, 0)} of DAG is constructed
with lev(O) = 0. The estimated lower bounder Lmlcs is
obtained by Lmlcs = 5 as shown in Figure (7). Successors of
(0, 0) are (2, 1), (5, 4), (1, 2) and (7, 3). As (5, 4) and (7, 3)
are useless match points, they are not put on DAG. Instead,
put (2, 1) and (1, 2) into L1 directly, set their lev() = 1, as
shown in Figure 9 (a).

Construct L2: Calculate successors of each match point
in L1. (2, 1) has successors (3, 7), (5, 4), (4, 2) and (7, 3), and
(1, 2) has successors (5, 4), (7, 3), (2, 7) and (4, 6). It can be

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

L
1

L
0

(0,0)

G
(1,2)

A
(2,1)

C(5,4), T(7,3)
not contained.

(a) Construct L1.

L
1

L
0

L
2

A(3,7), T(7,3),
A(2,7), G(4,6)
not contained.

A
(2,1)

(0,0)

G
(1,2)

C
(5,4)

G
(4,2)

(b) Construct L2.

Fig. 9. The process of constructing the smaller DAG, where useless
match points are not put on DAG.

seen that only (4, 2) and (5, 4) are not useless match points.
Thus, only these two match points are put in L2 of DAG
and set their level as lev() = 2, as shown in Figure 9 (b).

A
(2,1)

(0,0)

L
1

L
0

C
(5,4)

G
(4,2)

L
2

L
3

A(8,7),
G(6,6), T(7,3)
not contained.

(a) Construct L3.

A
(2,1)

(0,0)

L
1

L
0

C
(5,4)

G
(4,2)

L
2

L
3

(b) G(1,2) and dotted lines are not on the
longest paths and removed.

A
(2,1)

(0,0)
C
(5,4)

G
(4,2)

G
(6,6)

T
(7,5)

A
(8,7)

(,)

L
1

L
0

L
2

L
4

L
3

L
5

(c) The final DAG is constructed.

Fig. 10. The process of constructing the smaller DAG, where useless
match points are not put on DAG. When the construction of the smaller
DAG is finished, all MLCSs are gotten by finding all paths from O to∞.

Construct L3: L2 contains two match points (4, 2) and
(5, 4). (4, 2) has successors (8, 7), (6, 4), (6, 6) and (5, 4), as
shown in Figure 10 (a). It can be seen that only (5, 4) is not a
useless match point. Thus, (5, 4) is put in L3 on DAG and set
lev((5, 4)) = 3. As (5, 4) has existed in L2, and the previous
longest paths from O to (5, 4), which are marked with the
dotted edges in Figure 10 (a), are shorter than the current
one, delete all previous path from O to (5, 4), the pruned
DAG is obtained as shown in Figure 10 (b).

Repeat the above steps until no new level set can be
created. Then, the final DAG is obtained, as shown in Figure
10 (c). Each path from O to∞ is corresponding to an MLCS,
and vice versa.

Also note that in each time of the construction of DAG,
BEST-MLCS only stores the part of DAG in two successive
levels, e.g., Lk and Lk+1 instead of the whole DAG from
L0 to Lk+1 (only two successive levels in each sub-figure
of Figures 9-10). Thus, the space and time consumption by
BEST-MLCS is much smaller than that by the existing ones.

4.2 Fast Implementation of the Proposed Algorithm

4.2.1 Key data structures

In order to fast construct DAG by using as small time and
space as possible, several data structures are adopted for the
proposed algorithm.

Successor Table Tachnique. Successor Table Technique
[22] is employed. Chen [22] has proved that the time com-
plexity of calculating all successors of the given match point
p is O(d|Σ|). The DAG can be constructed fast by using
Successor Tables. Note that Successor Tables can be built
before the proposed algorithm is performed and thus they
have little effect on memory and time consumed during
constructing DAG.

Hash Technique. In order to avoid adding duplicated
match points into the DAG, it is necessary to quickly check
whether a match point has already existed in DAG. In other
words, before a match point is going to be added in DAG,
the usual way is to compare it with every match point
on DAG. If this operation is performed frequently, many
comparisons between two d-dimensional vectors will be
made and will cost a lot of time. To circumvent this problem,
we put all match points that have been on the DAG into a
hash table denoted by H , in which different match points
usually have different hash values. Before adding a match
point into the DAG, we first check whether it has been in
H . If yes, it indicates that the match point has been on the
DAG. It is well known that the hash table H can always use
a constant time to get the result (identify whether a match
point exists in it by comparing the hash values) regardless
of the number of match points it contains, which can greatly
speed up the identification process. The empirical studies
also show that the time spent on the identification process
is hardly affected by the increasing number of compared
match points.

Compute U(p,∞) quickly by Distance Tables. For any
given match point p, to compute an upper bound of the
path from p to∞, i.e., U(p,∞), as quickly as possible and by
using the computation as less as possible, we design a new
data structure called Distance Table as follows.

Note that the Distance Tables are designed before the
algorithm is performed, so that we can get U(p,∞) for any p
before the algorithm begins.

For d sequences with length of n, let DTk denote the
Distance Table for the k-th (1 ≤ k ≤ d) sequence sk =
c1c2· · ·cn. It is a |Σ| × (n + 1) matrix and its (i, j) element
can be defined by the following formula:

DTk[i, j] = |{m | cm = σi, m > j, 0 ≤ j ≤ n,

1 ≤ i ≤ |Σ|, σi ∈ Σ}|,
(7)

where σi is the ith character in Σ, and DTk[i, j] represents
the number of characters cm after position j in sk.

Once Distance Tables are defined, for any match point
p = (p1, p2, · · · , pd), we can quickly compute the U(p,∞)

according to the following formula.

U(p,∞) =
∑

1≤i≤|Σ|

min{DT1[i, p1], DT2[i, p2],

· · · , DTd[i, pd]}.
(8)

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

For example, given two sequences s1 = GAAGCGTA and
s2 = AGTCTGAC, Figure 11 gives the Distance Tables of
these two sequences according to Eq. (7).

Fig. 11. The distance tables of the given sequences s1 = GAAGCGTA
and s2 = AGTCTGAC, which are built according to Eq. (7).

For match point (5, 4), by Eq. (8), one has
U((5,4),∞) = min{DT1[1, 5], DT2[1, 4]}

+min{DT1[2, 5], DT2[2, 4]} +min{DT1[3, 5], DT2[3, 4]}
+min{DT1[4, 5], DT2[4, 4]} = min{1, 1} +min{0, 1}
+min{1, 1} +min{1, 1} = 3.

By using distance tables, we can compute U(p,∞) of any
match point quickly. The computation complexity is O(d ∗
|Σ|) for each match point.

4.2.2 The Pseudo-code of The Proposed Algorithm
In order to describe the new algorithm in detail, a pseudo-
codes of algorithm BEST-MLCS is given in Algorithm 1.

At the beginning, the preparation and initialization are
shown in line1 ∼ line4, where Successor Tables STi (1 ≤
i ≤ d) and Distance Tables DTi (1 ≤ i ≤ d) are built. The
estimated lower bound Lmlcs is calculated. line5 ∼ line32
are the key steps of the proposed algorithm, which shows
how a smaller DAG is constructed level by level. Finally,
the longest paths corresponding to MLCSs can be obtained
from the smaller DAG and all MLCSs will be returned in
line33 ∼ line34.

5 EXPERIMENTAL RESULTS AND ANALYSIS

In order to verify the good performance of the proposed
algorithm BEST-MLCS on large-scale MLCS problems (to be
specific, in this paper, the large-scale MLCS problem refers
to that the number of DNA sequences is greater than 10000
and the length is not less than 100), we compare it with
three state-of-the-art algorithms FAST LCS [22], Quick-DP
[24] and Top MLCS [25] by experiments. All the compared
algorithms are implemented in Java and run on a Dell T7920
workstation equipped with an Intel(R) Xeon(R) Gold 6138
CPU (2.00GHz) and 704GB of memory. The experiments are
conducted on the widely used real DNA sequences in the
bio-informatics domain 1 and the random synthetic DNA
sequences with the alphabet {A, C, G, T}. We conduct the
following four types of experiments:

1) Fix the number of sequences to 40000 and change
the length of the sequences from 60 to 165 in order
to compare the performance of the 4 compared

1. http://www.ncbi.nlm.nih.gov/nuccore/110645304?report=fasta

Algorithm 1 Pseudo-codes of Algorithm BEST-MLCS
Input: d given sequences.
Output: The MLCSs of d sequences.

Pre-processing (1-4):
1: Build successor tables STi(1 ≤ i ≤ d) and distance tables DTi(1 ≤

i ≤ d) on d sequences.
2: Define the initial and end match points O = (0, 0, · · · , 0) and∞ =

(∞,∞, · · · ,∞).
3: Compute the estimated lower bound of the length of the longest

paths Lmlcs.
4: Lk ← {O}, O.lev ← 0, k ← 0, H ← {O}; // H indicates the hash

table
5: while Lk ̸= ∅ do
6: for p ∈ Lk && p.lev == k do
7: compute p’s successors succ(p);
8: for q ∈ succ(p) do
9: if q ∈ H then

10: take q from H ;
11: if q.lev < k + 1 then
12: remove all previous paths passing through q;
13: q.lev ← k + 1;
14: else if q.leve == k + 1 then
15: q.precs← q.precs ∪ {p};
16: continue;
17: end if
18: else
19: q.lev ← k + 1; // if q /∈ H
20: end if
21: compute U(q,∞) according to Equation 8;
22: if q.lev + U(q,∞) < Lmlcs then
23: remove q;
24: else
25: H ← H ∪ {q};
26: Lk+1 ← Lk+1 ∪ {q}; //add q to the Lk+1

27: q.prec← {p};
28: end if
29: end for
30: end for
31: k ← k + 1;
32: end while
33: the smaller DAG is constructed and the longest paths can be found;

Accordingly, the corresponding MLCSs are obtained.
34: return MLCSs;

algorithms on problems with a large number of
sequences. In this type of experiments, we conduct
experiments on total 22 test instances and make the
following two comparisons:

• Comparison of time and space consumption
of 4 compared algorithms. The results are
given in Table 1, Figure 12, and Figure 13.

• Comparison of sizes of DAG (number of
match points in DAG) constructed by 4 com-
pared algorithms. The results are given in
Table 2 and Figure 14.

2) Change the number of sequences from 70000 to
1000000 and fix the length of sequences to 110
in order to compare the performance of 4 com-
pared algorithms on problems whose number of
sequences is very large and changes. In this type
of experiments, we conduct experiments on total 24
test instances and make the comparison of time and
space consumption of 4 compared algorithms. The
results are given in Table 3.

3) Comparison of the longest length of sequences
which 4 compared algorithms can deal with when
the number of sequences changes from 70000 to

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

1000000. The results are given in Table 4, Figure 15,
and Figure 16.

4) Robustness of estimating the lower bound Lmlcs of
the length of MLCS with the change of parameter
θ, and the consumed time of the estimation for
problems with 40000 sequences and the length from
60 to 165. In this type of experiments, we conduct
experiments on total 22 test instances. The results
are given in Table 5 and Figure 17.

In these Tables, |MLCS| represents the length of MLCSs
obtained, ’-’ indicates that the algorithm cannot find out the
final results in a pre-assigned execution time, which is set
to 2 hours in the experiments, and ’+’ indicates that the
algorithm cannot be executed successfully due to memory
overflow.

length of sequences
60 80 100 120 140 160 180

tim
e

co
ns

um
pt

io
n

(s
ec

on
ds

)

0

1000

2000

3000

4000

5000

6000

7000

Fast_LCS
Quick-DP
Top_MLCS
BEST-MLCS

Fig. 12. The run-time (seconds) consumed by 4 compared algorithms
on 22 test instances with 40000 sequences of the length varying from
60 to 165.

length of sequences
60 80 100 120 140 160 180

m
em

or
y

co
ns

um
pt

io
n

(M
B

)

×104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fast_LCS
Quick-DP
Top_MLCS
BEST-MLCS

Fig. 13. The memory (MB) consumed by 4 compared algorithms on 22
test instances with 40000 sequences of the length varying from 60 to
165.

For the first type of experiments, from Table 1 and Figure
12, it can be seen that, for the same test problem, FAST LCS,
Quick-DP and Top MLCS always require more time to find
MLCS than BEST-MLCS. For example, when the length of
sequences is 110, FAST LCS, Quick-DP and Top MLCS con-
sume 1130.58, 490.95 and 16.73 seconds, respectively, while
BEST-MLCS only consumes within 7.94 seconds, which is
only 0.7%, 1.6% and 47.5% of time used by three compared
algorithms, respectively. Among four algorithms, FAST LCS
and Quick-DP perform the worst on time consumption, i.e.,
they usually need much more time than the other two

algorithms. The reason is that both of them adopt a non-
dominated sorting technology to identify the dominated
points on every level. With the increase of the number of
level, the number of points will increase exponentially. Thus,
the time consumed will grow exponentially, which results in
that they cannot find out the final results in the pre-assigned
time limit (say 2 hours) and memory limit (say 50G) when
the length of sequences is greater than 110 or the length of
MLCSs is greater than 14. Also, Top MLCS performs better
than FAST LCS and Quick-DP on time consumption. The
reason is that it employs a topological sorting technology
rather than non-dominated sorting technology, thus a lot of
computing time can be saved. However, Top MLCS has to
build a big DAG firstly and then utilises two topological
sorting operations (i.e., forward and backward topological
sorting) to get a smaller DAG. These operations also con-
sume a lot of computing time. While BEST-MLCS directly
constructs the smaller DAG. Thus, Top MLCS always re-
quires more time than BEST-MLCS. When the length of
sequences varies from 60 to 130, the computing time taken
by Top MLCS is about 2.34 times that of BEST-MLCS on
average. When the length of sequences is larger than 135,
Top MLCS uses much more time than BEST-MLCS and it
cannot find MLCS. When the length of sequences is larger
than 115, FAST LCS and Quick-DP cannot find MLCS.

For the memory consumption, it can be seen from Table
1 and Figure 13 that, although Top MLCS, FAST LCS and
Quick-DP consume little memory than BEST-MLCS when
the length of sequences is not greater than 95 (this is
because BEST-MLCS has to require additional memory to
estimate the lower bound Lmlcs), memory space consumed
by Top MLCS, FAST LCS and Quick-DP grows rapidly even
exponentially as the length of sequences increases. Obvi-
ously, Top MLCS performs better than FAST LCS and Quick-
DP. FAST LCS and Quick-DP always fail to find MLCS for
problems with length larger than 115 due to the timeout,
and Top MLCS always fails to find MLCS for problems with
the length larger than 135 due to memory overflow (i.e.,
there is not enough memory to store the DAG). For larger-
scale problems with 40000 sequences and the sequence
length being larger than 95, BEST-MLCS performs better
than three compared algorithms on memory consumption.
Also, it can be seen from Figure 13 that the curve of
memory consumption by BEST-MLCS grows much slower
than that by three compared algorithms. Thus, the proposed
algorithm BEST-MLCS greatly outperforms three compared
algorithms FAST LCS, Quick-DP and Top MLCS on time
and memory consumption when handling large-scale MLCS
problems.

Note that, in general, as the length of sequences in-
creases, the run-time and memory space consumed by al-
gorithm BEST-MLCS will grow. However, much more run-
time and memory space are consumed when the length is
155 instead of 160 or 165 (see Table 1 or Figures 12-13).
This is because the Lower Bound Lmlcs estimated by our
estimation scheme on the problem of the 40000 sequences
with length of 155 is less precise than those on the problems
of 40000 sequences with lengths 160 and 165, respectively,
resulting in that more useless match points cannot be found
for the problem with length 155 than those for the problems
with lengths 160 and 165, respectively. Thus the size of DAG

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

TABLE 1
The time and memory consumption of 4 compared algorithms on 22 test instances with 40000 sequences of the length varying from 60 to 165.

Lengths of
sequences |MLCS| Time(seconds) Memory(Metabytes)

FAST LCS Quick-DP Top MLCS BEST-MLCS FAST LCS Quick-DP Top MLCS BEST-MLCS
60 4 0.22 0.22 0.22 0.09 49.2 46.9 54.7 123.8
65 4 0.25 0.24 0.24 0.11 51.2 50.7 55.0 136.4
70 5 0.34 0.28 0.31 0.26 61.3 59.7 58.6 136.3
75 6 0.49 0.33 0.59 0.27 76.8 72.2 58.2 148.4
80 7 0.80 0.46 0.63 0.41 109.0 93.0 96.7 157.1
85 8 1.87 0.65 0.85 0.45 138.8 129.2 83.0 168.1
90 9 3.72 2.55 1.36 0.99 169.8 201.4 127.4 181.1
95 10 15.51 7.12 2.24 1.39 255.8 268.3 174.0 192.1
100 11 43.75 25.82 4.24 2.95 267.2 426.4 295.8 254.9
105 12 216.11 86.18 7.86 6.41 612.7 762.4 497.4 278.0
110 14 1130.58 490.95 16.73 7.94 1328.1 1667.0 1392.1 241.0
115 14 4408.69 2107.50 45.02 38.38 2773.0 3620.2 2533.2 401.6
120 15 - - 62.61 15.49 - - 4682.7 403.2
125 16 - - 118.12 35.19 - - 7930.5 422.1
130 16 - - 227.62 31.96 - - 13282.0 441.3
135 18 - - 521.04 229.73 - - 27249.9 1648.7
140 19 - - + 492.20 - - + 2954.1
145 20 - - + 595.12 - - + 3561.1
150 21 - - + 2472.51 - - + 16271.4
155 22 - - + 6234.20 - - + 43973.2
160 22 - - + 3048.15 - - + 31178.7
165 23 - - + 4760.16 - - + 32142.3

for the problem with length 155 is larger than those for the
problems with lengths 160 and 165, respectively. Therefore,
BEST-MLCS spent more run-time and memory space for
the problem with length 155. But any way, BEST-MLCS
performs better than three compared algorithms.

TABLE 2
The number of match points on each level of DAG constructed by

FAST LCS, Quick-DP, Top MLCS and BEST-MLCS for problem with
40000 DNA sequences and length 110.

Level
number

Number of match points
FAST LCS Quick-DP Top MLCS BEST-MLCS

0 1 1 1 1
1 3 3 3 3
2 9 9 9 9
3 23 23 23 17
4 52 52 51 31
5 111 111 109 50
6 230 230 229 61
7 457 457 452 83
8 823 823 778 102
9 1254 1254 1092 124
10 1535 1535 1176 124
11 1426 1426 866 118
12 917 917 344 103
13 346 346 48 48
14 48 48 1 2
15 1 1 1 1

The key reason why BEST-MLCS can perform better
than three compared algorithms with less time and mem-
ory consumption and can deal with the large-scale MLCS
problems is that BEST-MLCS constructs much smaller DAG
than three compared algorithms. In fact, Table 2 and Figure
14 show the number of match points in every level of DAG
constructed by FAST LCS, Quick-DP, Top MLCS and BEST-
MLCS for problems with 40000 sequences and length 110.
It can be seen from these results that the size of DAG
constructed by BEST-MLCS is much smaller than that by
three compared algorithms. For example, at level-10, the
number of match points created by BEST-MLCS is 124, while
those by FAST LCS, Quick-DP, Top MLCS are 1535, 1535 and
1176, respectively. Please note that, since the dominant set
found by Quick-DP is the same as that by FAST LCS (the
proof is given in [24]), the number of nodes on each level

level number
0 2 4 6 8 10 12 14

nu
m

be
r

of
 m

at
ch

 p
oi

nt
s

0

200

400

600

800

1000

1200

1400

1600

Fast_LCS
Quick-DP
Top_MLCS
BEST-MLCS

Fig. 14. The number of match points on each level of DAG constructed
by FAST LCS, Quick-DP, Top MLCS and BEST-MLCS for problem with
40000 DNA sequences and length 110.

of DAG constructed by FAST LCS is the same as that by
Quick-DP as shown in Table 2 and Figure 14.

To further compare the performance of 4 algorithms,
the second type of experiments is conducted on 12 prob-
lems with the number of sequences varying from 70000
to 1000000 and the length fixed to 110. Table 3 shows the
experimental results on the condition that the maximum
memory space is set to 256 Gigabyte and the maximum
run-time is set to 3 hours. Neither FAST LCS nor Quick-DP
can find MLCSs for these problems. Also, Top MLCS can
only obtain MLCSs on the problems with the number of
sequences varying from 70000 to 100000. Once the number
of sequences is greater than 100000, Top MLCS always fails
because the memory consumed by it is very huge and often
exceeds the maximum limit. By contrast, BEST-MLCS can
find MLCSs on all problems we have tried so far. The time
and memory consumed by BEST-MLCS are relatively not
large compared to the scale of the problems.

For the third type of experiments, when the memory
limit is set to 100 Gigabytes and the run-time limit is set
to 10 hours, the longest lengths of 70000 to 1000000 se-
quences which can be handled by four compared algorithms

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

TABLE 3
Time and space consumption of FAST LCS, Quick-DP, Top MLCS and BEST-MLCS on problems with 70000 to 1000000 sequences and the

length of sequences fixed to 110.

Number of
sequences |MLCS| Time(seconds) Memory(Metabytes)

FAST LCS Quick-DP Top MLCS BEST-MLCS FAST LCS Quick-DP Top MLCS BEST-MLCS
70000 20 - - 4841.10 2393.38 - - 209074.4 5120.9
90000 20 - - 6235.69 2816.85 - - 252804.9 7126.4
100000 19 - - 5910.01 2257.07 - - 219772.6 7212.1
200000 18 - - + 5061.26 - - + 14125.5
300000 18 - - + 5545.13 - - + 16597.1
400000 18 - - + 7793.38 - - + 25172.7
500000 18 - - + 8032.28 - - + 27282.2
600000 17 - - + 8723.03 - - + 24306.3
700000 17 - - + 8214.76 - - + 21836.6
800000 17 - - + 7486.52 - - + 22455.7
900000 17 - - + 9733.57 - - + 30868.5
1000000 17 - - + 5767.76 - - + 17069.3

TABLE 4
The length of sequences which 4 algorithms can handle within 10 hours and 100G memory for problems with 70000 to 1000000 sequences, and

the length of MLCS obtained.

Number of
sequences

Length of sequences Length of MLCSs
FAST LCS Quick-DP Top MLCS BEST-MLCS FAST LCS Quick-DP Top MLCS BEST-MLCS

70000 90 95 105 120 15 16 19 22
90000 90 90 105 125 14 14 18 23
100000 95 95 105 125 15 15 18 23
200000 90 95 105 120 14 15 17 21
300000 95 95 100 115 14 14 16 19
400000 90 95 100 120 13 14 15 20
500000 95 95 100 120 14 14 15 20
600000 95 95 95 120 14 14 14 20
700000 95 95 95 115 13 13 13 18
800000 95 95 95 115 13 13 13 17
900000 95 95 95 115 13 13 13 18
1000000 95 95 95 115 13 13 13 18

Number of sequences
70

00
0

90
00

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

90
00

00

1e
+0

6

Le
ng

th
 o

f s
eq

ue
nc

es

0

20

40

60

80

100

120

140

160 Fast_LCS
Quick-DP
Top_MLCS
BEST-MLCS

Fig. 15. The length of sequences which 4 algorithms can handle within
10 hours and 100G memory for problems with 70000 to 1000000 se-
quences.

Number of sequences
70

00
0

90
00

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

90
00

00

1e
+0

6

Le
ng

th
 o

f |
M

LC
S

|

0

5

10

15

20

25

Fast_LCS
Quick-DP
Top_MLCS
BEST-MLCS

Fig. 16. The length of MLCSs obtained by 4 algorithms within 10 hours
and 100G memory for problems with 70000 to 1000000 sequences.

are given in Table 4 and Figure 15. For less than 200000
sequences, FAST LCS and Quick-DP can only handle the
problems with the length no more than 95, and Top MLCS
can handle the problems with the length no more than 105.
By contrast, BEST-MLCS can handle the problems with the
length up to 125. For 300000 to 500000 sequences, FAST LCS
and Quick-DP can only handle the problems with the length
no more than 95, and Top MLCS can handle the problems
with the length no more than 100, but BEST-MLCS can
handle the problems with the length up to 120. For 600000
to 1000000 sequences, FAST LCS, Quick-DP and Top MLCS
can only handle the problems with the length no more than
95, but BEST-MLCS can handle the problems with the length
up to 115.

Furthermore, the maximum lengths of MLCSs obtained
by four compared algorithms are given in Table 4 and Figure
16. From the experimental results, it can be seen that BEST-
MLCS can always find much longer MLCS than FAST LCS,
Quick-DP and Top MLCS. For example, for problem with
1000000 sequences, the length of sequence BEST-MLCS can
handle is 115 and the length of MLCS is 18, while the
maximum length of sequences the compared algorithms
can handle is only 95 and the length of MLCS is only
13. In fact, to the best of our knowledge, the scale of the
problems handled by BEST-MLCS is the largest and the
results obtained by BEST-MLCS are the best so far.

In the proposed algorithm, there is one parameter θ in
estimating the lower bound Lmlcs of the length of MLCS.
For the fourth type of experiments, to test the robustness
of the estimation method, we investigate the effect of θ on
Lmlcs by varying the values of θ through the experiments.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

TABLE 5
Robustness of estimated lower bound Lmlcs with the change of θ and the consumed time for 40000 sequences with length from 60 to 165.

Length of
sequences |MLCS| Lmlcs Consumed Time (Milliseconds)

θ=32 θ=64 θ=128 θ=256 θ=512 θ=1024 θ=32 θ=64 θ=128 θ=256 θ=512 θ=1024
60 4 4 4 4 4 4 4 13 12 15 12 13 12
65 4 4 4 4 4 4 4 16 17 17 16 15 17
70 5 5 5 5 5 5 5 30 30 30 30 30 30
75 6 6 6 6 6 6 6 53 52 52 52 53 54
80 7 7 7 7 7 7 7 95 90 93 93 90 96
85 8 8 8 8 8 8 8 130 134 138 139 139 145
90 9 9 9 9 9 9 9 200 290 335 320 338 354
95 10 10 10 10 10 10 10 258 365 557 588 588 610
100 11 11 11 11 11 11 11 323 511 837 1254 1259 1319
105 12 11 11 11 11 12 12 377 618 1062 1656 2516 2538
110 14 13 13 13 13 13 14 435 730 1282 2155 3402 5758
115 14 13 13 13 13 14 14 504 892 1619 2825 4630 7571
120 15 14 14 14 15 15 15 599 1061 1954 3624 5969 9601
125 16 13 14 14 15 15 15 662 1217 2264 4359 7515 13159
130 16 15 16 16 16 16 16 736 1401 2663 5344 9473 16677
135 18 16 17 17 17 17 17 845 1582 3039 5885 10851 20444
140 19 18 18 18 18 18 18 964 1812 3437 7088 12446 24438
145 20 16 16 19 19 19 19 983 1758 3471 6852 12634 24528
150 21 19 19 19 19 19 20 1135 2125 4061 8471 15865 29851
155 22 19 19 19 19 19 20 1207 2238 4404 9479 17156 33252
160 22 19 20 20 21 21 21 1240 2306 4450 9278 17424 34360
165 23 19 19 19 21 21 21 1337 2475 4826 12065 20108 42033

length of sequences
60 80 100 120 140 160 180

tim
e

co
ns

um
pt

io
n

(m
ill

is
ec

on
ds

)

×104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

θ=32
θ=64
θ=128
θ=256
θ=512
θ=1024

Fig. 17. The comparisons about the consumed time required by the
fast heuristic method to estimate the lower bound value on 40000 DNA
sequences with length varying from 60 to 165 when the parameter θ has
different values. The data are taken from Table 5.

Also, we study the time consumed by taking the different
values of θ. The results are given in Table 5 and Figure 17.

The more precise the estimated lower bound Lmlcs, the
much more useless match points can be identified and
can be excluded from DAG, and thus the more smaller
DAG constructed will be. The experiments are conducted
on problems with 40000 sequences and the length varying
from 60 to 165. From experimental results, it can be seen
that for each test problem with the fixed length among total
22 test problems, the values of Lmlcs are almost unchanged
(or at most little changed) with the change of the values of
θ. This indicates the effect of θ on Lmlcs is small and the
estimation method of Lmlcs is robust.

However, as θ increases, the time consumed by the
estimation method will increase. Thus, it is better to choose
a small value of θ. On the other hand, note that generally,
the larger the value of θ, the more precise the estimated
lower bound. This implies that we should take a large value
of θ. To balance the time consumed and the precision of
the lower bound estimation and note the robustness of the
estimation method, it is better to take a moderate value of
θ. In all experiments aforementioned, we take the value of θ

to be 256.

6 CONCLUSION

This paper has proposed a novel BEST-MLCS algorithm
to tackle the large-scale MLCS problems effectively and
efficiently, which has the following four key components:
1) a method to precisely estimate the lower bound of the
length of MLCS; 2) a scheme to estimate the upper bound
of the longest path through the current match point; 3) a
branch elimination strategy by identifying the useless match
points; 4) a method to construct the smallest DAG (i.e., DAG
constructed by the proposed algorithm is much smaller than
that constructed by the existing state-of-the-art algorithms).

The proposed algorithm BEST-MLCS outperforms
the existing state-of-the-art FAST LCS, Quick-DP and
Top MLCS, and can tackle the large-scale MLCS prob-
lems. The experimental results on 68 test problems have
shown that the time consumption and space consumption
of the proposed algorithm are much smaller than those of
FAST LCS, Quick-DP and Top MLCS, especially for large-
scale MLCS problems.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grants 61872281 and 61672444.

REFERENCES

[1] Q. Wang, M. Pan, Y. Shang, and D. Korkin, “A fast heuristic
search algorithm for finding the longest common subsequence of
multiple strings,” in Twenty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2010, Atlanta, Georgia, Usa, July, 2010.

[2] J. W. Hunt and M. D. McIlroy, “An algorithm for differential file
comparison,” in Computing Science Technical Report 41. AT & T
Bell Laboratories, 1975.

[3] S.-Y. Lu and K. S. Fu, “A sentence-to-sentence clustering proce-
dure for pattern analysis,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 8, no. 5, pp. 381–389, 1978.

[4] D. Sankoff and M. Blanchette, “Phylogenetic invariants for
genome rearrangements,” Journal of Computational Biology, vol. 6,
no. 3-4, pp. 431–445, 1999.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3115057, IEEE
Transactions on Knowledge and Data Engineering

SUBMITTED TO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[5] Y. P. Wang and T. Pavlidis, “Optimal correspondence of string
subsequences,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 12, no. 11, pp. 1080–1087, 1990.

[6] B. Su and Y. Wu, “Learning meta-distance for sequences by
learning a ground metric via virtual sequence regression,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2020. [On-
line]. Available: https://doi.org/10.1109/TPAMI.2020.3010568

[7] G. Bourque and P. A. Pevzner, “Genome-scale evolution: Recon-
structing gene orders in the ancestral species,” Genome Research,
vol. 12, no. 1, pp. 26–36, 2002.

[8] A. M. Aravanis, M. Lee, and R. D. Klausner, “Next-generation
sequencing of circulating tumor DNA for early cancer detection,”
Cell, vol. 168, no. 4, pp. 571–574, 2017.

[9] T. K. Attwood and J. B. C. Findlay, “Fingerprinting g-protein-
coupled receptors,” ”Protein Engineering, Design and Selection”,
vol. 7, no. 2, pp. 195–203, 1994.

[10] J. B. Kruskal, “An overview of sequence comparison: Time warps,
string edits, and macromolecules,” SIAM Review, vol. 25, no. 2, pp.
201–237, 1983.

[11] D. Sankoff, “Matching sequences under deletion/insertion con-
straints,” Proceedings of the National Academy of Sciences, vol. 69,
no. 1, pp. 4–6, 1972.

[12] D. S. Hirschberg, “Algorithms for the longest common subse-
quence problem,” Journal of the ACM, vol. 24, no. 4, pp. 664–675,
1977.

[13] W. J. Masek and M. S. Paterson, “A faster algorithm computing
string edit distances,” Journal of Computer and System Sciences,
vol. 20, no. 1, pp. 18–31, 1980.

[14] W. J. Hsu and M. W. Du, “Computing a longest common subse-
quence for a set of strings,” BIT, vol. 24, no. 1, pp. 45–59, 1984.

[15] A. Apostolico, S. Browne, and C. Guerra, “Fast linear-space com-
putations of longest common subsequences,” Theoretical Computer
Science, vol. 92, no. 1, pp. 3–17, 1992.

[16] J. Gregor and M. G. Thomason, “Dynamic programming align-
ment of sequences representing cyclic patterns,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 15, no. 2, pp. 129–
135, 1993.

[17] K.-S. Huang, C.-B. Yang, K.-T. Tseng, Y.-H. Peng, and H.-Y. Ann,
“Dynamic programming algorithms for the mosaic longest com-
mon subsequence problem,” Information Processing Letters, vol. 102,
no. 2-3, pp. 99–103, 2007.

[18] J. Yang, Y. Xu, Y. Shang, and G. Chen, “A space-bounded anytime
algorithm for the multiple longest common subsequence prob-
lem,” IEEE Transactions on Knowledge and Data Engineering, vol. 26,
no. 11, pp. 2599–2609, 2014.

[19] K. Hakata and H. Imai, “The longest common subsequence prob-
lem for small alphabet size between many strings,” in Proceedings
of the Third International Symposium on Algorithms and Computation,
ser. ISAAC ’92. Berlin, Heidelberg: Springer-Verlag, 1992, p.
469478.

[20] ——, “Algorithms for the longest common subsequence problem
for multiple strings based on geometric maxima,” Optimization
Methods and Software, vol. 10, no. 2, pp. 233–260, 1998.

[21] D. Korkin, “A new dominant point-based parallel algorithm for
multiple longest common subsequence problem,” Technical Report
TR01-148, Univ. of New Brunswick, Tech. Rep., 2001.

[22] Y. Chen, A. Wan, and W. Liu, “A fast parallel algorithm for finding
the longest common sequence of multiple biosequences,” BMC
Bioinformatics, vol. 7, no. S4, 2006.

[23] D. Korkin, Q. Wang, and Y. Shang, “An efficient parallel algorithm
for the multiple longest common subsequence (MLCS) problem,”
in 2008 37th International Conference on Parallel Processing. IEEE,
September 2008, pp. 354–363.

[24] Q. Wang, D. Korkin, and Y. Shang, “A fast multiple longest
common subsequence (MLCS) algorithm,” IEEE Transactions on
Knowledge and Data Engineering, vol. 23, no. 3, pp. 321–334, 2011.

[25] Y. Li, Y. Wang, Z. Zhang, Y. Wang, D. Ma, and J. Huang, “A novel
fast and memory efficient parallel MLCS algorithm for long and
large-scale sequences alignments,” in 2016 IEEE 32nd International
Conference on Data Engineering (ICDE). IEEE, May 2016, pp. 1170–
1181.

[26] Z. Peng and Y. Wang, “A novel efficient graph model for the mul-
tiple longest common subsequences (MLCS) problem,” Frontiers in
Genetics, vol. 8, 2017.

[27] S. Wei, Y. Wang, Y. Yang, and S. Liu, “A path recorder algorithm
for Multiple Longest Common Subsequences (MLCS) problems,”

Bioinformatics, vol. 36, no. 10, pp. 3035–3042, 2020. [Online].
Available: https://doi.org/10.1093/bioinformatics/btaa134

[28] S. Liu, Y. Wang, W. Tong, and S. Wei, “A fast and
memory efficient MLCS algorithm by character merging
for DNA sequences alignment,” Bioinformatics, vol. 36,
no. 4, pp. 1066–1073, 10 2019. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btz725

[29] T. Smith and M. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–
197, 1981.

[30] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable
clustering-based evolutionary algorithm for large-scale many-
objective optimization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 22, no. 1, pp. 97–112, 2018.

[31] C. Blum, M. J. Blesa, and M. López-Ibáñez, “Beam search for the
longest common subsequence problem,” Computers & Operations
Research, vol. 36, no. 12, pp. 3178–3186, 2009.

[32] C. Blum and M. J. Blesa, Beam search for the longest common
subsequence problem. Elsevier Science Ltd., 2009.

Shiwei Wei is a Ph.D. student in School of Com-
puter Science and Technology, Xidian Univer-
sity, Xi’an, China, and an associate professor in
the School of Computer Science and Engineer-
ing, Guilin University of Aerospace Technology,
Guilin, China. His research interests include data
mining, intelligent computation and bioinformat-
ics.

Yuping Wang received the PhD degree from the
Department of Mathematics, Xian Jiaotong Uni-
versity, China, in 1993. He has been a full pro-
fessor since 1997 in the Department of Applied
Mathematics and School of Computer Science
and Technology, Xidian University, China. His
research interests include optimization modeling
for problems in computer Science, evolutionary
computation, and optimization algorithms. He
has published more than 200 papers.

Yiu-ming Cheung (SM’06-F’18) received the
Ph.D. degree from the Department of Computer
Science and Engineering, The Chinese Univer-
sity of Hong Kong, Hong Kong. He is currently a
Full Professor with the Department of Computer
Science, Hong Kong Baptist University, Hong
Kong. His current research interests include ma-
chine learning, pattern recognition, visual com-
puting, and optimization. Dr. Cheung is a fel-
low of IET, British Computer Society (BCS), and
Royal Society of Arts (RSA) and a Distinguished

Fellow of International Engineering and Technology Institute (IETI). He
is the Founding Chair of the Computational Intelligence Chapter of the
IEEE Hong Kong Section and the Chair of the Technical Committee
on Intelligent Informatics of the IEEE Computer Society. He serves
as an Associate Editor for the IEEE TRANSACTIONS ON NEURAL
NETWORKS AND LEARNING SYSTEMS, the IEEE TRANSACTIONS
ON CYBERNETICS, Pattern Recognition, Knowledge and Information
Systems, and Neurocomputing, to name a few.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on December 12,2021 at 01:39:18 UTC from IEEE Xplore. Restrictions apply.

