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Abstract

We give two optimal linear-time algorithms for computing the Longest Previous Factor (LPF) array corresponding to a string w.
For any position i in w, LPF[i] gives the length of the longest factor of w starting at position i that occurs previously in w. Several
properties and applications of LPF are investigated. They include computing the Lempel–Ziv factorization of a string and detecting
all repetitions (runs) in a string in linear time independently of the integer alphabet size.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Given a string w, we introduce the Longest Pre-
vious Factor (LPF) array defined as follows. For any
position i in w, LPF[i] gives the length of the longest
factor of w starting at position i that occurs previ-
ously in w. Formally, if w[i] denotes the ith letter of
w and w[i . . j ] is the factor w[i]w[i + 1] . . .w[j ], then

✩ This work has been presented at the AutoMathA’07 Conference,
see [M. Crochemore, L. Ilie, Computing local periodicities in strings,
invited talk, AutoMathA’07, Palermo, Italy, June 2007 [5]].
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LPF[i] = max
({

� | w[i. . i + � − 1] is a factor

of w[0. . i + � − 2]} ∪ {0}).
We give two linear-time (optimal) algorithms for com-
puting LPF using suffix arrays. The first uses no addi-
tional information whereas the second uses the longest
common prefix array which is often part of the suffix ar-
ray data structure. Previously such algorithms involved
computing the suffix trees, which are more complex and
take a lot of space. Also, a logarithmic factor of the size
of the alphabet often appears in the complexity. Our al-
gorithms use suffix arrays, are much simpler, and their
complexity is alphabet independent.

One important application is computing the Lempel–
Ziv factorization [14]. Recently Abouelhoda et al. [1]
gave a suffix-array-based algorithm for computing
Lempel–Ziv factorization. However, their algorithm is
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i SA[i] LCP[i] sufSA[i] prev<[SA[i]] prev>[SA[i]] LPF[SA[i]] PrevOcc[SA[i]]
0 8 0 aaabab −1 3 2 3
1 9 2 aabab 8 3 3 3
2 3 3 aabbbaaabab −1 0 1 0
3 12 1 ab 3 10 2 10
4 10 2 abab 3 0 2 0
5 0 2 abbaabbbaaabab −1 −1 0 −1
6 4 3 abbbaaabab 0 2 3 0
7 13 0 b 4 7 1 7
8 7 1 baaabab 4 2 3 2
9 2 3 baabbbaaabab 0 1 1 1

10 11 2 bab 2 6 2 2
11 6 1 bbaaabab 2 1 4 1
12 1 4 bbaabbbaaabab 0 −1 0 −1
13 5 2 bbbaaabab 1 −1 2 1

Fig. 1. The arrays SA, LCP, and LPF for the string abbaabbbaaabab.
essentially a simulation of the suffix tree using the suf-
fix array. The description in [1] is very brief but it seems
that their approach can be used to achieve similar goals
with ours, nevertheless in a significantly more compli-
cated way.

Simultaneously and independently of our work,
Chen et al. [2] gave an algorithm that is similar with
our second one. Our first algorithm is more general and
our approach for the second gives a clearer explanation
as well as more insight into the structure of LPF.

2. Suffix arrays

We recall in this section briefly the notions of suf-
fix array and longest common prefix. Consider a string
w = w[0 . . n − 1] of length n over an alphabet A that
is an integer interval of size no more than nc, for some
constant c. The suffix of w starting at position i is de-
noted by sufi = w[i. . n − 1], for 0 � i � n − 1. The
suffix array of w, [16], denoted SA, gives the suffixes of
w sorted ascendingly in lexicographical order, that is,
sufSA[0] < sufSA[1] < · · · < sufSA[n−1]. The suffix array
of the string abbaabbbaaabab is shown in the second
column of Fig. 1.

Often the suffix array is used in combination with an-
other array, the Longest Common Prefix (LCP) which
gives the length of the longest common prefix be-
tween consecutive suffixes of SA, that is, LCP[i] is the
length of the longest common prefix of sufSA[i] and
sufSA[i−1]; see the third column of Fig. 1 for an exam-
ple.

3. A direct algorithm

We give first a direct algorithm for computing LPF
from the suffix array. We compute also, for each i, a po-
sition PrevOcc[i] < i where the longest previous factor
at i occurs.3 (If LPF[i] = 0, then PrevOcc[i] = −1.)
Both arrays for our example are shown in the last two
columns in Fig. 1.

The idea of the algorithm is as follows. For any posi-
tion i, the longest factor starting at i that occurs also to
the left of i in w is the longest common prefix between
the suffix sufi and the suffixes starting to the left of i in
w, that is, sufj , 0 � j � i − 1. However, given SA, we
need only consider those which are closest to sufi in SA.
We shall therefore compute, for each i, the closest posi-
tions in SA that are smaller than i; in most cases there
will be two such positions, one before and one after i

in SA. Denote them by prev<[i] and prev>[i], respec-
tively. If one of them does not exists, then we assign the
value −1; see columns 5 and 6 in Fig. 1. Rephrasing the
above, LPF[i] is obtained as the length of the longest
common prefix between sufi and either sufprev<[i] or
sufprev>[i], whichever is longer.

After prev< and prev> are found, LPF is computed
for all values of i in increasing order, using the property
that LPF[i] � LPF[i − 1] − 1. Thus, we already know
that w[i . . i + LPF[i − 1] − 2] occurred to the left of i

and need only try to extend it. A problem appears be-
cause we do not know whether we should compare sufi
to sufprev<[i] or sufprev>[i]. We shall therefore compute
two arrays, LPF<[0 . . n − 1] and LPF>[0 . . n − 1]; they
have the same meaning as LPF except that they consider
only positions corresponding to suffixes lexicographi-
cally smaller, resp. larger, than sufi . Formally, we have

3 Note that a suffix-tree-based algorithm would compute the left-
most such position in the string whereas our algorithm might produce
a different one. For instance, in our example, PrevOcc[12] = 10 but
the left most occurrence of ab starts at 0.
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COMPUTE_LPF(w,prev<,prev>)

1. LPF[0] ← LPF<[0] ← LPF>[0] ← 0
2. for i from 1 to n − 1 do
3. j ← max(LPF<[i − 1] − 1,0);

k ← max(LPF>[i − 1] − 1,0)

4. if (prev<[i] = −1) then LPF<[i] ← 0
5. else while (w[i + j ] = w[prev<[i] + j ]) do j ← j + 1
6. LPF<[i] ← j

7. if (prev>[i] = −1) then LPF>[i] ← 0
8. else while (w[i + k] = w[prev>[i] + k]) do k ← k + 1
9. LPF>[i] ← k

10. LPF[i] ← max(LPF<[i],LPF>[i])
11. if (LPF[i] = 0) then PrevOcc[i] ← −1
12. else if (LPF<[i] > LPF>[i]) then PrevOcc[i] ← prev<[i]
13. else PrevOcc[i] ← prev>[i]
14. return LPF and PrevOcc

Fig. 2. Algorithm for computing LPF directly from the SA via arrays
prev< and prev> .

LPF<[i] = max
({

j | ∃k < i,w[i . . i + j − 1] =
w[k . . k + j − 1] and sufk < sufi

}

∪{0})

and LPF>[i] is defined identically except for the last
condition which becomes sufk > sufi . Consider one
of them, say LPF<. We still have that LPF<[i] �
LPF<[i−1]−1. This is because, if w[i−1] = w[k−1],
then the order between sufi and sufk is the same as be-
tween sufi−1 and sufk−1. That means, we already know
that sufi and sufprev<[i] have a common prefix of length
LPF<[i − 1] − 1 and we check only the following let-
ters. This explains why our algorithm runs in O(n) time.
Finally, LPF[i] is the maximum between LPF<[i] and
LPF>[i]. The algorithm is given in Fig. 2.

Computing the arrays prev< and prev> is a matter of
manipulating data structures. We can construct a dou-
bly linked list with the elements of SA and two extra
elements at the beginning and at the end with value −1,
for the case prev<[i] or prev>[i] do not exist. The val-
ues are computed in decreasing order of i, from n to 0,
and each i is removed once the values for i have been
computed. When i is considered, it is the largest left in
the list and therefore the one before and the one after
in the list will give the values of prev<[i] and prev>[i].
In fact pointers can be avoided, and arrays used instead,
because after the doubly linked list is created only dele-
tions are performed. The details are omitted.

It should be clear from the above discussion that the
arrays prev< and prev> can be computed in time O(n).
The algorithm COMPUTE_LPF uses O(n) space. Using
the fact that the suffix array of a string of length n over
an integer alphabet can be computed in O(n) time by
any of the algorithms in [7,9,11,12], we obtain:
Theorem 1. Given a string of length n over an integer
alphabet, the LPF and PrevOcc arrays can be computed
in time and space O(n).

4. An algorithm using LCP

Our second algorithm for computing LPF uses the
LCP array. Its advantage over the previous algorithm
is that it processes the suffix array in one pass and re-
quires less memory space. The idea is similar to the one
above. Assuming we know the longest common pre-
fixes between sufi and either sufprev<[i] or sufprev>[i], it
is enough to take the maximum of the two.

Using this idea, we give a space-efficient algorithm
for computing LPF. For a better understanding, it is use-
ful to arrange the SA and LCP arrays in a graph. The
vertices are labelled by the SA values and the edges by
the LCP values. The vertices are arranged in the left-to-
right order corresponding to their order in SA and are
placed at a height corresponding to their starting po-
sition in the string. In other words, if SA[i] = j, then
the vertex labelled j is plotted with abscissa i and or-
dinate j . An example if shown by the graph in Fig. 3(i)
consisting of the solid edges only.

Now consider the vertices in decreasing order of their
labels, that is, vertices that are highest in the graph
(“peaks”) are considered first. For vertex 13, the two ad-
jacent edges are labelled 0 and 1, corresponding to the
longest common prefixes of suf13 with sufprev<[i] = suf4
and sufprev>[i] = suf7, respectively. Therefore, the max-
imum of the two gives LPF[13] = 1. On the other hand,
the minimum of the two gives the longest common pre-
fix of suf4 and suf7; we remove the vertex 13 and add
a (dotted) edge between 4 and 7, labelled 0. Note that
prev<[7] = 4 and prev>[7] = 2, so this property is an
invariant of the graph. Next we consider the vertex 12
and so on. Fig. 3(ii) shows the graph after having con-
sidered the vertices 13, 12, and 11.

It is clear that we need not consider the vertices in
this order. For instance, we can compute LPF[6] right
away. Precisely, any vertex which is a “peak” in our
graph can have its LPF value computed. In the algorithm
in Fig. 4 we consider the vertices in the order they ap-
pear in the SA (that is, left to right in the graph) and
use a stack to store unprocessed vertices. The vertices
in the stack will be in increasing order from bottom to
top. Whenever a vertex with a smaller label than the one
on top of the stack is encountered, the top of the stack
is processed and popped. For instance, vertex 4 has to
wait for 13 and 7 to be processed. In order to process
all vertices uniformly, we assume a last (virtual) vertex
with label n and height −1. The stack contains pairs
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Fig. 3. (i) Solid edges form the graph representing SA and LCP for the text abbaabbbaaabab; dotted edges show the (conceptual) transformation
of the graph during the algorithm COMPUTE_LPF_USING_LCP. (ii) The graph after the vertices 13, 12, and 11 were considered.
COMPUTE_LPF_USING_LCP(SA,LCP)

1. SA[n]← −1; LCP[n] ← 0
2. PUSH((0,SA[0]),S)

3. for i from 1 to n do
4. lcp ← LCP[i]
5. while ((S �= ∅) and (SA[i] < TOP(S).pos))
6. LPF[TOP(S).pos] ← max(TOP(S).len, lcp)

7. lcp ← min(TOP(S).len, lcp)

8. v ← TOP(S)

9. POP(S)

10. if (LPF[v.pos] = 0) then
PrevOcc[v.pos] ← −1

11. else if (v.len > lcp) then
PrevOcc[v.pos] ← TOP(S).pos

12. else PrevOcc[v.pos] ← SA[i]
13. if (i < n) then PUSH((lcp,SA[i]),S)

14. return LPF

Fig. 4. Algorithm for computing LPF using LCP.

of the form (x.len, x.pos), where x.pos is a position
(in SA) and x.len stores the longest common prefix be-
tween sufx.pos and the suffix corresponding to the node
right below x in the stack (or 0 if none). For instance,
when the vertex 7 is considered, 13 is processed and re-
moved from the stack. The top of the stack becomes 4
and 7 is then pushed on top of it: TOP(S).len ← 0 and
TOP(S).pos ← 7.

The correctness of the algorithm follows from the
above discussion. It runs in O(n) time because each el-
ement of SA is pushed only once on to the stack. Also,
[10] gives a very simple linear time algorithm to com-
pute the LCP array. The spaced used by the stack is at
most n pairs of integers, which is reached for the string
an−1b. However, the expected size of the stack is much
less.

There is an interesting consequence of the above dis-
cussion, namely that the array LPF is a permutation of
LCP. This is shown by analyzing the graph in Fig. 3(i).
The labels of the solid edges form the LCP array. When
removing a “peak” from the graph, the maximum of the
two labels of the adjacent edges becomes an LPF value
whereas the minimum becomes the label of the newly
formed (dotted) edge. Each value will eventually be-
come an LPF value which proves the statement.

Proposition 1. LPF is a permutation of LCP.

Remark 1. Note that [1] suggests a bottom-up computa-
tion of the LPF array on the lcp-interval tree (isomorphic
with the suffix tree) and therefore leads to a similar re-
sult with ours. However, our approach is much simpler.

5. Application 1: Computing the Lempel–Ziv
factorization

The Lempel–Ziv factorization of w [14] is the de-
composition w = u0u1 . . . uk , where each ui (except
possibly uk) is the longest prefix of uiui+1 . . . uk that
has another occurrence to the left in w or a single let-
ter in case this prefix is empty. For our example the
Lempel–Ziv factorization is a.b.b.a.abb.baa.ab.ab.

The Lempel–Ziv factorization is a basic and pow-
erful technique for text compression [17]. It has many
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LEMPEL–ZIV_FACTORIZATION(LPF)

1. LZ[0] ← 0; i ← 0
2. while (LZ[i] < n) do
3. LZ[i + 1] ← LZ[i] + max(1,LPF[LZ[i]])
4. i ← i + 1
5. return LZ

Fig. 5. Algorithm for computing Lempel–Ziv factorization using LPF.

variants used in gzip or PKzip software, and more gen-
erally in dictionary compression methods.

The Lempel–Ziv factorization is easily computed
from LPF. The algorithm is shown in Fig. 5. For the
example text abbaabbbaaabab in Fig. 1, the algorithm
outputs LZ = [0,1,2,3,4,7,10,12].

Theorem 2. The Lempel–Ziv factorization of a string of
length n over an integer alphabet can be computed in
O(n) time.

The experimental results of [2] may be explained
by the fact that suffix-tree-based algorithms computing
the Lempel–Ziv factorization usually have complexity
O(log(|A|)n), where |A| is the cardinality of the alpha-
bet.

Also, note that suffix trees allow online computation
of the Lempel–Ziv factorization. However, this comes
with the extra log(|A|) factor. It remains open whether
true linear-time online computation is possible.

6. Application 2: Computing runs in linear time

Repetitions are a fundamental topic in stringology
and appear in many applications such as text algorithms,
data compression, or analysis of biological sequences.
The simplest repetition is a square ww, where w is
any string. A general repetition has the form we, for
any rational exponent e � 2 such that e|w| is an inte-
ger; e.g., (aabab)7/5 = aababaa. Particularly important
turned out to be maximal repetitions [15] or runs. A run
is an occurrence of a repetition that cannot be extended.
As an example, the string aababaabba contains the runs
aa at positions 0 and 5, ababa, and bb. Runs allow the
encoding of all repetitions in linear space [13].

An element of the Lempel–Ziv factorization carries
information already processed by any online algorithms
computing repetitions. Therefore it is not surprising that
the Lempel–Ziv factorization plays a central part in the
algorithm of [13] as well as in all efficient computa-
tions of repetitions in strings. Their running time is
then O(n log(|A|)). Using a suffix array and the algo-
rithms described in previous sections leads to linear-
time computations on integer alphabets. This applies
to: testing square freeness of a string [3], computing all
leftmost maximal periodicities [15], computing all runs
[13], computing of all local periods of a string [6], and
computing all primitively-rooted squares occurring in a
string [8]; see also [4]. In particular, we get:

Theorem 3. The runs of a string of length n over an
integer alphabet can be computed in O(n) time.
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