
Pattern Recognition Letters 55 (2015) 15–21

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Order preserving pattern matching revisited ✩

Md. Mahbubul Hasan a,1, A.S.M. Shohidull Islam a,b, Mohammad Saifur Rahman a,
M. Sohel Rahman a,∗

a A�EDA Group, Department of CSE, BUET, Dhaka 1000, Bangladesh
b Department of Computational Engineering and Science, McMaster University, Hamilton, Ontario, Canada

a r t i c l e i n f o

Article history:

Received 18 March 2014

Available online 11 December 2014

Keywords:

Algorithms

Pattern matching

Document processing

Sequence analysis

a b s t r a c t

In this paper, we study the order preserving pattern matching (OPPM) problem, which is a very recent variant

of the classic pattern matching problem. We revisit this variant, present a new interesting pattern matching

algorithm and for the first time consider string regularities from this new perspective.

© 2014 Published by Elsevier B.V.

1

c

a

l

e

c

p

o

s

h

b

o

i

T

r

b

d

a

r

s

G

+

i

d

e

f

s

a

p

r

k

f

t

f

h

r

h

0

. Introduction

Given a string (or text) T and pattern P under an alphabet �, the

lassic string/pattern matching problem asks whether P occurs in T

nd if yes, then it further reports the occurrences of P in T. This prob-

em has extensive applications in different branches of science and

ngineering. Due to different types of requirements in different appli-

ation scenarios, a plethora of variants of the classic string matching

roblem have been introduced and studied in the literature. The focus

f this paper is a very recent variant which is called the order pre-

erving pattern matching (OPPM). In OPPM, like the classic variant, we

ave a text T and a pattern P as input. However, the underlying alpha-

et here is an integer alphabet. And, instead of looking for a substring

f the text which is identical to the given pattern, we are interested

n locating a fragment which is order-isomorphic with the pattern.

wo sequences over an integer alphabet are order-isomorphic if the

elative order between any two elements at the same positions in

oth the sequences is the same.

To the best of our knowledge, OPPM was first studied indepen-

ently by Kim et al. [6] and Kubica et al. [8].2 Since then, within quite

short period of time, a number of works on OPPM in different di-

ections have been reported in the literature. For example, order pre-

erving suffix trees and index data structures have been devised and
✩ This paper has been recommended for acceptance by A. Koleshnikov.
∗ Corresponding author at: Commonwealth Academic Fellow funded by the UK

overnment. Currently on a sabbatical leave from BUET. Tel.: +8801552389480; fax:

448712475276.

E-mail address: msrahman@cse.buet.ac.bd (M. Sohel Rahman).
1 Currently working at Google Zurich.
2 The problem was also presented at the Theo Murphy International Scientific Meet-

ng of the Royal Society on Storage and Indexing of Massive Data.

o

p

o

p

o

h

Z

p

s

ttp://dx.doi.org/10.1016/j.patrec.2014.11.013

167-8655/© 2014 Published by Elsevier B.V.
ifferent applications thereof have been discussed by Crochemore

t al. [2,3]. On the other hand, Cho et al. [1] have presented practically

ast algorithms for OPPM. Gawrychowski and Uznanski [4] have con-

idered the approximate version of the problem where k mismatches

re allowed.

In this paper, we revisit the order preserving pattern matching

roblem. Our main contribution in this paper is the study of string

egularities from an order preserving point of view. To the best of our

nowledge, this is the first attempt to capture the concept regularities

orm this perspective. In what follows we will conveniently refer to

his as order preserving regularities. String regularities have been the

ocus of attention of stringology researchers since long. The following

as been articulated by Smyth [10] in a very recent survey on string

egularities:

. . . In the intervening century, certainly thousands of research

papers have been written by mathematicians and (over the

last half century) also computer scientists that relate in some

way to periodicity, or its variants, in strings. A word that has

recently been brought into service to describe these variants

is “regularities” . . .

Apart from periodicity, the most notable and studied regularities

f a string are borders and covers. Hence, in this paper we consider

eriods, borders and covers of strings from the order preserving point

f view (Section 4). We also discuss yet another order preserving

attern matching algorithm (Section 4). Our algorithms are based

n the so called Z-algorithm discussed by Gusfield in Chapter 2 of

is famous book [5]. In particular, we propose modifications to the

-algorithm or Z-function of Gusfield to make it useful in the order

reserving framework (Section 3). The modified Z-algorithm for a

tring presented in this paper could be of independent interest.

http://dx.doi.org/10.1016/j.patrec.2014.11.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.11.013&domain=pdf
mailto:msrahman@cse.buet.ac.bd
http://dx.doi.org/10.1016/j.patrec.2014.11.013

16 Md. M. Hasan et al. / Pattern Recognition Letters 55 (2015) 15–21

6 8 10

10

20

30

40

12420

Pattern

Text

5

15

10

20

17

23 23

8

15

20

10

28
30

25

35 35
37

20

28

Fig. 1. An example instance of OPPM.

Table 1

An example of Z-function.

S = A C A G G T A C A G T T C C C T C G A C A C C T A C T A C C T A A G

Z(S) = 34 0 1 0 0 0 4 0 1 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 2 0 0 2 0 0 0 1 1 0

S

b

f

h

e

n

t

e

b

a

c

U

w

e

U

w

t

o

a

3

3

m

t

n

p

s

f

D

l

Besides the inherent combinatorial and algorithmic beauty of the

problem itself, the motivation also comes from a number of inter-

esting practical applications. For example, it can be applied to a time

series analysis like share prices on stock markets to recognize specific

patterns and to musical melody matching of two musical scores [1,6].

An example is given in Fig. 1. The problem also has some interesting

relation to the combinatorial study of patterns in permutations, in

particular to the study of pattern avoidance [8].

2. Preliminaries

We use � to denote the set of numbers such that the compar-

ison of two numbers can be done in constant time and �∗ de-

notes the set of strings over the alphabet �. The length of a string

S = (S[1], S[2], . . . , S[n]) is denoted by |S| = n. For n = 0, we say that

S = ε, the empty string. If S = UVW , then U is said to be a prefix, V a

substring (also called a factor) and W a suffix of S. If VW �= ε (UV �= ε)

then U (W) is a proper prefix (proper suffix) of S. Similarly, if UW �= ε,

then V is a proper substring. A substring (S[i], S[i + 1], . . . , S[j]) of S is

denoted by S[i, j], the ith prefix S[1, i] by prefixi(S) and the ith suffix

S[i, |S|] by suffixi(S).
The rank of a number c in a string S is defined as follows:

rankS(c) = 1 + |{i | S[i] < c, 1 ≤ i ≤ |S|}|.
To be consistent with the previous works [6], we assume that all

the numbers in a string are distinct. The order preserving represen-

tation (OPR) σ(S) of a string S can be defined as follows:

σ(S) = rankS(S[1]), rankS(S[2]), . . . , rankS(S[|S|]).
If two strings S1 and S2 have identical OPR, i.e., σ(S1) = σ(S2), then

we say that the two strings are OPR-equal.

Since we are interested in string regularities, here we discuss

some related notions and definitions. Part of the following descrip-

tion is conveniently adopted from a recent survey of Smyth [10]. If

S = S[1 . . . n] has a proper (though possibly empty) prefix U that is also

a suffix of S, then U is said to be a border of S. For example, for string
= (1, 2, 1, 2, 1), one border would be (1, 2, 1). The entire string can

e considered as a special border. If for some p ∈ 1 . . . n, S[i] = S[p + i]

or every i ∈ 1 . . . n − p, then S is said to have period p. Thus S always

as the empty border ε and the trivial period n. It is well-known, and

asy to prove, that S has period p if, and only if, it has a border of length

− p. The border array βS of a string S is an array of length n such

hat βS[i] equals the length of the longest border of S[1 . . . i] for ev-

ry i ∈ 1 . . . n. Since βS[i] = b > 0 implies that βS[b] is the next largest

order of S[1 . . . i], it follows that βS specifies all the borders, hence

ll the periods, of every prefix of S. A simple �(n)-time algorithm can

ompute the border array of a string having length n [9].

A string S has quasiperiod q < n if and only if there exists a string

= U[1 . . . q], called a cover of S, such that every position of S lies

ithin an occurrence of U. Thus a cover must also be a border of S. For

xample, U = (1, 2, 1) is a cover of S = (1, 2, 1, 2, 1, 1, 2, 1). A cover

�= S is called a proper cover.

Since we will be heavily using the Z-function of Gusfield [5], here

e briefly review the concept. The Z-function, Zi(S) is the length of

he longest substring of S that starts at position i and matches a prefix

f S. We give an example of the Z-function for a string S on the DNA

lphabet (i.e., {A, C, G, T}) in Table 1.

. Modified Z-function

.1. Definition

In this section, we propose a modification of the Z-function to

ake it useful from the order preserving point of view. We start with

he following formal definition. For the sake of notational ease, we do

ot introduce an extended notation to denote Z-function from order

reserving point of view; so, in the rest of this paper, unless otherwise

pecified, we will continue to use the term Z-function to consider it

rom the order preserving point of view.

efinition 1. Given a string S, the Z-function Zi(S), 1 ≤ i ≤ |S| is the

ength of the longest prefix P of suffix (S)such that σ(P) = σ(S[1, |P|]).
i

Md. M. Hasan et al. / Pattern Recognition Letters 55 (2015) 15–21 17

Table 2

Example of (modified) Z-function.

S = (11, 18, 24, 20, 25, 29)

Z(S) = 6 2 1 3 2 1

Algorithm 1 High level overview of Z-function construction.

1: procedure ZFunction(S)

2: Z(1) := |S|
3: L := R := 1

4: for i := 2 to |S| do

5: Z(i) := 0

6: if i ≤ R then

7: Z(i) := min(R − i + 1, Z(i − L + 1))
8: end if

9: while i + Z(i) ≤ |S| and σ(S[i, i + Z(i)]) = σ(S[1, Z(i)+ 1])
do

10: Z(i) := Z(i)+ 1

11: end while

12: if i + Z(i)− 1 > R then

13: L := i

14: R := i + Z(i)− 1

15: end if

16: end for

17: return Z

18: end procedure

s

A

3

I

s

3

f

w

L

t

P

d

t

o

n

σ

L

σ

w

Algorithm 2 Calculation of OPR of a string S.

1: procedure ComputeOPR(S)

2: T := Empty Tree

3: for i := 1 to |S| do

4: T .Insert(S[i], i)
5: end for

6: for i := 1 to |S| do

7: OPR(i) := T .Rank(S[i])
8: end for

9: return OPR

10: end procedure

1

m

o

f

s

o

t

i

S

i

p

m

s

L

s

L

Z

Z

o

b

t

σ
c

a

1

3

c

b

T

t

i

t

a

t

w

o

u

p

a

In other words, Zi(S) is the length of the longest substring of S that

tarts at position i and its OPR is same as the OPR of some prefix of S.

n example of a (modified) Z-function is given in Table 2.

.2. Construction

In this section, we focus on constructing the modified Z-function.

n Algorithm 1, we formally present the modified Z-function con-

truction procedure.

.3. Correctness

In this section we discuss the correctness of the modifed Z-

unction construction algorithm. We start with the following lemma

hich will be useful shortly.

emma 1. Let S and T be two strings such that σ(S) �= σ(T). Now assume

hat s and t are any numbers. Then we must also have σ(Ss) �= σ(Tt).

roof. We prove it by contradiction. Assume for the sake of contra-

iction that σ(Ss) = σ(Tt). So the rank of s in S is same as the rank of

in T. If we remove s and t from the corresponding strings, the ranks

f the numbers greater than s and t will reduce by 1; ranks of the

umbers less than those will remain the same. Hence we must have

(S) = σ(T), a contradiction.

It is very easy to extend Lemma 1 to get the following lemma.

emma 2. Let S and T are two strings such that |S| = |T| and σ(S) �=
(T). Now let U and V are any two strings. Then σ(SU) �= σ(TV).

Now we discuss the correctness of our algorithm. In this algorithm

e maintain two pointers L and R such that σ(S[L, R]) = σ(S[1, R − L +

Table 3

Operations of tree T .

Function Description

Insert(x, i) Inserts a (key, value) pair (x, i) in the tree T
Rank(x) Calculates the rank of the number x among the keys present

PreviousIndex(x) Finds the value of the pair having largest key less than x.

NextIndex(x) Finds the value of the pair having smallest key greater than
]) and R is as large as possible for a specific L. The algorithm always

aintain the invariant that L ≤ i. This is ensured because the value

f L is conditionally updated to i only in line 13. Now, as we proceed

rom i = 2 to |S|, for each i we check whether i ≤ R and if so, we can

afely say that Z(i)is at least the minimum of R − i + 1 and Z(i − L + 1);
therwise Z(i) is set to 0. The reason for such bound of Z(i) is the fact

hat we always have σ(S[L, R]) = σ(S[1, R − L + 1]).
In fact, we have a stronger invariant: OPR of any substring of S[L, R]

s same as the OPR for the corresponding substring of S[1, R − L + 1].

o, OPR of S[i, R] will be same as the OPR of S[i − L + 1, R − L + 1]. Since

is increasing, we have already calculated the length of the largest

refix of suffixi−L+1 which has the same OPR as some prefix of the

ain string S and that length is Z(i − L + 1). Therefore S[i, R] has the

ame OPR as S[i − L + 1, R − L + 1] and we also know S[i − L + 1, i −
+ Z(i − L + 1)] has the same OPR as S[1, Z(i − L + 1)]. Hence we can

ay that, σ(S[i, i + M − 1]) = σ(S[1, M]) for M = min(R − i + 1, Z(i −
+ 1)). So M is set as the lower bound in line 7. However, the real

(i) may be larger. So in the while loop at line 9, we check whether

(i) can be incremented by 1. When we reach the string boundary

r Z(i) can not be incremented more maintaining the invariant, we

reak the loop.

Now, according to Lemma 1, if σ(S[i, i + Z(i)]) �= σ(S[1, Z(i)+ 1])
hen for all the values j > Z(i) we can say that σ(S[i, i + j − 1]) �=
(S[1, j]). So we will have the correct value in Z(i) as soon as exe-

ution of the while loop of line 9 is complete. For the efficiency of the

lgorithm we try to update the value of L and R in the if block of line

2 which will be discussed shortly in Section 3.5.

.4. OPR matching

In the condition of the while loop at line 9 of Algorithm 1, we

ompare the OPRs of two strings S[i, i + Z(i)] and S[1, Z(i)+ 1]. Using a

alanced binary search treeT that supports the first two operations in

able 3, we can compute the OPR of a string S of length n in O(n log n)
ime (Algorithm 2). Note that, all the operations in Table 3 can be

mplemented in logarithmic time complexity. So it will take O(n log n)
ime in the worst case to compute the OPRs in line 9 of Algorithm 1

nd an additional O(n) time to check the equality.

However, we can implement this equality checking in constant

ime with an additional O(n log n)preprocessing. Later, in Section 3.5,

e will see that it will significantly improve the time complexity of

ur algorithm. However to achieve this improvement, we have to

se the tree T which can perform all the operations of Table 3. The

reprocessing phase processes the initial string S and computes two

rrays named Prev and Next.
in T . In other words, it returns number of the keys in T that are at least x

x.

18 Md. M. Hasan et al. / Pattern Recognition Letters 55 (2015) 15–21

Algorithm 3 Preprocessing phase.

1: procedure Preprocess(S)

2: T := Empty Tree

3: T .Insert(−∞,−∞)
4: T .Insert(∞, ∞)
5: for i := 1 to |S| do

6: T .Insert(S[i], i)
7: Prev(i) := T .PreviousIndex(S[i])
8: Next(i) := T .NextIndex(S[i])
9: end for

10: return (Prev, Next)
11: end procedure

Algorithm 4 Improved algorithm for constructing modified Z-

function.

1: procedure ZFunction(S)

2: (Prev, Next) = Preprocess(S)
3: Z(1) := |S|
4: L := R := 1

5: for i := 2 to |S| do

6: Z(i) := 0

7: if i ≤ R then

8: Z(i) := min(R − i + 1, Z(i − L + 1))
9: end if

10: while i + Z(i) ≤ |S| and S[Prev[Z(i)+ 1] + i − 1] <

S[i + Z(i)] < S[Next[Z(i)+ 1] + i − 1] do

11: Z(i) := Z(i)+ 1

12: end while

13: if i + Z(i)− 1 > R then

14: L := i

15: R := i + Z(i)− 1

16: end if

17: end for

18: return Z

19: end procedure

Table 4

Example of the difficulty in the order preserving

scenario.

S = (1, 2, 4, 3, 5, 6, 7, 8, 9)

S[1, 3] = (1, 2, 4)

S[4, 6] = (3, 5, 6)

S[7, 9] = (7, 8, 9)

S[1, 6] = (1, 2, 4 3, 5, 6)

S[4, 9] = (3, 5, 6, 7, 8, 9)

f

i

Z

t

w

t

i

s

4

m

n

S

e

c

t

b

b

f

r

s

t

l

s

S

n

(

4

t

r

1

K

f

a

f

i

C

t

3 We can easily extend the notion of OPR-equality to get the notion of OPR-

occurrences in the context of the order preserving pattern matching.
Here, Prev(i) is the unique j such that j < i and S[j] is the largest

value that is less than S[i]. Similarly, Next(i) is the unique j such

that j < i and S[j] is the smallest value that is greater than S[i]. This

preprocessing algorithm is formally presented in Algorithm 3.

With the help of Prev and Next arrays we now can check the

equality of two OPRs in constant time. In line 9 of Algorithm 1, we

know that σ(S[i, i + Z(i)− 1]) = σ(S[1, Z(i)]) and we would like to in-

crease the value of Z(i)by one. Instead of appending the next number

to the strings and evaluating the entire OPRs, we proceed as follows.

We simply find the position of the next number in the already calcu-

lated OPRs of the strings S[i, i + Z(i)− 1] and S[1, Z(i)]. This is where

our preprocessing comes handy. From the precalculated Prev and

Next arrays we know that immediate smaller and larger values of

S[Z(i)+ 1] in S[1, Z(i)] are at Prev[Z(i)+ 1] and Next[Z(i)+ 1] respec-

tively. So if the immediate smaller and larger values of S[i + Z(i)] are at

the corresponding places of S[i, i + Z(i)] that is at Prev[Z(i)+ 1] + i − 1

and Next[Z(i)+ 1] + i − 1 respectively, we can say that the OPRs of the

new strings will also be same. Since σ(S[i, i + Z(i)− 1]) = σ(S[1, Z(i)]),
it would be enough to check if S[Prev[Z(i)+ 1] + i − 1] < S[i + Z(i)] <

S[Next[Z(i)+ 1] + i − 1]. This follows readily following a similar line

of arguments as discussed in the proof of Lemma 1. Our improved

algorithm is presented in Algorithm 4.

3.5. Analysis

The time complexity analysis of Algorithm 4 is a bit tricky. Firstly,

the preprocessing phase takes O(n log n) time. Now, if Z(i) is set to the

value of R − i + 1 in line 8, then, the value of Z(i) may increase in the
ollowing while loop and this results in the same amount of increase

n the value of R in line 15. However, if Z(i) is not set to R − i + 1 then

(i)will not increase. Condition checking inside the if blocks or while

akes constant time. We can say that the number of iterations of the

hile loop is equal to R + O(n). But R ≤ |S|. Hence the total running

ime of Algorithm 4 is O(n log n). The space complexity of the tree T
s O(n). For the arrays Z, Prev and Next we need O(n) memory. So the

pace complexity of the algorithm is O(n).

. Regularities

String regularities have been the focus of attention of the pattern

atching community since long. And apart from periodicity, the most

otable and studied regularities of a string are borders and covers.

ince there already exist linear time algorithms for computing Cov-

rs for normal strings, one might wonder whether those algorithms

an be easily extended for the order preserving framework. Notably,

hese algorithms mostly rely on the failure function, also known as the

order array, used in the famous KMP algorithm for pattern matching

y Knuth et al. [7]. However, although we have a modified algorithm

or computing the failure function along with a modified KMP algo-

ithm for the order preserving framework [6], as it turns out, it is not

traightforward (or even possible) to compute a Cover extending the

echniques for normal strings. The example in Table 4 sheds some

ight on why it is difficult to find a order preserving cover of a string.

Consider the string S = (1, 2, 4, 3, 5, 6, 7, 8, 9) in Table 4. We can

ee that all the substrings S[1, 3] = (1, 2, 4), S[4, 6] = (3, 5, 6) and

[7, 9] = (7, 8, 9) are OPR-equal, i.e., they have the same OPR. Now,

ote that S[1, 6] (S[4, 9]) are concatenation of S[1, 3] and S[4, 6]

S[4, 6] and S[7, 9]). But, S[1, 6] and S[4, 9] are not OPR-equal despite

that both of those are concatenation of two OPR-equal substrings. So,

in general, even if we have three OPR-equal strings A, B and C, it might

be possible that AB and BC are not OPR-equal.

In what follows we use the modified Z-function to compute some

order preserving regularities. We start with an order preserving

matching algorithm in the following subsection and then consider

a number of regularities one by one.

.1. Order preserving pattern matching

Let P be a pattern of length m and T be a text of length n. We want

o find all the OPR-occurrences3 of P in T. In other words, we have to

eport all the indices i ≤ |T| − |P| + 1 such that σ(P) = σ(T[i, i + |P| −
]). This problem is already efficiently solved by Kubica et al. [8] and

im et al. [6]. However we present yet another efficient algorithm

or OPPM using the modified Z-function. We concatenate P and T

nd thus form a new string S. We calculate the modified Z-function

or S. Now, if Z(i) ≥ |P| for i > |P|, then we can say that P occurs at

ndex i − |P| of T , i.e., P matches with the substring T[i − |P|, i − 1].

learly, assuming that we have the modified Z-function computed,

he matching can be done in O(|S|) = O(n + m) time.

Md. M. Hasan et al. / Pattern Recognition Letters 55 (2015) 15–21 19

Algorithm 5 Prints all the periods of T.

1: procedure CalculatePeriod(T)

2: Z := ZFunction(T)
3: for i := 1 to |T| do

4: f lag := 1

5: for j := 1 to |T| step i do

6: if Z(j) < i then

7: f lag = 0

8: break

9: end if

10: end for

11: if f lag = 1 then

12: Write i

13: end if

14: end for

15: end procedure

Algorithm 6 Reports maximum border for all the prefixes of S.

1: procedure CalculateBorderArray(S)

2: Z := ZFunction(S)
3: for i := 1 to |S| do

4: BorderArray[i] = 0

5: end for

6: for i := 2 to |S| do

7: if BorderArray[i + Z(i)− 1] < Z(i) then

8: BorderArray[i + Z(i)− 1] = Z(i)
9: end if

10: end for

11: end procedure

4

i

T

s

E

(
p

o

e

p

t

(

O

4

L

fi

s

i

b

i

c

t

Algorithm 7 Prints all the lengths of cover of S.

1: procedure CalculateCover(S)

2: Z := ZFunction(S)
3: C := an empty balanced binary search tree

4: C2 := an empty balanced binary search tree

5: Sort (Z(i), i) tuples into array A in descending order of Z(i)s.

6: insert 1 into C
7: insert |S| + 1 into C
8: insert |S| into C2

9: for i := 2 to |S| do

10: (Z(j), j) := (i − 1)-th element of A

11: L := find immediate smaller value than j in C
12: R := find immediate greater value than j in C
13: insert j into C
14: erase R − L from C2

15: insert j − L into C2

16: insert R − j into C2

17: M := maximum key in C2

18: if M ≤ Z(j) and Z(|S| − Z(j)+ 1) = Z(j) then

19: Write Z(j)
20: end if

21: end for

22: end procedure

4

n

s

σ
a

o

v

k

h

o

o

n

N

A

s

r

a

t

w

B

T

t

t

b

c

S

t

a

w

t

p

h

t

t

a

T

.2. Order preserving periods

Let P and T be two strings such that T = Pk for some k > 0, i.e., T

s k consecutive repetitions of P. Then, P is a period of any prefix of

. However, in case of order preserving period, we can repeat any P′

uch that σ(P) = σ(P′). We give an example below.

xample 1. Suppose, P = (1, 3, 2) and k = 3. Let T =
1, 3, 2, 4, 10, 9, 5, 11, 7). Now P = (1, 3, 2) is an order preserving

eriod of any prefix of T. That is, (1, 3, 2) is an order preserving period

f (1, 3, 2, 4, 10, 9, 5, 11, 7), (1, 3, 2, 4), (1, 3), (1, 3, 2, 4, 10, 9, 5, 11)
tc.

Now, we are only interested in the lengths of the order preserving

eriods. Also the period length of greater than the original string T is

rivial. So, in Algorithm 5 we present an algorithm that reports all the

order preserving) period lengths less than or equal to |T|.
It is easy to see that the running time of this algorithm is:

(n log n)+
(n

1
+ n

2
+ · · · + n

n

)
= O(n log n).

.3. Order preserving borders and the border array

Clearly, for a string S, we have an order preserving border of length

< |S| if and only if σ(S[1, L]) = σ(S[|S| − L + 1, |S|]). Once the modi-

ed Z-function is computed, finding an order preserving border for a

tring is quite simple. For each i ≤ |S| we just need to check whether

+ Z(i)− 1 = |S| and if so, then there is a border of length Z(i).
Similarly, we can easily compute the order preserving border array

y O(|S|) scan of the Z-function. The algorithm is formally presented

n Algorithm 6. Notably, we can easily modify the above method to

ompute the number of borders, the minimum border (length >1), or

o compute and report all the borders.
.4. Order preserving covers

A (proper) substring C of a string S is a cover of S, if and only if every

umber in S is covered by an OPR-occurrence of C in S. For example,

uppose, S = (1, 3, 2, 7, 5, 8, 6). Then, (1, 3, 2) is a cover of S, since

([1, 3, 2]) = σ([2, 7, 5]) = σ([5, 8, 6]). In Algorithm 7 we calculate

ll possible lengths for covers. We are only interested with the covers

f length less than |S|. We note that Algorithm 7 may print same

alues more than once. This apparent glitch can be easily fixed by

eeping the last printed value in a temporary variable. However, we

ave tried to keep the algorithm simple for the ease of understanding

f the readers.

The basic idea of Algorithm 7 is as follows. We consider each value

f the Z-function in decreasing order. We start with Zmax, which de-

otes the maximum value of the Z-function. Suppose Z(�) = Zmax.

ow we need to deal with two intervals, namely, [1, � − 1] and [�, n].

t this point, if the prefix S[1, Zmax] is also a border of S and the sub-

tring S[1, Zmax] can cover the above intervals, then, we can definitely

eport Zmax as (the length of) a cover. Now, consider any value Z(k) = z

t some later iterations. So, we have already handled values z′ > z. At

his point we have some more intervals (created by the position k

ithin the intervals that we get from the previous iteration) to check.

ut clearly if we can check the maximum of the intervals, we are done.

his is exactly what is done in Algorithm 7. To handle the values of

he Z-function in decreasing order we use a heap and to keep track of

he intervals we use two binary search trees.

Now let us analyze the algorithm. Here we have two balanced

inary search trees (BST). We go through the values of Z(j) in a de-

reasing order. In one BST C, we keep some anchor points of the string

(initially, we have only two anchors, namely, at 1 and at |S| + 1). In

he other BST C2, we keep the distances between two consecutive

nchor points in C (since initially there are only two anchors in C, we

ill have |S| + 1 − 1 = |S| in C2). While processing Z(j), we look for

he immediate previous anchor point (L) and immediate next anchor

oint (R). We now insert our new anchor point j into C and thus we

ave to update the distances in C2. We need to do the following opera-

ions on C2: (1) we remove the distance between L and R (2) we insert

he distance between L and j and (3) we insert the distance between j

nd R. Now we are ready to check if Z(i) can be the length of a cover.

o do so, we compare the maximum element in C2 and Z(j). If all the

20 Md. M. Hasan et al. / Pattern Recognition Letters 55 (2015) 15–21

Table 5

Finding the order preserving covers of a string.

i Z(j) j C L R C2 M Cover

2 4 3 1,8 1 8 2,5 5

3 3 5 1,3,8 3 8 2,3 3 3

4 1 2 1,3,5,8 1 3 1,3 3 3

5 1 4 1,2,3,5,8 3 5 1,3 3 3

6 1 6 1,2,3,4,5,8 5 8 1,2 2 3

7 1 7 1,2,3,4,5,6,8 6 8 1 1 3,1

0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

0 50 100 150 200 250 300 350 400 450

R
un

tim
e

(m
s)

n (x1000)

Algorithm 4
Algo 1 using COPR

Algorithm 1

Fig. 2. Runtime comparison of the Z-function algorithms on semi-synthetic stock mar-

ket data.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200 250 300 350 400 450

R
un

tim
e

(m
s)

n (x1000)

Algorithm 4
Algo 1 using COPR

Algorithm 1

Fig. 3. Runtime comparison of the Z-function algorithms on fully synthetic data.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400

R
un

tim
e

(m
s)

Zmax (x100)

Algorithm 4

Fig. 4. Impact of Zmax on runtime of Algorithm 4.

t

p

a

I

w

o

p

a

i

v

o

r

n

consecutive distances between already processed indices (anchors)

are less than or equal to Z(j) and also the pattern is a suffix of the

main string, then Z(j) is the length of a cover.

Sorting the (Z(i), i) tuples takes O(n log n) time. All the operations

of C and C2 can be done in logarithmic time. So the time complexity

of this algorithm is O(n log n), where n is the size of the input string.

An illustrative example of Algorithm 7 is presented in Table 5 for the

input string S = (1, 3, 2, 7, 5, 8, 6). The table shows the values in each

step of the iteration of the For loop of the algorithm. The lengths of

the covers are shown in the last column.

5. Experiments

We have done some experiments to compare the performance

of the algorithms we have presented in this paper. All our algo-

rithms, namely the pattern matching and the regularities algorithms

are based on the modified Z-function. And in those algorithms the

running time of the modified Z-function will remain as the dominant

component. So, we have only conducted experiments on the algo-

rithms for the modified Z-function presented in this paper. At this

point, recall that our algorithms assume all the numbers in a string

to be distinct. However, since the data we have used in our experi-

ments may have repeated values we augment the values with their

respective indices in the string to make those distinct.

We have implemented Algorithms 1 and 4 in C programming lan-

guage and have compiled the code using Microsoft Visual C++ 2010

express. We have implemented two versions of Algorithms 1: in the

first version, we have used a naive approach to compute OPR while in

the second we use ComputeOPR routine shown in Algorithm 2. In our

experiments, we have referred to the former as “Algorithm 1” and the

latter as “Algorithm 1 using COPR”. Our experiments have been run

on a Windows 7 64-bit machine with 2.40GHz Intel(R) Core(TM) i3

processor (4 CPUs) and 4GB RAM.

We have collected stock market data (closing prices) from Dhaka

Stock Exchange (DSE) for the last 4 years for a particular instrument.

However, the number of data points in the above data is too small

to obtain a meaningful comparison. As such, from the closing prices

data mentioned above, we have synthesized per minute price data

applying the following constraints: the price does not vary by more

than 10%/min and if the price increases (decreases) in the current

tick, then there is 75% probability of price decreasing (increasing)

in the next tick. This gives us a series of approximately 450k data

points. We will refer to this data as the semi-synthetic stock market

data henceforth. Using this series, we have run the algorithms for

different values of n. For each value of n, we have performed 10 runs

and in each run we have used n data points of the series, starting from

a random offset. Finally, we have averaged the runtime across these

runs. The results are shown in Fig. 2.

From Fig. 2, we find that Algorithm 1 (i.e., the naive approach) is

much faster than Algorithm 1 with COPR (i.e., where ComputeOPR has

been employed), which seems counter-intuitive at first. This trend is

also observed in a comparison run on fully synthetic data, as seen

in Fig. 3. We further notice that, the runtime of Algorithm 4 is the

smallest for smaller values of n; but for higher values of n, it takes

longer than Algorithm 1. This cross over point was different in case of
he semi-synthetic stock data and the fully synthetic data. Both these

henomena can be explained as follows. The runtime of Algorithm 1 is

ctually O(nZ2
max), where Zmax is the maximum value of the Z-function.

f we use ComputeOPR the runtime becomes O(nZmax log(Zmax)). But,

hen Zmax is small, construction and maintenance overhead of the

rder statics tree is significant. As such, the naive approach to com-

ute OPR turns out to be better. Indeed, this is observed in Figs. 4

nd 5, where the algorithms were run on 100k data points with var-

ed values of Zmax. Runtime of Algorithm 4 remains constant with

ariation of Zmax, because it is independent of Zmax. But, the runtime

f Algorithm 1 grows rapidly with the increase in Zmax. The growth

ate is significantly higher in the naive variation (for Zmax ≥ 5000, the

aive variation did not terminate in more than 2 min).

Md. M. Hasan et al. / Pattern Recognition Letters 55 (2015) 15–21 21

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e

(m
s)

Zmax (x100)

Algo 1 using COPR
Algorithm 1

Fig. 5. Impact of Zmax on runtime of Algorithm 1.

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14

R
un

tim
e

(m
s)

n (x1000)

Algorithm 4
Algo 1 using COPR

Algorithm 1

Fig. 6. Runtime comparison of the Z-function algorithms on daily opening price of GE

since 1962.

E

g

i

s

b

t

s

i

h

6

p

i

m

a

a

[

w

K

p

p

t

f

p

t

d

n

d

7

m

W

p

i

s

a

p

d

i

R

[

Finally, we managed to obtain the daily opening price of General

lectric Company (GE) stock since 1962. The performance of our al-

orithms on this data has been captured in Fig. 6. The results reported

n Fig. 6 is consistent with the results from earlier experiments with

emi-synthetic stock market data and fully synthetic data as discussed

elow. Algorithm 1 with COPR shows inferior performance, compared

o the naive algorithm, i.e., Algorithm 1, This is because Zmax is too

mall in this data set as well. For example, in case of n = 10, 000, Zmax

s only 12 in this dataset.

For further analysis, the data and code used in our experiments

ave been made available at http://goo.gl/4L5WJA.

. Discussion

Now that we have presented our algorithms a brief discussion es-

ecially with respect to the works already done in the literature is
n order. Since our algorithm to solve OPPM problem is based on the

odified Z-function, the total running time of our pattern matching

lgorithm is O(n log n + m). On the other hand, Kubica et al. [8] claim

linear time algorithm. To this end, we note the following. Cho et al.

1] showed that the method of Kubica et al. [8] may decide incorrectly

hen there are same characters. For such inaccuracies, the claim of

ubica et al. [8] that the order preserving border array can be com-

uted in linear time and the related results regarding order preserving

eriods do not hold as well.

The pattern matching algorithm of Kim et al. [6] is slightly better

han ours. However, they do not consider the regularities of strings

rom the order preserving point of view, which we believe is an im-

ortant contribution of this paper. In fact to the best of our knowledge

his is the first attempt to consider the order preserving borders, or-

er preserving border arrays and order preserving covers. Finally, we

ote that the modified Z-Algorithm presented in this paper is of in-

ependent interest.

. Conclusion

In this paper we have revisited the order preserving pattern

atching problem and have presented some interesting algorithms.

e have also studied the string regularities from order preserving

oint of view. The presented algorithms are efficient and interest-

ng. We have also implemented our algorithms and have reported

ome interesting insight regarding out algorithms. We plan to deploy

full-phased open source software that will be able to do the order

reserving pattern matching as well as visually show different or-

er preserving regularities. We believe such a software would be of

nterest to the people interested in stock market.

eferences

[1] S. Cho, J.C. Na, K. Park, J.S. Sim, Fast order-preserving pattern matching, in:

P. Widmayer, Y. Xu, B. Zhu (Eds.), COCOA, Springer, 2013, pp. 295–305.
[2] M. Crochemore, C.S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu, S.P. Pissis,

J. Radoszewski, W. Rytter, T. Walen, Order-preserving incomplete suffix trees and
order-preserving indexes, in: O. Kurland, M. Lewenstein, E. Porat (Eds.), SPIRE,

Springer, 2013, pp. 84–95.
[3] M. Crochemore, C.S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu, S.P. Pissis,

J. Radoszewski, W. Rytter, T. Walen, Order-preserving suffix trees and their algo-

rithmic applications, CoRR (2013) abs/1303.6872.
[4] P. Gawrychowski, P. Uznanski, Order-preserving pattern matching with k mis-

matches. CoRR (2013) abs/1309.6453.
[5] D. Gusfield, Algorithms on Strings, Trees, and Sequences – Computer Science and

Computational Biology, Cambridge University Press, 1997.
[6] J. Kim, P. Eades, R. Fleischer, S.H. Hong, C.S. Iliopoulos, K. Park, S.J. Puglisi,

T. Tokuyama, Order-preserving matching, Theor. Comput. Sci. 525 (2014) 68–79.

[7] D.E. Knuth, J.H. Morris Jr., V.R. Pratt, Fast pattern matching in strings, SIAM J.
Comput. 6 (1977) 323–350.

[8] M. Kubica, T. Kulczynski, J. Radoszewski, W. Rytter, T. Walen, A linear time algo-
rithm for consecutive permutation pattern matching, Inf. Process. Lett. 113 (2013)

430–433.
[9] W.F. Smyth, Computing Patterns in Strings, Pearson Addison-Wesley, 2003.

10] W.F. Smyth, Computing regularities in strings: a survey, Eur. J. Comb. 34 (2013)

3–14.

http://goo.gl/4L5WJA
http://refhub.elsevier.com/S0167-8655(14)00363-8/bib001
http://refhub.elsevier.com/S0167-8655(14)00363-8/bib002
arxiv:/abs/1303.6872
http://refhub.elsevier.com/S0167-8655(14)00363-8/bib003
arxiv:/abs/1309.6453
http://refhub.elsevier.com/S0167-8655(14)00363-8/bib004
http://refhub.elsevier.com/S0167-8655(14)00363-8/bib005
http://refhub.elsevier.com/S0167-8655(14)00363-8/bib006
http://refhub.elsevier.com/S0167-8655(14)00363-8/bib007
http://refhub.elsevier.com/S0167-8655(14)00363-8/bib008
http://refhub.elsevier.com/S0167-8655(14)00363-8/bib009
http://refhub.elsevier.com/S0167-8655(14)00363-8/bib010

	Order preserving pattern matching revisited
	1 Introduction
	2 Preliminaries
	3 Modified Z-function
	3.1 Definition
	3.2 Construction
	3.3 Correctness
	3.4 OPR matching
	3.5 Analysis

	4 Regularities
	4.1 Order preserving pattern matching
	4.2 Order preserving periods
	4.3 Order preserving borders and the border array
	4.4 Order preserving covers

	5 Experiments
	6 Discussion
	7 Conclusion
	References

