
SCOUT: A SIMPLE GAME-SEARCHING ALGORITHM WITH PROVEN OPTIMAL PROPERTIES 

Judea Pearl 
Cognitive Systems Laboratory 

School of Engineering and Applied Science 
University of California 

Los Angeles, California 90024 

ABSTRACT 

This paper describes a new algorithm for 
searching games which is conceptually simple, space 
efficient, and analytically tractable. It pos- 
sesses optimal asymptotic properties and may offer 
practical advantages over a-6 for deep searches. 

I. INTRODUCTION 

We consider a class of two-person perfect 
information games in which two players, called MAX 
and MIN, take alternate turns in selecting one out 
of d legal moves. We assume that the game is 
searched to a depth h, at which point the terminal 
positions are assigned a static evaluation function 
VO* The task iS to evaluate the minimax value, Vh, 
of the root node by examining, on the average the 
least number of terminal nodes. 

SCOUT, the algorithm described in this paper, 
has evolved as a purely theoretical tool for ana- 
lyzing the mean complexity of game-searching tasks 
where the terminal nodes are assigned random and 
independent values [l]. With the aid of SCOUT we 
were able to show that such games can be evaluated 
with a branching factor of P*/(l-P*), where P* is 
the root of xd+x-1 = 0, and that no directional 
algorithm (e.g., ALPHA-BETA) can do better. We 
have recently tested the performance of SCOUT on a 
'real' game (i.e., the game of Kalah) and were 
somewhat surprised to find that, even for low 
values of h, the efficiency of SCOUT surpasses that 
of the a-6 procedure [2]. The purpose of this 
paper is to call attention of game-playing practi- 
tioners to the potentials of SCOUT as a practical 
game-searching tool. 

Section II describes the operation of SCOUT in 
conceptual terms avoiding algorithmic details. 
Section III presents, without proofs, some of the 
mathematical properties of SCOUT and compares them 
to those of the a-~ procedure. Finally empirical 
results are reported comparing the performances 
of SCOUT and a-6 for both random and dynamic 
orderings. 

* Supported in part by NSF Grants MCS 78-07468 and 
MCS 78-18924. 

II. THE SCOUT ALGORITHM 

SCOUT invokes two recursive procedures called 
EVAL and TEST. The main procedure EVAL(S) returns 
V(S), the minimax value of position S, whereas the 
function of TEST(S, v, >) is to validate (or 
refute) the truth of the inequality V(S) > v where 
v is some given reference value. 

Procedure: TEST(S, v, >) 

To test whether S satisfies the inequality 
V(S) > v, start applying the same test (calling 
itself) to its successors from left to right: 

If S is MAX, return TRUE as soon as one suc- 
cessor is found to be larger than v; return FALSE 
if all successors are smaller than or equal to v. 

If S is MIN, return FALSE as soon as one suc- 
cessor is found to be smaller than or equal to v; 
return TRUE if all successors are larger than v. 

An identical procedure , called TEST(S, v, z), can 
be used to verify the inequality V(S) 1 v, with 
the obvious revisions induced by the equality sign. 

Procedure: EVAL(S) 

EVAL evaluates a MAX position S by first eval- 
uating (calling itself) its left most successor S,, 
then 'scouting' the remaining successors, from 
left to right, to determine (calling TEST) if any 
meets the condition V(Sk) > V(S1). If the inequal- 
ity is found to hold for Sk:, this node is then 
evaluated exactly (calling EVAL(Sk)) and its value 
V(Sk) iS used for subsequent 'Scoutings' tests. 
Otherwise Sk iS exempted from evaluation and Sk+1 
selected for a test. When all successors have 
been either evaluated or tested and found unworthy 
of evaluation, the last value obtained is issued 
as V(S). 

An identical procedure is used for evaluating a 
MIN position S, save for the fact that the event 
V(Sk) 1 V(S1) now constitutes grounds for exempt- 
ing S from evaluation. Flow-charts describing 
both 6 COUT and TEST in algorithmic details can be 
found in [l]. 

At first glance it appears that SCOUT is very 
wasteful; any node Sk which is found to fail a test 
criterion is submitted back for evaluation. The 
terminal nodes inspected during such a test may 

143 

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved. 



(and in general will) be revisited during the eval- 
uation phase. An exact mathematical analysis, 
however, reveals that the amount of waste is not 
substantial and that SCOUT, in spite of some dupli- 
cated effort, still achieves the optimal branching 
factor P*/(l-P*), as will be demonstrated in Sec- 
tion III. 

Two factors work in favor of SCOUT: (1) most 
tests would result in exempting the tested node 
(and all its descendents) from any further evalua- 
tion, and (2) testing for inequality using the 
TEST(S, v) procedure is relatively speedy. The 
speed of TEST stems from the fact that it induces 
many cutoffs not necessarily permitted by EVAL or 
any other evaluation scheme. As soon as one suc- 
cessor of a MAX node meets the criterion u(s ) > v, 
all other successors can be ignored. EVAL, y I: 
contrast, would necessitate a further examination 
of the remaining successors to determine if any 
would possess a value higher than V(Sk). 

Several improvements could be applied to the 
SCOUT algorithm to render it more efficient. For 
example, when a TEST procedure issues a non-exempt 
verdict, it could also return a new reference value 
and some information regarding how the decision was 
obtained in order to minimize the number of nodes 
to be inspected by EVAL. However, the analysis 
presented in Section III, as well as the simulation 
tests, were conducted on the original version 
described above. These studies show that, even in 
its unpolished form, SCOUT is asymptotically opti- 
mal over all directional algorithms and is somewhat 
more efficient than the a-6 procedure for the game 
tested (i.e., Kalah). 

Recently, Stockman [3] has also introduced an 
algorithm which examines fewer nodes than a-6. 
However, Stockman's algorithm requires an enormous 
storage space for tracing back a large number of 
potential strategies. SCOUT, by contrast, has 
storage requirements similar to those of a-6; at 
any point in time it only maintains pointers along 
one single path connecting the root to the current- 
ly expanded node. 

III. ANALYSIS OF SCOUT'S EXPECTED PERFORMANCE 

In this section we present, without proofs, 
some mathematical results related to the expected 
number of nodes examined by SCOUT and a-B. Addi- 
tional results, 
reference [l]. 

including proofs, can be found in 
The model used for evaluating these 

algorithms consists of a uniform tree of height h 
(h even) and branching factor d, where the terminal 
positions are assigned random values, independently 
drawn from a common distribution F. We shall refer 
to such a tree as a (h, d, F)-tree. 

Theorem 1: The root value of a (h, d, F)-tree 
with continuous strictly increasinq terminal dis- 
tribution F converges, as h -+ CQ (in probability) to 
the 1-P*)-fractile of F, where P* is the solution 

6 of x +x-l = 0. 

If the terminal values are discrete: 
v, < v2 < . . . < VM, then the root value converges 
to a definite limit iff l-P* # F(v.) for all i, in 
which case the limit is the smallelt vi satisfying 
l-P* < F(Vi). 

Definition: Let A be a deterministic algo- 
rithm which searches the (h, d, F)-game and let 
IA(h, d, F) denote the expected number of terminal 
positions examined by A. The quantity: 

r&b F) = 'im [IA(h, d, F)]l'h 
h-too 

is called the branching factor corresponding to 
the algorithm A. 

Definition: Let C be a class of algorithms 
capable of searching a general (h, d, F)-tree. An 
algorithm A is said to be asymptotically optimal 
over C if for all d, F, and BEC, 
rA(& F) 5 rg(d, I=). 

Definition: An algorithm A is said to be 
directional if for some linear arrangement of the 
terminal nodes it never selects for examination a 
node situated to the left of a previously examined 
node. 

Theorem 2: The expected number of terminal 
positions examined by the TEST algorithm in 
the orooosition "V(S)> v" for the root gf-a 

testing 

(h, h, F)-tree, has a branching 
v * v* and P*/(l-P*) if v = v* 
F(v*) = l-P* and P* is the root 

factor d112 if 
, where v* sati 
of xd+x-1 = 0. 

sfies 

Theorem 3: TEST is asymptotically optimal 
over all directional algorithms which test whether 
the root node of a (h, d, F)-tree exceeds a speci- 
fied reference v. 

Corollar 1: Any procedure which evaluates a 
(h, debust examine at least 2dh/2-1 nodes. 

Corollary 2: The expected number of terminal 
positions examined by any directional algorithm 
which evaluates a (h, d)-game tree with continuous 
terminal values must have a branching factor great- 
er or equal to P*/(l-P*). 

The quantity P*/(l-P*) was shown by Baudet [3] to 
be a lower bound for the branching factor of the 
a-6 procedure. Corollary 2 extends the bound to 
all directional game-evaluating algorithms. 

Theorem 4: The expected number of terminal 
examinations performed by SCOUT in the evaluation 
of (h, d)-game trees with continuous terminal 
values has a branching factor of P*/(l-P*). 

Theorem 5: The expected number of terminal 
examinations performed by SCOUT in evaluating a 
(h, d, F)-game with discrete terminal values has a 
branchina factor dl/L, with exceptions only when 
one of the discrete values, v*, satisfies F(v*) = 
1-p*. 

144 



Corollary 3: For games with discrete terminal 
values satisfying the conditions of Theorem 5, the 
SCOUT procedure is asymptotically optimal over all 
evaluation algorithms. 

The improvement in efficiency due to the dis- 
crete nature of the terminal value manifests itself 
only when the search depth h is larger than 
log M/log [d(l-P*)/P*], where M is the quantization 
density in the neighborhood of VO = v*. 

The branching factor of a-8 is less tractable 
than that of SCOUT. At the time this paper was 
first written the tightest bounds on r,,B were 
those delineated by Baudet [3] giving the lower 
bound r,-@ 2 P*/(l-P*) (a special case of Ccrollary 
2) and an upper bound which is about 20 percent 
higher over the range 2 5 d I 32. Thus, SCOUT was 
the first algorithm known to achieve the bound 
P*/(l-P*) and we were questioning whether a-6 would 
enjoy a comparable asymptotic performance. More- 
over, it can be shown that neither SCOUT nor a-6 
dominate one another on a node-by-node basis; i.e., 
nodes examined by SCOUT may be skipped by a-6 and 
vice versa [l]. 

The uncertainty regarding the branching factor 
of the a-0 procedure has recently been resolved [5] 
Evidently, U-B and SCOUT are asymptotically equiva- 
lent; r e uals P*/(l-P*) for continuous valued 
trees a%'dl92 for games with discrete values. P 

For low values of h the branching factor is no 
longer an adquate criterion of efficiency and the 
comparison between SCOUT and a-6 must be done 
empirically. The following table represents the 
number of node inspections spent by both algorithms 
on the game of Kalah (l-in-a-hole version) [2]: 

It appears that as the search depth increases SCOUT 
offers some advantage over cl-@. Experiments with 
higher numbers of stones in each hole indicate that 
this advantage may deteriorate for large d. We 
suppose, therefore, that SCOUT may be found useful 
in searching games with high h/d ratios. 

Cl1 

PI 

[31 

[41 

[51 

REFERENCES 

Pearl, J. "Asymptotic Properties of Minimax 
Trees and Game-Searching Procedures." UCLA- 
ENG-CSL-7981, University of California, Los 
Angeles, March 1980, to be published in 
Artificial Intelligence. 

Noe, T. "A Comparison of the Alpha-Beta and 
SCOUT Algorithms Using the Game of Kalah." 
UCLA-ENG-CSL-8017, University of California, 
Los Angeles, April 1980. 

Stockman, G. "A Minimax Algorithm Better Than 
Alpha-Beta?" Artificial Intelligence 12, 
1979, 179-196. 

Baudet, G. M. "On the Branching Factor of the 
Alpha-Beta Pruning Algorithm." Artificial 
Intelligence 10, 1978, 173-199. 

Pearl, J. "The Solution for the Branching 
Factor of the Alpha-Beta Pruning Algorithm." 
UCLA-ENG-CSL-8019, University of California, 
Los Angeles, May 1980. 

II Random Orderina II Dvnamic Orderina 
Search 

Depth 

2 

SCOUT 

82 

a-B 

70 

% 
Improvement 

-17.0 

.# J 

% 
SCOUT a-6 Improvement 

39 37 -5.4 

I 3 II 394 I : 380 -3.7 62 61 -1. 

4 1173 1322 +11.3 91 96 -1. 

5 2514 4198 +40.1 279 336 +17. 

6 5111 6944 +26.4 371 440 +15. 

.45 


