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Abstract

Scoring matrices play an important role of protein
sequence alignment in bioinformatics, where BLO-
SUM and PAM are two of the famous and widely
used instances. The protein sequence alignment can
be used for detecting homology, an essential analysis
to newly determined sequences. However, applying
common scoring matrices may get worse alignment
results for protein sequences with rich disordered
regions. In this paper, we focus on refining the scoring
matrix based on machine learning by hybridizing the
meta-heuristic algorithms, which are conceptually sim-
pler and require less computation than the exhaustive
search. Several famous meta-heuristic algorithms are
considered for evaluating with the EUMAT dataset.
According to the analysis of local and global search,
we design the hybrid algorithm based on PSO+TLBO
(particle swarm optimization, teaching learning based
optimization) with the diversity-guided strategy. In
the 10-fold cross-validation experiments with the
whole EUMAT dataset, our algorithm gains coverage
improvement about 6.6%, 4.8%, 1.8%, 6.6%, 5.6%,
and 5.8% compared to BLOSUM, EDSSMat, GAHS,
MDM, PAM, and VTML, respectively. By the t-test,
these improvements are statistically significant.

Keywords: Protein Sequence Alignment, Scoring Ma-
trix, Intrinsically Disordered Proteins, Meta-heuristic
Algorithms.

1 Introduction

Because of the popularity of computers and informa-
tion technologies, computer programs for bioinformat-
ics become easier to implement, such as molecular evo-
lution, homology modeling, and protein functions. In
proteomics, the molecular structures of proteins, such
as the three-dimensional (3-D) structures, can help us
realize their biological functions and interactions be-
tween proteins and ligands. However, some proteins

*This research work was partially supported by the Ministry of
Science and Technology of Taiwan under contract MOST 109-2221-
E-110-040-MY2.

fCorresponding author.

have unstable globular 3-D structures, called intrinsi-
cally disordered proteins (IDPs) [3, 6], due to a lack of
fixed 3-D structures. Moreover, the IDPs may directly
affect the accuracy of protein sequence alignments [21].

The variability of IDPs has become a fundamental
issue in some biochemical reactions because they pro-
vide wider structure flexibilities. In addition, because
of lacking a fixed structure, it is possible to combine
with different proteins of various structures. When the
IDPs combine to different proteins, they may change
their shapes to interact with corresponding proteins
[4, 5]. In homology detection, an appropriate protein
sequence alignment will get more accurate identifica-
tions of homology.

There are two types of famous scoring matrices used
for protein sequence alignment, the blocks substitution
matrix (BLOSUM) [8] and the point accepted mutation
(PAM) matrix [2]. But, these two matrices may not be
suitable for disordered proteins because the frequencies
of residue substitutions in the disordered regions are
higher than the ordered regions [2, 8].

The genetic algorithm harmony search (GAHS),
proposed by Tsai et al. [22] in 2021, is a hybrid meta-
heuristic algorithm (MA) that takes the genetic algo-
rithm (GA) as the basis to improve the homology de-
tection in IDPs. In order to obtain a better scoring ma-
trix for covering the disordered proteins, we take the
particle swarm optimization (PSO) [7] and the teach-
ing learning based optimization (TLBO) [18] as the
bases, because their encoding mechanism of population
is similar to biological mechanisms and the mathemati-
cal calculation is suitable for finding the scoring matrix.
The EUMAT dataset provided by Trivedi and Nagara-
jaram [21] concerns the disordered proteins. To im-
prove the scoring matrix, we try to adjust the crossover
and mutation operators to make the stronger evolution
for avoiding the local optimum by combining some out-
standing MAs.

In this paper, we propose the hybrid algorithm of
PSO+TLBO with diversity-guided, and then perform
five times of 10-fold cross-validation for the entire
EUMAT dataset. The experimental results show that
our scoring matrix gets the highest average coverage,



66.58%, compared to other scoring matrices. It im-
proves the average coverage about 6.6%, 4.8%, 1.8%,
6.6%, 5.6%, and 5.8% compared to BLOSUM [§],
EDSSMat [21], GAHS [22], MDM [11], PAM [2], and
VTML [16], respectively. Besides, we use the t-test
to verify the significant difference between our scoring
matrix and others.

The organization of this paper is given as follows.
Section 2 introduces the alignment of protein sequences
and homology detection in biology. Section 3 describes
our method, and Section 4 shows experimental results.
Finally, Section 5 summarizes this paper and gives
some future works.

2 Protein Sequence Alignment

The purpose of homology detection is to classify
whether the two species are originated from the same
ancestor or not. The sequence alignment is one of the
possible ways for homology detection.

Given two protein sequences A = ajasaz-- - am
and B = by1bobs - - - by, consisting of amino acids, the
alignment score of A and B can be calculated by the
following dynamic programming [20]:

Hi_1j-1+6(ai,bj),
maxlSuléi{Hi*ulyj - 7“1}7
max1 <u, <j{Hi j—us = Yus }»
0.

H; ; = max

(1

In Eq. 1, H; ; denotes the alignment score of A;_; and
B, 6(a;,b;) is the score for aligning a; and b; to-
gether, obtained from a scoring matrix, v, and 7,
are the gap penalties of lengths u; and us, respectively,
where 1 < ¢ < mand1 < j < n. One example of
the scoring matrix is shown in Figure 1. If these two
sequences are highly similar, they may be regarded to
have the same evolutionary ancestor.

Some scoring matrices, such as PAM [2], BLOSUM
[8], MDM [11], and VTML [16] are usually used for
the alignment of protein sequences. However, there are
many naturally existing functional proteins that con-
tain unstable 3-D structures and appear to be unfolded.
Such proteins are called intrinsically disordered pro-
teins (IDPs) [3, 6]. The particular compositions of
amino acids and the higher evolution rate in IDPs in-
dicate that substitution frequencies of residues in disor-
dered regions are different from that in ordered regions.
Thus, the above scoring matrices may not be suitable
for detecting homology in proteins enriched with disor-
dered regions [21]. EDSSMat [21] are scoring matrices
particularly designed for IDPs.

3  Our Method

This paper tries to build better scoring matrices for
aligning IDPs. We take the EDSSMat scoring matrices
[21] as the basis and try to refine it. In our method, we
transform a scoring matrix into a chromosome as shown
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Figure 1: The transformation of a scoring matrix to a
chromosome.

in Figure 1. The population consists of 27 chromo-
somes (scoring matrices). For initialization, 7 chromo-
somes are EDSSMat matrices and the other 20 chromo-
somes are generated randomly. We choose ten of meta-
heuristic algorithms, as shown in Table 1, and combine
them to perform a primitive experiment.

In the primitive experiment, the PSO [7], TLBO
[18], and PSO+TLBO with interleaving(PSO) get good
performances, but they lack a strong mechanism to get
out of the local optimum. Note that the PSO+TLBO
with interleaving(PSO) is a hybrid algorithm of PSO
and TLBO, where the type of hybrid is interleaving,
which means that it performs two algorithms in an iter-
ation, and the augment algorithm in interleaving(PSO)
is performed first. Hence, we integrate the diversity-
guided mechanism to avoid the local optimum. In the
PSO+TLBO with diversity-guided (PTd), we first im-
plement the PSO to evolve the population, and then
invoke the TLBO to evolve the population produced
by the PSO. In the end of PSO+TLBO with interleav-
ing(PSO), we integrate the diversity-guided mechanism
to decide the necessity of mutation.

Algorithm PTd: PSO+TLBO with diversity-guided.

Input: P: population size; d: dimension of prob-
lem; c;: group-learning weight; co: self-learning
weight; w: inertia weight; vpmi,: minimum of ve-
locity; vmax: maximum of velocity; Tp: diversity
threshold; G: maximal number of iterations.

Output: The scoring matrix with best coverage so far.

Step 1 (Preserve self-best and group-best): We pre-
serve the matrix with the best fitness of every chro-



Table 1: The ten meta-heuristic algorithms (MAs) used in this paper. P: population size; GG: maximal number of

iterations.
‘ Author(s) | Year | Algorithm ‘ Parameters |

Holland [9] 1975 Genetic algorithm (GA) P,G, 1, Ry, Ry
Eberhart and Kennedy [7] 1995 Particle swarm optimization algorithm (PSO) P, G, ¢y, co, w, v
Karaboga and Basturk [12] || 2007 Artificial bee colony algorithm (ABC) P, G, Nagc, ng‘g

Rashedi et al. [19] 2009 Gravitational search algorithm (GSA) P,G, Gy, e

Rao et al. [18] 2011 Teaching learning based optimization (TLBO) P, G, FrLgo

Yang [23] 2012 Flower pollination algorithm (FPA) P, G, prpa

Rao and Patel [17] 2013 | Improved teaching learning based optimization (ITLBO) P, G, FitLso

Mirjalili et al. [15] 2014 Grey wolf optimization algorithm (GWO) P, G, agwo
Mirjalili [13] 2016 Sine Cosine algorithm (SCA) P, G, asca, 71, T2
Mirjalili and Lewis [14] 2016 Whale optimization algorithm (WOA) P, G, awoa, bwoa

mosome individually, as well as the matrix with
the best fitness of all chromosomes.

Step 2 (Evolution of PSO): Evolve the population
with Egs. 2 and 3.

vi(t +1) = w x v;(t) + ¢1 x rand[0, 1] x
[z] (t) — 2 (t)] + c2 ¥ rand[ 1]x (2
[2™(t) =
zi(t+1) = zi(t) + vi(t + 1), €)

where () is the matrix with the best fitness of
chromosome i. Here, ¢y and cs are group-learning
and self-learning weights to decide learning from
the group or itself, respectively; and w is the iner-
tia weight to decide the search direction to global
or local. w is decreased linearly as given in Eq.
4, so that the algorithm have both searching direc-
tions.
- (wstart - wend)

Wstart
v G xt @)

where wgyy and weyg are weight values of the ini-
tial and the end, respectively.

Step 3 (TLBO teaching): Every chromosome tries to
move toward the teacher chromosome whose fit-
ness is the best as given in Eq. 5.

Z; (t+1) =x; (t)—l—rand[O, 1] X [LCT(t) _FTLBO Xf] R

)
where x(t) is the teacher chromosome with the
best fitness of all chromosomes, Z(¢) is the mean
chromosome where each gene represents the aver-
age of corresponding genes of this population, and
Fripo is a teaching factor to decide the influence

of Z(t) as given in Eq. 6.

Frigo = round[1 + rand[0,1]]. (6)

Step 4 (TLBO learning): After teaching by the
teacher, chromosomes also learn with each other
to improve their fitness by Eq. 7, where @44 is a
student chosen randomly.

— Zrand (t) | .
(7N

Step 5 (Diversity-guided mutation): The

diversity
(D) of population can reflect the degree of
convergence as given in Eq. 8. As the diversity is
less than threshold 7, we perform mutations to
make the population get out of the local optimum.
The mutation rate rp,, is adaptive as given in Eq.
9. Moreover, we use the multiple-point mutation.
It decides the number of mutated genes and
corresponding mutation positions randomly, and
it has a probability py, to slightly adjust values of
genes by +1.

. P [a _
m; Z[wg(t)*fj(t)]Q,

j=1

()

where d is the size of the scoring matrix; L, =

Vd x |tmax — Umin| denotes the maximal length

of diagonal in the search space, if the boundary

of every dimension is in [Umin, Umax); and T7 (t) =
(1/P) Zl L 2 (t) for dimension 7.

. R27
Tmu(l) = R2 X ffmax fL

max favg

D(t) =

if f; < favg§ ©)
if f P 2 f avgs
where 0 < Ry < 1 is the predefined mutation
rate; f; is the fitness of chromosome 4; fi.x and
favg are the maximal and average fitness values of
the chromosomes in iteration ¢, respectively.

Step 6 (Termination): In the end of PTd, there are 27
chromosomes. If it meets the termination condi-
tion, the algorithm terminates; otherwise, go to
Step 1.

4 Experimental Results

The EUMAT dataset, provided by Trivedi and Na-
garajaram [21], contains 36498 sequences of proteins.
These protein sequences in the EUMAT dataset were
retrieved from the UniProtKB [1]. In order to detect
homologies with varying degrees of disorder, the EU-
MAT dataset is divided into three different datasets,
including the less disordered (LD), moderately disor-
dered (MD) and highly disordered (HD), corresponding
to disorder percentage ranges [0%, 20%), [20%, 40%)
and [40%, 100%)], respectively. The query sequences of



Table 2: The distribution of proteins in the EUMAT
dataset [21].

Disorder Number of Number of
Sub-dataset . . o
percentage | protein sequences | protein families
LD 0% to 20% 27832 3352
MD 20% to 40% 5029 1460
HD > 40% 3637 938
Total H — \ 36498 \ 5750 \

every experiment are all contained in the HD dataset.
Table 2 shows the distribution of proteins in the EU-
MAT dataset.

Based on the primitive experiments, this paper pro-
poses the PSO+TLBO with diversity-guided (PTd) for
c1=2,co=1,w=0.9and Fripo € {172}. We use
the PTd to refine the scoring matrices for the whole EU-
MAT dataset and compare the average coverages and
standard deviations to other widely used scoring matri-
ces. We perform the 10-fold cross-validation randomly
for 5 times with the whole EUMAT dataset. In each
group of 10-fold cross-validation, we choose 9 folds for
training, and the remaining fold for testing. So, we get
50 scoring matrices from the 10-fold cross-validation
for 5 times. When the difference of coverage increase
for 5 consecutive iterations does not exceed 0.01, the
program terminates; otherwise, it executes until the
maximal number of iterations is reached. The exper-
iments are performed on a computer with Windows 10
64-bit OS, 3.60 GHz Intel(R) Core(TM) 17-4790 CPU
and RAM of 12 GB. The algorithms are implemented
with Python of version 3.8.5. The execution time of
all training process with the whole EUMAT dataset is
about 47 days.

For each scoring matrix obtained from one of 10-
fold cross-validation, we also perform it on the 50 test-
ing folds (10-fold for 5 times). Table 3 shows the av-
erage coverages and standard deviations of 50 scoring
matrices. As we can see, the highest and the lowest
average coverage is PTd1-5 with 66.58% and PTd4-
9 with 60.21%, respectively. We also perform BLO-
SUM, EDSSMat, GAHS, MDM, PAM, and VTML on
the 50 testing folds and compare with PTd1-5, as shown
in Table 4. In fact, there are some other scoring matri-
ces for disordered proteins [21], such as DUNMat, Dis-
order and MidicMat. We do not involve these scoring
matrices in the performance comparison for our exper-
iments, because Trivedi and Nagarajaram [21] showed
that their EDSSMat is superior to these matrices with
respect to the coverage measurement. Note that the
GAHS scoring matrix is also trained by the EUMAT
dataset in 10-fold cross-validation for 5 times, but its
dividing way is different to ours. As shown in Table
4, PTD1-5 outperforms other matrices. These aver-
age coverages of PTD1-5 are 66.65%, 66.42%, 67.52%,
65.22% and 67.10% for the 5 times, and the total aver-
age coverage is 66.58%, which is obtained by averaging
the 50 testing folds.

Note that the coverage obtained from the primitive

experiment (with the small datasets) is higher 80%,
however the coverage obtained from the 10-fold exper-
iment (with the whole EUMAT dataset) is below 70%.
This phenomenon is due to that a false positive result is
more likely produced in a large dataset.

Finally, we use the paired two-sample ¢-test to de-
termine whether the difference is significant between
scoring matrices at a confidence level of 95% by calcu-
lating its t-value, as given in Eq. 10 [10].

Qaitr
trest = TS
/ Ty
NlCSl

where Qgitr and o2, are the mean and the variance of
coverage differences, respectively; Ny is the number
of observations. We regard ¢ > 2.0096 as significant
corresponding to the 95% confidence.

The result of ¢-test is shown in Table 5. According
to Table 5, we can see that our coverage improvements
are totally statistically significant compared with other
scoring matrices with ¢-test.

(10)

5 Conclusion

In this paper, we design a machine learning algo-
rithm, combined by meta-heuristic methods, to refine
the scoring matrix of sequence alignment for intrin-
sically disordered proteins. Through the analysis on
primitive experiments, we propose the algorithm based
on PSO+TLBO with diversity-guided strategy (PTd).
For the EUMAT dataset, the experimental results show
that the average coverage of the refined scoring matrix,
obtained by PTd, improves about 6.6%, 4.8%, 1.8%,
6.6%, 5.6%, and 5.8% compared to BLOSUM, EDSS-
Mat, GAHS, MDM, PAM, and VTML, respectively.
These improvements are statistically significant by the
t-test.

According to the experimental results, the meta-
heuristic algorithms can refine and get better scoring
matrices than the EDSSMat. But, it gets into a bottle-
neck of requiring a large amount of computational time
on the sequence alignment. So, reducing the computa-
tional time of sequence alignment is a crucial issue that
needs to be overcome for improvement in the future.
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Table 3: The average coverages and standard deviations of PTd scoring matrices for c; = 2, c; = 1, w = 0.9 and
Fripo € {1,2} in 50 testing folds.

Highly disordered Highly disordered
Matrix Gap open & Average Matrix Gap open & Average
gap extension coverage gap extension coverage
PTdl1-1 —17& -1 0.6414 £+ 0.06 || PTd3-6 —-12& -1 0.6539 4 0.06
PTd1-2 —-19& -2 | 0.6290 +0.05 || PTd3-7 —18& —2 | 0.6480 % 0.06
PTd1-3 —-17& -1 0.6366 +0.07 || PTd3-8 —10& —2 | 0.6486 + 0.06
PTd1-4 —14& -3 | 0.6373 +£0.06 || PTd3-9 —16& —2 | 0.6313 +0.06
PTd1-5 —13& —1 | 0.6658 + 0.06 || PTd3-10 —18& —2 | 0.6520 + 0.06
PTd1-6 —20& —1 0.6463 4+ 0.06 || PTd4-1 —18& —2 | 0.6363 +0.07
PTd1-7 —-10& -1 0.6527 +0.07 || PTd4-2 —18& —2 | 0.6268 & 0.06
PTd1-8 —18& —2 | 0.6447+0.07 || PTd4-3 —18& —2 | 0.6206 4 0.08
PTd1-9 —19& -2 | 0.6513+0.07 || PTd4-4 —-10& -1 0.6305 + 0.07
PTd1-10 —15& —2 | 0.6353+0.06 || PTd4-5 —18& —2 0.6118 £ 0.07
PTd2-1 —20& —3 | 0.6442 +£0.07 || PTd4-6 —14& -3 | 0.6248 £ 0.07
PTd2-2 -15& -1 0.6354 +0.07 || PTd4-7 —18 & —2 | 0.6456 £ 0.07
PTd2-3 —18& —2 | 0.64451+0.06 || PTd4-8 —19& -2 | 0.6381 4+ 0.06
PTd2-4 —18& —2 | 0.6416+0.06 || PTd4-9 —19& —2 | 0.6021 £ 0.08
PTd2-5 —14& -1 0.6378 + 0.07 || PTd4-10 —18& —2 | 0.6072 4+ 0.07
PTd2-6 —20& —3 | 0.6488 £0.05 || PTd5-1 —13& -3 | 0.6458 +0.07
PTd2-7 -15& -1 0.6283 +0.07 || PTd5-2 —19& -2 | 0.6343 + 0.06
PTd2-8 —18& —2 | 0.62924+0.06 || PTds-3 —10& —2 | 0.6408 & 0.05
PTd2-9 —18& —2 | 0.6454+0.07 || PTd5-4 —20& —2 | 0.6389 4 0.06
PTd2-10 —11& -1 0.6595 +0.06 || PTd5-5 —-17& -1 0.6510 & 0.06
PTd3-1 —13& -2 | 0.6249 +£0.07 || PTd5-6 —14& -3 | 0.6249 +0.07
PTd3-2 —15& -1 0.6356 4+ 0.06 || PTd5-7 —10& -3 | 0.6375 4 0.06
PTd3-3 -19& -1 0.6306 &+ 0.07 || PTdS-8 —17& -1 0.6413 £+ 0.07
PTd3-4 —-17& -1 0.6376 + 0.06 || PTd5-9 —14& -2 | 0.6447 +0.06
PTd3-5 —18& —2 | 0.6358 +0.06 || PTd5-10 —12& -3 | 0.6251 +0.06

Table 4: The average coverages and standard deviations of various scoring matrices in 10-fold cross-validation
for 5 different times; the red mark represents the best coverage among the same group of scoring matrices.

Matrix Gap open '& First time Second time Third time Fourth time Fifth time Total
gap extension | average coverage | average coverage | average coverage | average coverage | average coverage | average coverage

BLOSUM30 —18& —3 0.5998 + 0.07 0.5861 + 0.06 0.5852 + 0.09 0.5924 £+ 0.07 0.6050 + 0.07 0.5937 £+ 0.07
BLOSUMS50 —11& -2 0.6149 + 0.07 0.6082 + 0.06 0.5852 £+ 0.11 0.5928 £+ 0.09 0.6036 + 0.08 0.5970 £+ 0.07
BLOSUM62 || —14& —3 0.6019 + 0.07 0.5931 £ 0.08 0.5959 + 0.08 0.5897 £+ 0.07 0.6043 + 0.08 0.6001 + 0.08
BLOSUMS0 —10& -3 0.6166 + 0.08 0.6055 £+ 0.07 0.5813 £ 0.11 0.5985 + 0.09 0.5886 + 0.08 0.5981 + 0.08
EDSSMat50 —18& —2 0.6230 + 0.08 0.6188 + 0.07 0.6120 + 0.07 0.6066 + 0.07 0.6288 + 0.08 0.6178 + 0.07
EDSSMat60 —14& -3 0.6259 + 0.07 0.6123 £ 0.08 0.6114 £ 0.07 0.6023 £+ 0.07 0.6270 + 0.09 0.6158 & 0.07
EDSSMat62 —19& -2 0.6224 + 0.08 0.6170 £ 0.07 0.6109 + 0.07 0.6044 £+ 0.07 0.6262 + 0.08 0.6162 & 0.07
EDSSMat70 —19& -2 0.6234 + 0.08 0.6174 £+ 0.07 0.6099 + 0.07 0.6037 £+ 0.07 0.6270 + 0.08 0.6163 £ 0.07
EDSSMat75 —19& -2 0.6209 + 0.08 0.6229 + 0.07 0.6269 + 0.06 0.5961 £+ 0.08 0.6145 + 0.08 0.6179 £ 0.07
EDSSMat80 —15& -3 0.6265 + 0.07 0.6214 £+ 0.08 0.6077 + 0.07 0.6080 £ 0.07 0.6143 + 0.08 0.6175 £+ 0.07
EDSSMat90 —19& -2 0.6272 + 0.07 0.6174 £ 0.07 0.6109 + 0.07 0.6039 £+ 0.07 0.6272 + 0.08 0.6173 £ 0.07
GAHS77 —17& -2 0.6548 £ 0.07 0.6509 + 0.04 0.6422 + 0.08 0.6390 £ 0.07 0.6542 + 0.07 0.6482 + 0.06
MDM10 —18& —3 0.5673 +0.08 0.5567 & 0.07 0.5636 + 0.08 0.5514 4+ 0.07 0.5419 + 0.09 0.5562 + 0.08
MDM20 —20& —1 0.5820 + 0.09 0.5746 & 0.08 0.5878 + 0.08 0.5791 £ 0.08 0.5652 + 0.09 0.5778 & 0.08
MDM40 —20& -3 0.6047 + 0.08 0.6002 £ 0.07 0.6015 + 0.08 0.5932 + 0.07 0.5975 + 0.08 0.5994 + 0.07
PAM120 —7& -1 0.6228 + 0.07 0.6174 £ 0.07 0.5854 £ 0.11 0.6025 £ 0.10 0.6187 + 0.07 0.6094 + 0.08
PAM250 -19& -3 0.5982 + 0.07 0.5851 & 0.05 0.5861 + 0.07 0.5854 4 0.06 0.6069 + 0.07 0.5923 £ 0.06
VTMLI10 —8& —1 0.5557 +0.09 0.5462 £ 0.07 0.5594 + 0.09 0.5539 £+ 0.07 0.5348 +£ 0.10 0.5500 £ 0.08
VTML20 —13& —2 0.5752 +0.08 0.5635 4 0.07 0.5768 + 0.08 0.5752 4+ 0.08 0.5706 + 0.09 0.5714 £ 0.08
VTML40 —18& -3 0.6001 + 0.08 0.5862 + 0.08 0.5827 + 0.07 0.5791 £ 0.08 0.5914 + 0.09 0.5879 + 0.08
VTML380 —17& -3 0.6098 + 0.08 0.5961 + 0.08 0.5973 + 0.07 0.5876 + 0.08 0.6092 + 0.10 0.6000 + 0.08
VTML120 —13 & —3 0.6125 + 0.07 0.6108 £ 0.07 0.6016 + 0.08 0.5970 £ 0.07 0.6156 + 0.08 0.6075 £ 0.07
VTML160 —11& -2 0.6110 £ 0.07 0.6003 + 0.06 0.5813 + 0.10 0.5870 4 0.09 0.6135 4 0.08 0.5986 + 0.08
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[ PTdI5 ]| —13& —1 | 0.6665E0.06 | 0.6642£0.05 | 0.6752£0.07 | 0.6522+£0.06 | 0.6710 £0.08 | 0.6658 £ 0.06 ]




Table 5: The ¢-test for the coverage difference of PTd1-
5 and other scoring matrices on 50 testing folds. t-value
> 2.0096 and p-value < 0.05 correspond to the 95%-

confidence.
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t-value | p-value (two-tailed)
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VTML160 7.835 3.42e-10
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[4] A. K. Dunker, J. D. Lawson, C. J. Brown, R. M.

(6]

(7]

(8]

Williams, P. Romero, J. S. Oh, C. J. Oldfield,
A. M. Campen, C. M. Ratliff, K. W. Hipps,
J. Ausio, M. S. Nissen, R. Reeves, C. Kang,
C. R. Kissinger, R. W. Bailey, M. D. Griswold,
W. Chiu, E. C. Garner, and Z. Obradovic, “Intrin-
sically disordered protein,” Journal of Molecular
Graphics and Modelling, Vol. 19, No. 1, pp. 26—
59, 2001.

A. K. Dunker, P. Romero, Z. Obradovic, E. C.
Garner, and C. J. Brown, “Intrinsic protein disor-
der in complete genomes,” Genome Informatics,
Vol. 11, pp. 161-171, 2000.

H. J. Dyson and P. E. Wright, “Intrinsically un-
structured proteins and their functions,” Nature
Reviews Molecular Cell Biology, Vol. 6, No. 3,
pp- 197208, 2005.

R. Eberhart and J. Kennedy, “A new optimizer
using particle swarm theory,” Proceedings of the
Sixth International Symposium on Micro Machine
and Human Science (MHS 95), Nagoya, Japan,
pp. 3943, 1995.

S. Henikoff and J. G. Henikoff, “Amino acid sub-
stitution matrices from protein blocks,” Proceed-
ings of the National Academy of Sciences, Vol. 89,
No. 22, pp. 10915-10919, 1992.

J. Holland, Control and Artificial Intelligence.
University of Michigan Press, USA, 1975.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[20]

[21]

[22]

[23]

H. Hsuand P. A. Lachenbruch, “Paired ¢ test,” En-
cyclopedia of Biostatistics, Vol. 6, pp. 1-2, 2005.
D. T. Jones, W. R. Taylor, and J. M. Thornton,
“The rapid generation of mutation data matrices
from protein sequences,” Bioinformatics, Vol. 8,
No. 3, pp. 275-282, 1992.

D. Karaboga and B. Basturk, “Artificial bee
colony (ABC) optimization algorithm for solv-
ing constrained optimization problems,” Proceed-
ings of the International Fuzzy Systems Associa-
tion World Congress, Cancun, Mexico, pp. 789—
798, 2007.

S. Mirjalili, “SCA: a sine cosine algorithm
for solving optimization problems,” Knowledge-
based Systems, Vol. 96, pp. 120-133, 2016.

S. Mirjalili and A. Lewis, “The whale optimiza-
tion algorithm,” Advances in Engineering Soft-
ware, Vol. 95, pp. 51-67, 2016.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey
wolf optimizer,” Advances in Engineering Soft-
ware, Vol. 69, pp. 46—61, 2014.

T. Miiller, R. Spang, and M. Vingron, “Estimating
amino acid substitution models: a comparison of
dayhoff’s estimator, the resolvent approach and a
maximum likelihood method,” Molecular biology
and evolution, Vol. 19, No. 1, pp. 8-13, 2002.

R. V. Rao and V. Patel, “An improved teaching-
learning-based optimization algorithm for solv-
ing unconstrained optimization problems,” Scien-
tia Iranica, Vol. 20, No. 3, pp. 710-720, 2013.
R. V. Rao, V. J. Savsani, and D. Vakharia,
“Teaching—learning-based optimization: a novel
method for constrained mechanical design op-
timization problems,” Computer-Aided Design,
Vol. 43, No. 3, pp. 303-315, 2011.

E. Rashedi, H. Nezamabadi-Pour, and
S. Saryazdi, “GSA: a gravitational search
algorithm,” Information Sciences, Vol. 179,
No. 13, pp. 2232-2248, 20009.

T. F. Smith and M. S. Waterman, “Comparison of
biosequences,” Advances in Applied Mathemat-
ics, Vol. 2, No. 4, pp. 482489, 1981.

R. Trivedi and H. A. Nagarajaram, “Amino acid
substitution scoring matrices specific to intrinsi-
cally disordered regions in proteins,” Scientific
Reports, Vol. 9, No. 1, pp. 1-12, 2019.

F.-Y. Tsai, C.-B. Yang, and K.-S. Huang, “Re-
constructing the amino acid scoring matrices to
improve homology detection in intrinsically dis-
ordered proteins,” Proceeding of Symposium on
Digital Life Technologies (DLT2021), 8 pages,
Pingtung, Taiwan, 2021.

X.-S. Yang, “Flower pollination algorithm for
global optimization,” Proceeding of the 11th In-
ternational Conference on Unconventional Com-
puting and Natural Computation, Orléan, France,
pp. 240-249, 2012.



