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Abstract Efficient scheduling of tasks in heterogeneous computing systems is of pri-
mary importance for high-performance execution of programs. The programs are to be
considered as multiple sequences of tasks that are presented as directed acyclic graphs
(DAG). Each task has its own execution timeline that incorporates into multiple proces-
sors. Moreover, each edge on the graph represents constraints between the sequenced
tasks. In this paper, we propose a new list—scheduling algorithm that schedules the
tasks represented in the DAG to the processor that best minimizes the total execution
time by taking into consideration the restriction of crossover between processors. This
objective will be achieved in two major phases: (a) computing priorities of each task
that will be executed, and (b) selecting the processor that will handle each task. The
first phase, priorities computation, focuses on finding the best execution sequence that
minimizes the makespan of the overall execution. In list-scheduling algorithm, the
quality of the solution is very sensitive to the priority assigned to the tasks. Therefore,
in this paper, we include an enhanced calculation of weight that is used in the ranking
equation for determining the priority of tasks. The second phase, processor selection,
primarily focuses on allocating a processor that is a best fit for each task to be exe-
cuted. In this paper, we enhance the processor selection by introducing a randomized
decision mechanism based on a threshold which decides whether the task be assigned
to the processor with the lowest execution time or to the processor that produces the
lowest finish time. This mechanism considers a balanced combination of the local
and global optimal results to explore the search space efficiently to optimize the over-
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all makespan. The proposed algorithm is evaluated on different randomly generated
DAGs, and results are compared with the well-known existing approaches to show the
effectiveness of the proposed algorithm in reducing the makespan of execution. The
experiment’s results show improvement in the makespan that reaches up to 6-7%.

Keywords Directed acyclic graphs - Heterogeneous systems - List scheduling -
Task ranking - Task scheduling

1 Introduction

Recent years have witnessed an exponential growth in the popularity and devel-
opment of cloud computing systems and services. As an emerging and promising
computing paradigm, cloud computing services are becoming the primary source of
computing power for business, personal, and mobile computing applications. Accord-
ing to a report by the International Data Corporation [1], the worldwide market in
public cloud computing services will be worth $100 billion by 2016. Cloud comput-
ing providers rely on a shared pool of servers and consolidated data centers to offer
their customer’s subscription-based, on-demand, and easily accessible computation,
communication, and storage resources in a scalable manner. Cloud computing environ-
ments are heterogeneous computing in nature where typically multi-core processors
equipped with dedicated accelerators such as GPUs are interconnected with high-speed
links to perform different compute intensive applications that have diverse computa-
tional requirements. As competition between cloud service providers intensifies and
prices decrease, providers will need to reduce their expenses and increase service
revenues, predominantly by enhancing the utilization of hardware resources. Task
scheduling which is a process of mapping tasks to resources plays a critical role in
resources utilization. Therefore, this has stirred a renewed interest in task scheduling
for heterogeneous computing systems [2].

Task-scheduling approaches for homogeneous multiprocessor systems including
the ones for reconfigurable network topologies have been reported to solve computa-
tionally intensive image processing and computer vision applications [3—10]. However,
heterogeneity in computing systems introduces an additional degree of complexity to
the scheduling problem as compared with homogeneous multiprocessor systems [2].
During assignment of a task to a processor, the scheduling technique has also to take
into account the varying speed of processors. For the effective utilization of heteroge-
neous computing systems, an application program can be partitioned into a set of tasks
(program segments) represented by an edge-weighted directed acyclic graph (DAG),
such that each task is computationally homogeneous and can be assigned to the best
suited processor. The performance of a parallel application on heterogeneous proces-
sors is highly dependent on both the application characteristics (execution cost, data
dependencies between tasks, etc.), and platform features (computation capacity of the
processors, number of processors, communication bandwidth, memory size, etc.). To
effectively exploit heterogeneous computing systems, it is desired to achieve a mini-
mum schedule length (makespan). The idea behind the minimization of the schedule
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length is to maximize the system throughput and increase processor utilization to
reduce cost [2,11-13].

Extant literature has proven that DAG scheduling problem is NP-complete to
obtain the minimum makespan [2,14-20]. The widely known task-scheduling prob-
lem is mainly classified into two categories: static scheduling and dynamic scheduling
[21-23]. In static scheduling, all information about tasks, such as execution and com-
munication times, is known beforehand. On the other hand, in dynamic scheduling,
execution and communication times are known at runtime. After executing each task,
the new values of the next level are calculated. Static scheduling algorithms are
classified into two major groups: heuristic-based and guided random search-based
algorithms. The former algorithm provides near-optimal results with polynomial time
complexity and acceptable performance. Alternatively, the latter gives optimal solu-
tions with exponential time complexity. The heuristic-based algorithms are further
categorized into list, clustering, and duplication scheduling. The duplication heuris-
tics produce the shortest makespan, but its disadvantages are that they have high time
complexity and lower efficiency [23]. On the other hand, list-scheduling heuristics
produce the most efficient schedules without compromising the overall makespan
[14,18,21,24,25].

Among many different scheduling approaches, list-scheduling heuristics have been
proven to produce the most efficient schedules with a complexity that is, in general,
quadratic in relation to the number of tasks [21,26]. In addition, list-scheduling algo-
rithms are very fast, easy to implement and have broader applicability. List-scheduling
consists of two major steps: task prioritization and task allocation to selected proces-
sor. In the task prioritization step, each task is assigned a priority based on its estimated
importance to determine the entire schedule. Initially, a ready list holds all the tasks
which have no predecessors. A task with the highest priority is selected from the
ready list and assigned to the available processor based on the processor selection
mechanism. Different list-scheduling algorithms differ in these two steps and leads
to different schedules. The priority assignment to tasks in list scheduling is critical in
determining a good schedule. Accurate priority determination has led to a great deal
of research to design efficient heuristics. Some of the most known list-scheduling
algorithms are Heterogeneous Earliest Finish Time (HEFT) [19], Predict Earliest
Finish Time (PEFT) [14], Heterogeneous Critical Parent Trees (HCPT) [27], High-
Performance Task Scheduling (HPS) [28], and Performance Effective Task Scheduling
(PETS) [29]. HEFT is known to generate a schedule length comparable to the schedule
lengths of other scheduling algorithms with lower time complexity. The HEFT algo-
rithm has been enhanced through introducing new mechanisms of calculating task
prioritization and through adding new mechanisms (like the look-ahead attribute) to
improve the processor’s selection [30,31].

In this paper, we introduce an enhancement to both the prioritization and the
processor selection for the static list-based task-scheduling problem. Introducing this
mechanism reduces the total makespan of the schedule compared to previously pro-
posed algorithms. Moreover, our proposed algorithm has the same complexity in
comparison to HEFT [19] and PEFT [14], which are the most well-known algo-
rithms. The algorithm used in this study is O (¢? p), where ¢ represents the number of
tasks and p represents the number of processors that execute these tasks. Having the
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same overall complexity, the proposed algorithm produces more efficient schedules
by minimizing the overall makespan of tasks being processed by a set of processors.
The remainder of the paper is organized as follows. Section 2 describes the problem
formulation. In Sect. 3, we present extant work related to list scheduling for heteroge-
neous computing systems. Section 4 presents the proposed algorithm and includes an
example that compares the results of previously reported state-of-the-art algorithms
and the proposed algorithm. Section 5 discusses the experimental results of the algo-
rithms. Finally, conclusions and possible future work are discussed in Sect. 6.

2 Problem formulation

In this section, we describe the non-preemptive static task-scheduling problem for
heterogeneous computing systems, such as CPU-GPU platforms, with the objective
of minimizing the overall execution time. An application program consists of a set of
tasks and is modeled by a directed acyclic graph (DAG). In the graph, G = (T, <, E),
where T = {t;,i = 1,...,n}in a set of n tasks. < represents a partial order on T. For
any two tasks (t; and ¢;) € T, the existence of the partial order, #; < t; means that task
tj cannot be scheduled until task #; has been completed. Hence, ¢; is a predecessor of
tj and t; is a successor of #;. E is the set of directed edges or arcs. A weight, ¢;;, is
associated with each arc that represents the amount of data to be transferred from task
t; to task ¢; in bytes [32].

A heterogeneous computing system consists of a set of processors P = {P; : j =0,
..., m-1} interconnected by a fully connected topology. The Estimated Computation
Time (ECT) of atask, ¢;, on a processor, P;, is denoted as wi, j, where 0 <i < n and 0
< j < m.The wi, j value of a task may be different on different processors depending
on its computational capability. For static task scheduling, the wi, j value for each
task—processor pair is assumed to be available a priori, which can be determined
using code-type profiling. An example of a directed acyclic graph (DAG) consisting
of 10 tasks and a heterogeneous system consisting of 2 processors is shown in Fig. 1.
Furthermore, we assume that each processor in the heterogeneous system can perform
computation and communication simultaneously. The communication cost is zero
when two tasks, #;, 7; are assigned to the same processor. Otherwise, data must be
transferred from the processor on which task ¢#; is assigned to the processor where task
tj is assigned [21].

Some of the terminologies that will be referred to further in this paper are
the pred(ni), succ(ni), makespan, level(ni), Critical Path, EST (ni, pj) and
EFT(ni, pj). Pred(ni) represents the immediate predecessors of node ni in the input
DAG. The entry node is a node with no predecessors. Succ(ni) represents the imme-
diate successors of task n;. The exit node has no successors. Note that t; and n; will be
used interchangeably to represent a task. Furthermore, the makespan refers to the total
schedule length. That means the makespan is equal to the maximum Actual Finish
Time (AFT) of the exit node in the DAG. Therefore, makespan is defined by

makespan = max {AFT (nexit)}
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Task P1 P2
t1 171 | 125
t2 133 | 114
3 26 | 131
t4 145 | 192
t5 120 | 184
t6 10 | 152
t7 114 30
t8 50 | 126
t9 191 65

Fig. 1 Example of a DAG and the Estimated Computation Time, wi, j, of the tasks on each processor

The maximum number of edges between a node and the entry node represents the
level of a task in the DAG. For the entry node level (nentry) is equal to 0. Furthermore,
the longest path between the entry and the exit node is called the critical path of the
DAG. The earliest start time of a node ni on processor pj is referred to as

EST (ni, pj) = max { Tavailable (pj), max {AFT (nm)—}—cm,i}}

nme pred(ni)

where Tavailable (pj) is the time where a processor pj is ready to execute a new
task. Furthermore, the inner maximum block is the total time that the processor needs
to transfer all required data. For the entry node, since all processors are ready to execute
and there are no predecessors, then EST (nentry, pj) is always equal to zero.

On the other hand, EFT (ni, pj) represents the Earliest Finish Time of a task,
ni, on processor pj. Moreover, EFT is the total of the EST of the processor and the
computational cost of the task on the same processor. Therefore, EFT (ni, pj) is
defined by

EFT (ni, pj) = EST (ni, pj) + wi, j

We assume that an input DAG has a single entry node and a single exit node. Therefore,
if a DAG has more than one single entry or exit node, the two nodes are connected to
an extra imaginary parent or child node respectively. In summary, the task-scheduling
problem is to assign tasks to be executed by processors in the best way possible such
that all above constraints are met in addition to having the minimal overall time to
execution (makespan).

3 Related work

Task-scheduling algorithms for homogeneous systems have been well explored by
previous researches [3—10]. In this section, we present a brief description of some
of the previously proposed algorithms that focus on finding suboptimal solutions to
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the problem of list-based scheduling heuristics. Some of the well-known previous
heuristics that are going to be described are HEFT [19], PEFT [14], HCPT [27], HPS
[28], PETS [29] and HCPPEFT [16].

The Heterogeneous Earliest Finish Time (HEFT) is one the best heuristics proposed
by Topcuoglu et al. [19]. Many previous works compared this heuristic to many other
heuristics and concluded that it produces the most efficient schedule with the minimum
makespan [18,21,33-36]. The heuristic has a complexity of O (12 p) where  represents
the number of tasks to be executed and p represents the number of processors that
execute the tasks. O (¢?p) is a low complexity compared to other proposed heuristics.
Like most list-scheduling algorithms, the HEFT algorithm schedules tasks by running
through two phases. The first phase is the prioritization phase where all tasks are
ranked according to each task’s execution priority. The ranking function is usually a
function of the task weight and the communication costs between tasks. The HEFT
algorithm defines rank by

rankHEFT (ni) = wi + max {ci, j +rankHEFT (nj)}

njesucc(ni)

The ranking function in rank H E F T (ni) represents the length of the longest path
between the current node and the exit node in the DAG. The ranking function is a
recursive function that starts from the exit node of the graph recursively to end with
the starting task in the DAG. The exit node’s rank is calculated by a set of processors’
average computation time. Referring to same ranking equation, wi denotes the average
computation time to execute task n; by the set of processors. Additionally, ci, j denotes
the communication cost between task n; and task n ;. In the end, the task list is organized
in a decreasing order such that tasks with higher value have a higher execution priority.

The second phase of the algorithm is the processor selection phase where each task
on the ranked list is linked to either of the processors to be executed on. The processor
that makes the earliest finish time of task n; is selected. However, when possible,
the HEFT algorithm inserts tasks at the earliest possible time between two already
scheduled tasks on one processor.

Since we are going to compare the results of the proposed algorithm with HEFT
[19], we illustrate its details with an example. Referring to the example in Fig. 1, we
calculated the ranking values of rank H E F T (ni) and presented them in Table 1. The
HEFT algorithm ranks the tasks in a decreasing order according to their priority as {tl,
t5, t4, 12, t6, t3, 19, t8, t7, t10}. Next, each task in the priority list is assigned to the best
processor to be executed. In the HEFT algorithm, the processor that executes the task
with the minimum earliest finish time (EFT) is selected. For example, it is assumed
that all processors are available. Therefore, earliest start time (EST) is equal to zero
for both processors in the example. Then, the EFT is calculated for both processors.
Processor 1 can execute t1 in 171 time units while processor 2 can execute itin 125 time
units. Therefore, since processor 2 gives the minimum EFT, it is selected to execute
tl. When tl is completed, the next task, t5, starts execution according to its selected
processor. This process is continued until the last task, t10, is completed. As for our
example, for HEFT algorithm, all tasks complete their execution with a makespan
of 521 time units. Furthermore, Table 1 details the scheduling data produced by the
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Table 1 Schedule produced by the HEFT algorithm

Tasks rankHEFT (ni) Processor selected  Earliest start time (EST)  Earliest finish time (EFT)

tl 507.5 2 0 125
t5 346.5 1 138 258
4 313.0 2 125 317
©2 291.0 1 258 391
t6 218.5 1 391 401
3 178.0 1 401 427
9 1375 2 421 486
t8 1325 1 427 477
7 83.5 2 486 516
t10 2.5 2 519 521
t8 _—
t3 Lo
6 mPl
L. 2 W Ep2
a t5 I
:'é t10
t7
t9 B
t4
H
0 100 200 300 400 500 600

Time

Fig. 2 Example of the HEFT scheduling algorithm

HEFT algorithm. Figure 2 presents the detailed schedule for the same example. As
shown in the figure, tasks {tl, t4, t9, t7, and t10} are executed on processor 2 where
tasks {t5, t2, t6, t3, and t8} are executed on the other processor.

Another well-known list-scheduling algorithm is the Predict Earliest Finish Time
(PEFT) algorithm proposed by Arabnejad et al. [14] which has the same complexity as
HEFT, O (¢? p). The PEFT introduces a look-ahead feature by computing an Optimistic
Cost Table (OCT). The values introduced in OCT tables are optimistic costs where a
processor’s availability is not considered [14]. As in the HEFT algorithm, the PEFT
has two main phases: a task prioritizing phase and a processor selection phase.
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Table 2 Schedule produced by the PEFT algorithm

Tasks rankOCT (ni) Processor selected EST EFT OEFT
tl 247.5 2 0 125 376
t5 95.5 2 125 309 376
2 82.0 1 142 275 372
t4 70.5 1 275 420 494
t6 555 1 420 430 483
3 40.0 2 309 440 472
t9 2.5 2 440 505 507
t8 2.5 1 430 480 483
t7 2.5 2 505 535 537
t10 0.0 2 535 537 537

The PEFT algorithm starts by calculating the optimistic cost table on which the
task ranking is based. The OCT value of a task n; on processor pi is defined by

OCT (ni, pk) = max |:min {OCT (nj, pw) + w (nj, pw) +ci,j}],

tjesucc(ti) | pweP

ci,j=0 if pw= pk

The recursive feature of the OCT calculates the maximum time of the shortest path
between the current task and the exit node. All processors that are considered in the
processor selection phase should be included in the calculations of the table. In the
same equation, w(nj, pw) denotes the execution time of task nj on processor pw.
Moreover, E denotes the average communication cost between tasks. As for the exit
node, OCT (nexit, pw) = 0 for all processors. After computing all OCT values for all
possible combinations between tasks and processors, the task ranking is calculated.
In the PEFT, task ranking is computed by taking the average OCT for each task as
defined by formula.

>t , OCT (ni, pk)
P

rankyc; (ni) =

Referring to the example in Fig. 1, rank,, is calculated to get the values in Table 2.
The PEFT ranks the task priority in decreasing order to get the following prioritization
list {t1, t5, t2, t4, t6, t3, 19, t8, t7, t10}. Compared to the HEFT, tasks t2 and t4 have
swapped their order of execution.

As for the second phase of the PEFT, the processor selection phase, the Optimistic
EFT (OgFr) is calculated. All detailed values are provided in Table 2. Ogpr is the
sum of EFT and the computation time of the longest path from the current node to the
exit node. Therefore, instead of selecting the processor that gives the earliest finish
time, a looking forward method is achieved by selecting the shortest finish time for
the tasks in the future. Therefore, Og p7 is defined by
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Fig. 3 Example of the PEFT scheduling algorithm

OEFT (ni, pj) = EFT (ni, pj) + OCT (ni, pj)

Following the PEFT algorithm to schedule the tasks for the example in Fig. 1 leads
to a makespan of 537 time units. Figure 3 presents the details of the schedule for the
same example.

As shown in Fig. 3, scheduling the tasks of the same example following the PEFT
algorithm leads to the execution of tasks {t1, t5,t3,t9,t7 and t10} on processor 2 where
tasks {t2, t4, t6 and t8} were executed on processor 1. Therefore, the total makespan
to execute the tasks by the PEFT scheduling algorithm was 537 time units.

Hagras et al. [27] proposed the Heterogeneous Critical Parent Trees (HCPT) algo-
rithm where a list (L) is used instead of prioritizing tasks. HCPT groups tasks into sets
of “unlisted-parent trees.” A critical node is defined as the node that has equal Aver-
age Earliest Start Time (AEST) and Average Latest Start Time (ALST). Therefore,
the algorithm works by executing two phases. The first phase is listing tasks and the
second phase is assignment of the tasks to the processors to be executed. In the listing
tasks phase, the HCPT starts with an empty list (L) and a stack (S) that contains critical
nodes in decreasing order of their ALSTs. Next, if the top node in S has a parent node
that is not in the list (unlisted-parent), then this parent is pushed to be executed. In
the second phase, the tasks are assigned to the processors that allow earliest execution
time.

Ilavarasan et al. [28] introduced the High-Performance Scheduling (HPS) algo-
rithm. The HPS includes three phases: level sorting, task prioritization and processor
selection. In the first phase, the input application DAG is traversed in a top-to-bottom
way to sort the tasks level by level. Tasks that are independent of each other are assigned
to different groups. Therefore, it is possible to execute tasks in the same level in the
DAG in parallel. In the second phase, the tasks are prioritized according to Down Link
Cost (DLC), Up Link Cost (ULC) and Link Cost (LC) of the tasks. The DLC is the
highest communication cost among all parent nodes (tasks). The ULC is the highest
communication cost among all of the tasks’ child nodes. The LC is the sum of the two
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previous values and the highest LC of all immediate parent nodes in the DAG. Next,
based on the LC values, the tasks are prioritized by decreasing LC values. Therefore,
tasks with a higher LC value are executed first. In the processors selection phase, the
processor that gives the lowest earliest finish time is selected.

Tlavarasan et al. [29] proposed the Performance Effective Task-Scheduling (PETS)
algorithm that has similar phases to the HPS algorithm. Like HPS, the tasks are cat-
egorized according to their levels. Next, in the prioritization phase, the priorities are
calculated according to the Average Computation Cost (ACC), Data Transfer Cost
(DTC) and the Rank of Predecessor Task (RPT). The ACC is the average of compu-
tation costs on all the sets of processors. The DTC is the amount of communication
costs between a task and its successor. The RPT is the highest rank of all imme-
diate parent nodes. Therefore, the rank in the prioritization phase is calculated by
adding the values of ACC, DTC and RPT. Then, the tasks are ranked from the high-
est total value to the lowest. Like most of the previously proposed algorithms, the
processor selection is conducted by selecting the processor that has the minimum
EFT.

Dai et al. [16] proposed the HCPPEFT algorithm that uses three levels of priority
in the algorithm to choose the task. First level is for critical tasks, second level is for
tasks with longer path to exit node and the third level is for tasks with less number
of predecessors. However, in the processor selection task duplication is adopted to
minimize the schedule length.

A recent study conducted by Shetti et al. [18] introduced a non-cross mechanism to
enhance the CPU-GPU environment. The authors attempted to optimize the proces-
sor selection by reducing the cross over between the CPU and the GPU processors.
In addition, the authors proposed a composite ranking function which takes into con-
sideration both the ratio of the execution time on the slowest processor to the faster
processor and the absolute time difference of the computation times among proces-
sors. By having the same complexity of previous algorithms, O (z%p), the proposed
algorithm showed overall makespan reduction. However, this recent study did not
consider communication time between tasks to determine the ranking of tasks. We
are extending Shetti et al.’s [18] work in the proposed technique by incorporating the
communication time between tasks for priority determination. Similar to HEFT, the
proposed algorithm had two phases: a prioritization phase and a processor selection
phase. As for the prioritization phase, the weight value that contributed to calculating
the rank’s recursive equation was enhanced by considering both local and global opti-
mal time values. This mechanism aided in prioritizing tasks without giving the larger
tasks higher priorities than smaller tasks. In the processor selection phase, instead
of using a fixed value for threshold to make the decision to cross over between one
processor to another as suggestd by Shetti et al. [18], we proposed a randomized
range to better explore the solution space. This mechanism proved to produce better
results than applying previously proposed algorithms to the same problem. In this
study, we benefit from the cross over mechanism to enhance the proposed scheduling
algorithm.
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4 The proposed algorithm

In this section, we propose a new technique to solve the problem of list-based schedul-
ing of tasks. Like all previously suggested algorithms, our proposed algorithm’s main
goal is to minimize the overall execution makespan by taking into consideration all
data transfers and dependencies between tasks. Moreover, our algorithm considers the
communication costs and processing time of each processor. In this section, we will
start by presenting the details of the proposed algorithm. Then, we will present an
illustrative example to show the capabilities of the proposed algorithm and compare
its results with HEFT [19] and PEFT [14] algorithms.

4.1 Description of the proposed algorithm

The proposed algorithm starts with the prioritization phase where the tasks are ranked
according to their priority to be executed by the set of processors. Next, according to
the prioritization phase output and for each task, the processor that most efficiently exe-
cutes the task will be selected in the processor selection phase [21]. We are extending
Shetti et al.’s [ 18] work in the proposed technique by incorporating the communication
time between tasks for enhancing prioritization and process selection. Tasks are ranked
according to a calculated weight of execution time of processors, communication costs
between tasks and the prioritization value of the previous task.

Regarding the processor selection phase, the algorithm introduces a randomized
decision based on a threshold value to cross over among processors. In addition, we
take into consideration the communication costs between each task to compute the
threshold.

4.1.1 Prioritization phase

The proposed algorithm starts by calculating Weight,; to be considered in the prioriti-
zation calculations. Weight,; is calculated for each task in the graph input. Weight,;
is the absolute value of the ratio of time difference between the highest execution time
and the lowest execution time and the speedup of the considered set of processors. In
HEFT [19] and PEFT [14] algorithms, the computation time is calculated by retrieving
the average between times of execution on each processor. In contrast, the computa-
tion time in our proposed algorithm is the same as defined by Shetti et al. [18], which
is defined by taking the absolute value of the time difference between the execution
times over the speedup. Therefore, the computation time is defined by

w (ni, pj) — w (ni, pk)

Weightni = N N .
w (ni, pj) /w (ni, pk)

where w (ni, pj) is the execution time of task on processor pj. There exist several
choices to assign a single value corresponding to varying task execution times on
heterogeneous computing systems such as the average, median, maximum or minimum
values of execution cost to better rank the tasks. But none of these metrics showed
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consistent performance [36]. However, Weight,; captures more information about
the tasks for ranking.

To complete the prioritization phase of the scheduling algorithm, the calculated
Weighty; is then substituted in the rankproposea (ni) to get the task ranking. This
substitution considers that, like all previous scheduling algorithms, the input graph is
traversed in a bottom-to-top topology.

rankpropoxed (ni) = Weighty; + cmax {Ci, J+ rankproposed (n])}
njesucc(ni)

4.1.2 Processor selection phase

The selection phase is enhanced by non-crossover between processors as proposed by
Shetti et al. [18]. However, instead of using a fixed value for a threshold, we make
randomized decision within a certain range of values. Unlike HEFT and PEFT, the
non-crossover technique does not select the processor that produces the lowest finish
time. Instead, once the first processor is selected to execute the first task, the cross over
to another processor depends on a calculated value called Cross-Threshold, which can
be any number between 0 and 1. The closer the value is to 1, the more the processors
will cross over, and this will lead to have an algorithm that is similar to HEFT. On the
other hand, decreasing the value of the cross-threshold does not allow cross over to
occur easily. Note that cross over means assigning the task to the processor with the
lowest execution time (local optimal) as compared to the processor that produces the
lowest finish time (globally optimal). Since sometimes, better schedule length can be
generated by making a local optimal decision as compared with the global optimal
decision. Therefore, the algorithm uses a balanced combination of a global optimal
and local optimal decisions to explore the search space efficiently and efficiently to
find the minimum makespan schedule. The cross over is not related to task migration
where a task starts its execution in one processor, but then the task is interrupted and
moved to another processor to continue its execution in case of preemptive scheduling
algorithms. In this paper, we are dealing with non-preemptive scheduling techniques
and tasks do not get migrated from one processor to another during execution.
Algorithm 1 formally describes the process which follows Shetti et al. [18] style.
First, in lines 1-3, rank (n;) is calculated considering the modified computation of
weight (n;). The tasks are then saved in a ready-list queue that works in a first-in, first-
out mechanism according to the priorities given in the previous step. Next, while the
ready-list queue is not empty, each task is assigned to a selected processor. Therefore,
going through a decreasing rank, lines 4 through 8 compute the earliest start time and
earliest finish time by taking into consideration the communication time and execution
time of each processor. It should be noted that communication time between two tasks
is added to the earliest start time in the cases where the parent processor was executed
by a different processor than the current processor that is calculating the EST. Next, the
processor with the minimum EFT time is selected to be compared with the minimum
processor weight wi, j. Furthermore, if the case in line 10 is true, then both global
and local results are equal. Therefore, in this case, the same processor with the lowest
global and optimal result is chosen, and the available time of the processor and the
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ready-list are updated accordingly. In the case that line 10 is not true, another processor
exists that has a lower computation time than the first processor. Therefore, in this case
we calculate another value of Weight,ps:rqac: Which is the absolute value of the saved
time over the speedup as shown in the following equation:

Algorithm 1: Proposed Algorithm

begin
1. for all n; in N do

2. Compute rankproposea(ni);
3. end
4. while ready-list is NOT Empty do
5. n; « task in the ready-list with the maximum rank;
6. for all p; in P do
7. Compute EFT(n,p;) < wi; + EST(n,p));
8. end
9. Select p; with Min EFT(ni,p;);
10. if w;; <Min k € P(w;) then
11. Assign n; to the processor p; that minimize EFT of task n;;
12. Update Towitavie(p;) and ready-list;
13. else
14. Compute Weightupsiac: and Cross_Threshold,
15. if Cross_Threshold <r then /'t is a random number
16. Map node »; to processor pj; //cross over
17. Update Tavaiabie(p;) and ready-list;
18. else
19. Map node #; to processor py, //no cross over
20. Update Tuvaitasie(p) and ready-list;
21. end
22. end
23.  end
EFT (ni, pj) — EFT (ni, pk
Weightapstract = (i, pi) (ri, ph)

EFT (ni, pj) JEFT (ni, pk)

Next, the value of the Cross_T hreshold is computed based on the following equa-
tion:

Weight,;

Cross_Threshold = ———
Weightapsiract

If the value of Cross_T hreshold is less than or equal to arandomly generated number
(r) within the range of 0.1-0.3, the task is crossed over to the second processor. This
step makes randomized decision to explore the solution space effectively. On the other
hand, if the value of Cross_T hreshold is larger than the random value, no cross over
should be allowed. Therefore, the task will be executed on the same processor that
was chosen previously.
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4.2 Illustrative example

When applying our proposed algorithm to the same problem in Fig. 1, we first started
by calculating the rankp,oposea (ni) for each task recursively, starting from t10 and
ending at t1. The details of the values are presented in Table 3. The output of applying
the proposed ranking mechanism lead to a prioritization queue of {tl, t5, t4, t2, t6, t8,
t3, 19, t7, t10}. When compared with the HEFT and PEFT prioritization techniques
as explained in Sect. 2, we found that the ranking labeled task 8 a higher priority than
the HEFT and PEFT algorithms. This case happened because our proposed algorithm
does not only calculate the average computation time, but it also neglects to highly
prioritize larger tasks. Instead, a new calculation of time over speedup is considered
to determine the weight.

Moving to the next phase, both processors were available at the start, so the EST
of t1 on both processors was equal to zero. EFT(t1, P1) = 171 and EFT(t1, P2) = 125.
Since processor 2 had the minimal EFT, the processor was selected to execute t1. As
shown in Fig. 4, the processor executed P2 from time zero to 125. Hence, all other
tasks could begin after t1 completed execution.

Next, EST(t5, P1) and EST(t5,P2) calculated values of 138 and 125 simultaneously.
Therefore, EFT(t5, P1) = 258 and EFT(t5, P2) = 309. Since P1 was the most efficient
processor for t5 (the processor that executed the task in the least time) and the processor
that produced the least EFT, P1 was the chosen processor for t5. Figure 5 shows the
details of scheduling t5.

Next, EST(t4, P1) and EST(t4,P2) calculated values of 258 and 125 simultane-
ously. Therefore, EFT(t4, P1) = 403 and EFT(t4, P2) = 317. Since P1 produced the
lowest execution time and P2 produced the lowest EFT, we evaluated whether cross
over from P1 to P2 should be applied. Weight,;/Weight,psiracr Was calculated and
compared with the cross threshold assumed previously. For this step in the example,
Weight,i/Weight,pstract 1S €qual to % = 0.5. Since 0.5 is greater than 0.3

403

(317)

Table 3 Schedule produced by the proposed algorithm

Tasks rankproposedt (ni) Processor selected Earliest start Earliest finish
time (EST) time (EFT)
tl 195.5 2 0 125
tS 149.0 1 138 258
t4 119.5 1 258 403
2 97.0 2 125 239
t6 87.0 1 403 413
t8 73.0 1 413 463
t3 68.5 2 238 370
t9 50.5 2 410 475
t7 32 2 475 505
t10 0.5 2 505 507

@ Springer



Task scheduling for heterogeneous computing systems 2327

1 mP1
- | “p2
@
2 4
E
E] 1
=z
x 1
w
©
[
1] jm———
0 100 200 300 400 500 600
Time
Fig. 4 Scheduling t1 to processor 2
1 mP1
t5 ———— “p2

Task Number

tl | —

0 100 200 300 400 500 600
Time

Fig. 5 Scheduling t5 to processor 1

(assumed random number » = 0.3) no cross over was allowed. Therefore, as shown
in Fig. 6, t4 was executed on the processor that produced the lowest execution time
(P1) not taking into consideration that P2 produced the overall lowest EFT.

The algorithm continued using the same procedure for t2, t6, and t8. Next,
the t3 schedule applied the cross over from the processor that produced the low-
est execution time (P1) to the processor that produced the lowest EFT (P2). To
detail the cross over step, we started with EST(t3, P1) = 463 and EST(t3, P2) =
239. Therefore, EFT(t3, P1) = 489 and EFT(t3, P2) = 370. Since the processor
that produced the lowest execution time was different than the processor that pro-
duced the lowest EFT, Weight,;/Weight,pstrac: should be calculated. In this case,
Weight,i/Weight,pstrace = 0.23. Since the value of cross threshold is 0.23, which is
less than the random value (assumed random number » = 0.3), cross over from P1 to
P2 was applied and, therefore, t3 was executed on P2 as shown in Fig. 7.
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Fig. 7 Scheduling t3 to processor 2

Next, following the same procedure t9, t7, and t10 were executed on P2 to produce
the schedule shown in Fig. 8.

Due to the processor selection mechanism of limited cross over between processors,
the algorithm schedules the tasks with a makespan of 507. Therefore, as shown in
Table 3, tasks {tl1, t2,t3, t9, t7, and t10} were executed on processor 2 while tasks {t5,
t4, t6, and t8} were executed on processor 1.

In summary, the limited cross over mechanism produced better results in the proces-
sor selection phase, especially for applications with larger sets of tasks. Comparing the
HEFT, the PEFT and the limited cross over proposed algorithm resulted in a makespan
of 521, 537 and 507, respectively.
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Fig. 8 Example of the proposed scheduling algorithm

4.3 Complexity

List-based scheduling algorithms depend on the number of processors and the num-
ber of tasks that are in the input application. Moreover, the HEFT, the PEFT and our
proposed algorithm have similar basic phases for scheduling. The algorithm first prior-
itizes the tasks and assigns a priority rank to each task. Then, the algorithm schedules
the tasks using one while loop and one for loop to run the schedule on each task.
Therefore, our algorithm, like HEFT and PEFT, has a complexity of O (t2 p), where t
is the number of tasks in the input graph and p is the number of processors in the set
of processors considered.

5 Experimental results and analysis

In this section, we report the comparative evaluation of the proposed algorithm with two
well-known scheduling algorithms, the HEFT [19], and the PEFT [14] using various
performance metrics. We first describe the comparison metrics used to evaluate the
performance of different algorithms. Next, the simulation environment, including the

algorithm implementation and generation of random directed acyclic graphs (DAGsS),
is described. Finally, the performance results and analysis are presented.

5.1 Comparison metrics
Algorithms are compared based on the following performance metrics:
A. Makespan

The most used comparison metric for a single DAG is the makespan. The makespan is
the time where the last task in the input DAG completes its execution. In other words,
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the makespan of an algorithm for a DAG is the actual time for the exit node to be
executed. The makespan of an algorithm can be defined by

makespan = maxAFT (neyir)

where AFT(n,y;;) represents the Actual Finish Time of the exit node of the input graph.
If there are more than one exit nodes in the graph, the maximum finish time among
all exit nodes is considered as the makespan.

B. Scheduling length ratio (SLR)

The Scheduling Length Ratio (SLR) represents the makespan normalized to the lower
bound [21]. The SLR is defined by

makespan (solution)

SLR =
Critical Path Including Communication (CPIC)

The Critical Path Including Communication (CPIC) is the minimum cost of the critical
path tasks including communication costs [18]. Since there is no makespan less than
the CPIC, when an SLR is lower, the algorithm is better.

C. % Improvement in schedule length
We evaluate our proposed algorithm in terms of percentage improvement in schedule

length (SL) as compared with the existing approaches. The percentage improvement
in schedule length is defined as:

SLp,
% SLimprovement = (1 - SLAr) x 100

where SLp; represents the schedule length generated by the proposed algorithm and
SL4 is the schedule length generated either by HEFT or PEFT algorithms. A higher
value for percentage improvement means that the proposed algorithm generated the
shortest length schedule as compared with other algorithms.

5.2 Simulation setup

The proposed algorithm and the two well-known scheduling algorithms HEFT and
PEFT were implemented in Java using Eclipse SDK (version 4.2.0) on a MacBook Pro
with OS X (version 10.8.5), 2.7 GHz Intel Core i7 processor, and 4G of memory. Many
different random graphs were generated using the Directed Acyclic Graph Generator
[33] to evaluate the performance of each algorithm. Some modifications to the graph
generator program were made to generate random data for input into the proposed
algorithm.

The modified DAG Generator considers many different parameters to generate
random graphs with different characteristics. Some of the main parameters are: number
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of nodes in the graph, width of the graph, density of the edges between two levels in the
graph, and the number of edges that a task requires to jump from one level to another
level. Using the DAG Generator, 750 random graphs were generated and tested as input
into the proposed algorithm. To generate different graphs with different characteristics,
the following parameters were set and combined in all possible combinations:

e Number of tasks (n) = {10, 50, 100, 200, 500}

e Graph shape (FAT) = {0.1, 0.5, 1, 5, 10}

e Computation to Communication Ratio (CCR) = {0.1, 5, 10}
e Density = {0.5}

e Jump = {5}

In these parameters, the number of tasks (n) is the number of nodes in a DAG
input. FAT is the parameter that affects the height and width of the DAG. A small
value for the FAT parameter would lead to a thin DAG, whereas a larger value leads
to a wider DAG with a higher degree of children per node. To generate computation
and communication costs with a range of values, the Computation to Communication
Ratio (CCR) was changed over the randomly generated graphs. CCR is the ratio of
the sum of edge weights to the sum of the node weights in a DAG. Furthermore, the
density of a generated DAG is known as the number of edges between two levels of the
input graph. A large value of density leads to large number of edges, while a smaller
value leads to a smaller number of edges. Finally, jump represents that an edge can
go from level / to a level / + jump. Thus, having a high value for jump parameter
provided the chance of having children nodes from higher levels. For example, if jump
was equal to 5, then the starting node could have its direct children anywhere from
level 2 to level 6.

5.3 Performance results and analysis

In this section, we present details of the performance results and analysis of the pro-
posed algorithm across a wide range of randomly generated DAGs by comparing
against the two well-established scheduling algorithms, the HEFT algorithm and the
PEFT algorithm.

A. % Improvement in schedule length comparison

The percentage improvement in schedule length of the proposed algorithm was com-
pared with the HEFT and the PEFT algorithms across DAGs with different parameters.
The results show that, on average, for fewer nodes, the HEFT and the PEFT achieve a
lower makespan when compared with the proposed algorithm. However, as the num-
ber of nodes gets larger, the results of the proposed algorithm are better. Figures 9,
10 and 11 show the percentage improvement in schedule length as compared with
HEFT algorithm across different graph shapes and different numbers of nodes. Fig-
ure 9 shows that for fewer nodes and with a large value of CCR, HEFT achieves the
shortest length schedule. However, for larger number of nodes, the proposed algorithm
achieves a maximum of 6% reduction in the schedule length as compared with HEFT
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Fig.9 % Improvement in schedule length as compared to the HEFT algorithm with FAT = 0.5

algorithm. A similar behavior is observed in Fig. 10. However, for 100 nodes, the
proposed algorithm shows a 13% reduction in schedule length as compared to HEFT
algorithm. As the FAT of a graph increases, the improvement in schedule length drops
to 3% as shown in Fig. 11. In general, the results show that the proposed algorithm
works better for graphs with larger nodes and with graphs that have a narrower shape as
compared with HEFT. For narrower graphs, the speedup reaches up to 6—7%. Overall,
the proposed algorithm gives better results than the HEFT algorithm for 83% of the
randomly generated DAGs.

Furthermore, as is shown in Figs. 12, 13 and 14, when comparing the proposed
algorithm to the PEFT algorithm, improvement in schedule length reaches to 7%,
especially for graphs with a narrower shape. Even for fewer nodes, in some cases, the
proposed algorithm achieves an improvement of 9% in schedule length as shown in
Fig. 14. Overall, our proposed algorithm gives better results than the PEFT algorithm
for 84% of the randomly generated DAGs.

B. Scheduling length ratio comparison (SLR)

The SLR across randomly generated graphs was calculated for each algorithm. The
mean, median, standard deviation and best case values for SLR for the algorithms are
shown in Table 4. All the values show an enhancement in the overall performance
of the proposed algorithm against the HEFT algorithm. The results show that the
improvement is consistently better than HEFT in comparison to graphs with different
CCRs and different shapes. Moreover, it is observed that for the best case values
across all of the DAGs, the proposed algorithm generated better results than the HEFT
algorithm 80% of the time.

Figure 15 demonstrates the performance of algorithms across varying graph shapes
by changing the value of FAT parameter. The results show that the proposed algorithm
overall produces better results as compared with the HEFT and PEFT.
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Fig. 11 % Improvement in schedule length as compared to the HEFT algorithm with FAT = 5

Another important observation is the comparison of SLR over varying values of
CCR. Figure 16 shows a large improvement overall when scheduling tasks using
the proposed algorithm. Furthermore, the results show that the proposed algorithm
produces the best results for graphs with larger CCRs. This is due to the fact that the
proposed algorithm limits the amount of cross over between processors because of
the communication cost that must be added to allow transfer from one processor to
another.

Overall, all experimental results show that the proposed algorithm obtains better
results as compared with the two well-known algorithms, HEFT and PEFT. All com-
parison metrics show that the proposed approach has a major impact on large sets of
graphs due to the enhancement in the prioritization and processor selection phases of
the list-scheduling algorithm.
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6 Conclusion and future work

In this paper, we have presented an enhancement to the list-based heterogeneous task-
scheduling problem, in which tasks are assigned to the processors with the objective to
minimize the overall makespan of execution. In the proposed algorithm, we introduced
enhancements on both the task prioritization and the processor selection phases. As
for the prioritization phase, the weight value that contributed to calculating the rank’s
recursive equation was enhanced by considering both local and global optimal time
values in addition to incorporating the communication time between tasks. This mech-
anism helped to prioritize tasks without giving the larger tasks higher priorities than
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Table 4 SLR comparison over varying CCR

CCR= 0.1 CCR=5 CCR= 10
HEFT PEFT Proposed HEFT PEFT Proposed HEFT PEFT Proposed
algorithm algorithm algorithm
Mean 680 692 642 7.05 7.1 646 7.51 7.8 6.87
Median 635 647 6.13 832 8.64 8.01 749 855 723
SD 530 521 507 437 433 390 517 482 477
Best case % 16.1 13.37 80.42 1545 12.8  75.07 1434 1692 179.8

smaller tasks. As for the processor selection phase, the algorithm introduced a ran-
domized decision making mechanism based on a threshold value to cross over among
processors to reduce the overall execution makespan. We applied the proposed algo-
rithm to 750 runs of random task graphs, and the results showed improvement in
the makespan that reached up to 6-7 % as compared with the HEFT [19] and the
PEFT [14], which are the two well-known algorithms for the heterogeneous proces-
sor scheduling problem. The proposed algorithm has the same complexity as that of
the previously proposed algorithms, but it considerably improved the performance by
minimizing the execution makespan.

A promising future direction for this research is to consider task duplication in the
processor selection phase to further minimize the makespan by reducing communi-
cations between processors. Another extension to this study could include memory
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constraints [33] or energy-aware data allocation and task scheduling with the goal of
optimizing the total time to execute and to minimize the total system energy consump-
tion [35].
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