
Fair budget constrained workflow scheduling approach
for heterogeneous clouds

Naela Rizvi1 • Dharavath Ramesh1

Received: 4 February 2019 / Revised: 16 February 2020 / Accepted: 24 February 2020
� Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The phenomenal advancement of technology paved the way for the execution of complex scientific applications. The

emergence of the cloud provides a distributed heterogeneous environment for the execution of large and complex

workflows. Due to the dynamic and heterogeneous nature of the cloud, scheduling workflows become a challenging

problem. Mapping and assignment of heterogeneous instances for each task while minimizing execution time and cost is a

NP-complete problem. For efficient scheduling, it is required to consider various QoS parameters such as time, cost,

security, and reliability. Among these, computation time and cost are the two notable parameters. In order to preserve the

functionalities of these two parameters in heterogeneous cloud environments, in this paper, a fair budget-constrained

workflow scheduling algorithm (FBCWS) is proposed. The novelty of the proposed algorithm is to minimize the makespan

while satisfying budget constraints and a fair means of schedule for every task. FBCWS also provides a mechanism to save

budget by adjusting the cost-time efficient factor of the minimization problem. The inclusion of a cost-time efficient factor

in the algorithm provides flexibility to minimize the makespan or save budget. In order to validate the effectiveness of the

proposed approach, several real scientific workflows are simulated, and experimental results are compared with other

existing approaches, namely; Heterogeneous Budget Constrained Scheduling (HBCS), Minimizing Schedule Length using

Budget Level (MSBL) and Pareto Optimal Scheduling Heuristic (POSH) algorithms. Experimental results prove that the

proposed algorithm behaves outstandingly for compute-intensive workflows such as Epigenomic and Sipht. Also, FBCWS

outperforms the existing HBCS in most of the cases. Moreover, FBCWS proves to be more time-efficient than POSH and

more cost-efficient than MSBL. The effectiveness of the proposed algorithm is illustrated through the popular ANOVA

test.

Keywords Workflow scheduling � DAG � Budget constraints � Makespan � Heterogeneous clouds

1 Introduction

Workflows have been widely used to model complex sci-

entific and business applications. The evolution of these

complex scientific applications with an urge of large scale

computing and storage services demanded the design of a

high-performance computing system. Therefore, the

distributed and heterogeneous environments, like grids and

clusters, have gained momentum in terms of computational

instances to execute these complex scientific applications

[1, 2]. Workflow applications consist of interdependent

modules executed in a grid environment. However, with

the emergence and the development of cloud infrastructure,

users migrated their applications on the cloud to perform

the operations in an integrated manner [3]. Cloud’s ‘pay

per use’ mechanism with the inclusion of the elasticity and

scalability paradigm has invariably attracted many cus-

tomers [4–6]. Users have to pay only for what they use.

Further, the cloud provides various services that can be

categorized as Infrastructure as a Service (IaaS), Platform

as a Service (PaaS), and Software as a Service (SaaS) [6].

IaaS provides hardware resources like memory, network,

& Dharavath Ramesh

drramesh@iitism.ac.in

Naela Rizvi

naela.17dr000330@cse.ism.ac.in

1 Department of Computer Science and Engineering, Indian

Institute of Technology (ISM), Dhanbad, Jharkhand 826004,

India

123

Cluster Computing
https://doi.org/10.1007/s10586-020-03079-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-3338-6520
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-020-03079-1&domain=pdf
https://doi.org/10.1007/s10586-020-03079-1

computation, and storage in the form of virtual resources

over the internet. PaaS provides the platform or the envi-

ronment for the development and deployment of the

applications. On the other hand, SaaS provides software/

applications over the internet. This manuscript focuses on

the IaaS clouds that offer the virtual resources of different

characteristics on demand. Moreover, IaaS provides the

flexibility of acquiring and releasing of the resources when

required. As a result, this empowers the users to have more

control over these resources and also dictates the devel-

opment of the new scheduling strategy such that these

resources are efficiently utilized with the desired optimal

solutions.

Of late, many researchers pointed out the benefits of

executing complex applications on an IaaS cloud [7, 8]. For

the execution, the scientific applications are modeled as the

workflows defined by a Direct Acyclic Graph (DAG).

A DAG can be further decomposed into a collection of

several dependent and parallel tasks. Scheduling of work-

flows includes mapping and assignment of virtual machines

(VMs) to independent tasks. Execution of these workflows

on the cloud environment is always constrained to some

Quality of Services (QoS) parameters. Most of the appli-

cations have a deadline or budget constraints, which means

execution must be performed within the given budget or

given deadline constraints. The workflow scheduling in a

heterogeneous environment becomes more challenging

when the two QoS parameters (namely time and cost) are

considered simultaneously. Therefore, a workflow

scheduling problem falls within the category of a NP-

Complete problem [9]. However, researchers have inves-

tigated various approaches to schedule workflows with

minimal execution time and a reduced cost while satisfying

the budget or deadline constraints.

Minimizing the execution time while satisfying budget

constraints is not a trivial task. Although many

notable works in this field have been done, they consider

the homogenous environments only [10]. Arabnejad et al.

[11] presented Heterogeneous Budget Constrained

Scheduling (HBCS) algorithm for scheduling the budget-

constrained workflows in a heterogeneous environment.

However, the HBCS algorithm satisfies the budget con-

straint but generates an unfair schedule for the low priority

tasks. Low priority tasks tend to select the cheapest pro-

cessor, which may produce a schedule of longer makespan.

Here, makespan is the time taken by the computing

resources for the execution of all the tasks of the workflow.

The proposed algorithm uses the same budget distribution

method of HBCS and also analyses low priority tasks to

avoid unfairness. On the other hand, in order to produce

minimal makespan, Chen et al. [12] proposed MSBL

algorithm. In this approach, the budget constraint of an

application is converted to the budget level of each task;

however, proper analysis of cost reduction has not been

performed. FBCWS also reduces the cost of execution by

setting lower time cost factor value for the defined mini-

mization problem and ignoring the expensive VMs. Su

et al. [15] introduce the POSH (Pareto Optimal Scheduling

Heuristic) algorithm to generate a cost-effective schedule.

In contrast, their algorithm ignores the minimization of

makespan, which is one of the primal parameters of

scheduling.

In order to address the mentioned issues, this paper

considers the scheduling of budget-constrained scientific

workflows in heterogeneous cloud environments. The

objective of the proposed approach is to generate a fair

scheduling strategy for workflows that satisfies the budget

constraints as well as minimize the makespan of the

schedule. The contribution of this paper is mentioned as

follows.

• A fair budget constrained scheduling algorithm is

presented for heterogeneous cloud environments.

• The makespan of the schedule has been minimized

while satisfying budget constraints.

• FBCWS provides a fair means of scheduling for every

task by categorizing tasks and considering VM assign-

ment as a multi-criteria minimization problem.

• A mechanism to save cost has been introduced by

adjusting low cost-time factor for a multi-criteria

minimization problem.

• Extensive simulations have been performed to assert the

better performance of FBCWS over existing algo-

rithms, namely, HBCS, MSBL, and POSH.

• An ANOVA test has been performed to check the

statistical significance of the proposed algorithm.

The remainder of the paper is organized as follows. Sec-

tion 2 discusses the related work. Section 3 describes the

problem definition including the system model. Section 4

analyses the existing model and the proposed model.

Section 5 disseminates the performance analysis and

experimental results. Section 6 illustrates the conclusion

and future work.

2 Related work

The scheduling of workflows in a heterogeneous environ-

ment has gathered tremendous attention from the research

community. A good number of methodologies have been

proposed to provide suitable solutions for NP complete

problems. Related studies for scheduling workflows can

generally be classified as single objective workflow

scheduling, multi-objective workflow scheduling, and QoS

constrained scheduling. This section describes some sig-

nificant works falling in these three categories.

Cluster Computing

123

2.1 Single objective workflow scheduling
(SOWS)

A number of single objective workflow scheduling

approaches have been presented in various forms. In

SOWS, the algorithm minimizes only one objective, either

execution time or cost. Two novel algorithms named

Heterogeneous Earlier Finish Time (HEFT) and Critical-

Path-on-a-processor (CPOP) algorithm for application

workflow are proposed by Topcuouglu et al. [13]. HEFT

selects the tasks based on an upward rank value. On the

other hand, CPOP uses a summation of upward and

downward rank values for selection. Both algorithms

achieve faster execution time and good performance. Bit-

tencourt et al. [14] proposed a cost optimization algorithm

for scheduling the workflows in a hybrid cloud. This

algorithm resolves the problem of what resources to be

leased from a public cloud for aggregation in a private

resource pool. Su et al. [15] utilize heuristic strategies to

introduce two cost-efficient task scheduling strategies. The

first one is based on Pareto dominance, while another

algorithm tries to reduce the cost of non-critical tasks. A

cost-saving heuristic algorithm considering both the com-

putation cost as well as the communication cost of the

workflow was proposed by Pandey et al. [16]. Li et al. [17]

introduce a cost-efficient, coordinated scheduling mecha-

nism for the hybrid workload. On the other hand, a low-

cost rescheduling policy for executing workflows on the

grid is introduced by Sakellariou et al. [18].

2.2 Multi-objective workflow scheduling
(MOWS)

Fard et al. [19] introduced a multi-objective algorithm by

considering factors like cost, reliability, energy consump-

tion, and makespan. This algorithm applies the strategy of

maximizing and minimizing the distance of a constrained

vector. Moreover, this approach outperforms the existing

bi-criteria heuristic and bi-criteria genetic algorithm. Zhu

et al. [20] overcomes the difficulty of scheduling work-

flows in the cloud and introduces an evolutionary multi-

objective optimization (EMO) for optimizing the cost and

makespan. Pareto-based list scheduling called MOHEFT

for commercial EC2 clouds was proposed by Durillo et al.

[21]. Zhang et al. [22] exploited the concept of ordinal

optimization for optimizing QoS parameters to generate

suboptimal schedules for multitasking workflows in the

cloud environment. Tan et al. [23] proposed a balanced

policy algorithm considering time, cost, and trust parame-

ter. Talukder et al. [24] introduced a multi-objective dif-

ferential evolution algorithm for scheduling workflows on

the grid.

2.3 QoS constrained workflow scheduling

Abrishami et al. [25] introduced two algorithms for

workflow scheduling named; (i) IaaS Cloud Partial Critical

Paths(IC-PCP) and (ii) IaaS Cloud Partial Critical Paths

with Deadline Distribution (IC-PCPD2). IC-PCPD2 mini-

mizes the total cost under given deadline constraints. Both

the algorithms are suitable for executing large workflows,

where IC-PCPD2 shows better performance than IC-PCP.

Ghafouri et al. [26] introduced an algorithm named Con-

strained Budget-Decreased Time (CBDT). This algorithm

combines the idea of heuristic backtracking, scheduling of

critical and non-critical paths in a combined manner.

A Budget Deadline Aware Scheduling (BDAS) algorithm

was proposed by Arnebjad et al. [27] for e-science work-

flows while satisfying both the deadline and budget con-

straints. This work introduces a time–cost tradeoff for a

heterogeneous environment. A simple budget and deadline

constrained algorithm were developed by Sun et al. [28] for

the execution of random and real workflows. This

methodology outperforms other algorithms by achieving a

higher planning success rate (PSR) value. Here, the PSR is

the ratio between the number of successful schedules

(schedule satisfying the given constraints) and the total

number of simulation runs. Another variant of budget-

constrained algorithm was proposed by Yu et al. [29] that

utilizes a genetic algorithm for optimizing execution time

while satisfying the budget criteria. However, this

approach was further extended by the inclusion of deadline

factor [30]. A methodology presented in [31] introduces a

deadline-division-based algorithm (DET) for cost opti-

mization. A cost-based scheduling algorithm that mini-

mizes the cost while satisfying user deadline was proposed

by Yu et al. [32]. A heuristic approaches considering both

the budget and deadline constraints of workflows was

proposed in [33]. Malawksi et al. [34] proposed algorithms

for both task scheduling and resource provisioning by

evaluating the performance through a broad range of

deadlines and budget parameters. Poola et al. [35] proposed

robust scheduling for workflows considering both deadline

and budget constraints. Zheng et al. [36] proposed a fea-

sible plan for the execution of workflows that considers

time and cost constraints. Arabnejad et al. [37], Calheiros

et al. [38], and Abrishami et al. [25] only considered

deadline factor, while Yang et al. [39] and Rodriguez et al.

[40] focuses on cost-constrained applications. Alkhanak

et al. [41] provide an extensive review of the cost-aware

scheduling technique.

Cluster Computing

123

3 Problem definition

3.1 Workflow execution model in cloud

As illustrated in Fig. 1, the scheduling model in the cloud

environment comprises of three layers. (i) the task graph

layer (ii) the resource layer and (iii) the cloud infrastructure

layer. A task graph is composed of interdependent tasks or

workflows. Interconnected virtual machines (VMs) form

the resource layer and cluster of computers connected with

network supports cloud infrastructure [10]. We use scien-

tific workflows in the task graph and perform one to one

mapping. Each task of a workflow is scheduled on different

VMs for execution. A workflow is a collection of depen-

dent tasks represented in the form of Directed Acyclic

Graphs (DAG), which is a graph with no cycles. The task is

represented by nodes, while dependencies between tasks

are represented by the edges. Each dependency E(ti,tj)

represents a precedence constraint that indicates tj (child

node) can only be executed after ti (parent node) completes

its execution.

The target platform consists of a single cloud environ-

ment with various heterogeneous VMs of different char-

acteristics. Let V = {VM1, VM2, VM3…VMn} denotes the

VM set. An application workflow runs on a set of VMs

takes different execution time. A DAG is modeled by a set

of tuples G (T, E), where T is a set of nodes, and each ti e T
is an application task. E is a set of edges where each edge

denotes communication or data transfer time between

dependent tasks. The weight given to nodes and edges are

the task computation and communication time. When the

dependent tasks are placed on different VMs, then data

transfer or communication time can be estimated by the

size of output data file. This file is to be transferred divided

by the average bandwidth; otherwise, data transfer time is

zero when dependent tasks are placed on the same VM. In

a given DAG, a task with no predecessor is an entry task,

whereas a task with no successor is an exit task. We assume

that the DAG has a single entry and single exit task. If there

exist multiple entries or exist tasks, then a dummy entry or

exit task having zero-weight dependencies is added to the

DAG.

Figure 2 shows a sample of application workflow with

ten tasks. Table 1 provides the execution time of ten tasks

in three different VMs {VM1, VM2, VM3}. As shown in

Fig. 2, the weight of an edge determines the communica-

tion or data transfer time. For example, C1, 2 = 18 means

the data transfer time between t1 and t2 is 18 if they are

placed on different VMs.

3.2 Cost model and budget constraint

The cost model is based on a ‘pay-per-use’ mechanism.

Users have to pay for only that period of time they used

VMs. Each VMs have a different base price because of

their heterogeneous nature. The base price is the unit price

for which VMs are charged for use at a particular time. Let

p_vmj is the base price of jth VM. Usually, the fastest VM

is priced higher. However, this case is not always valid in

heterogeneous environments. The proposed model consid-

ers that all the computational and storage services are

placed on the same physical region and therefore, the

average bandwidth between the shared VMs and storage

services is assumed to be equal. Hence, the communication

time is only depending on the data transfer time between

the dependent tasks when these tasks are placed on dif-

ferent VMs. As most of the cloud providers, only charge

for the amount of the resources being used. Therefore, we

assume that the cost of a VM is determined only by the

computation time for which the VM is being used. Fur-

thermore, it is assumed that the internal data transfer is

free, as most of the real cloud providers do not charge for

the internal data transfer.

C1

C2 C4

C3 C5

VM2

VM1

VM4

VM3
VM5

Task

Resource
Graph

Cloud
Infrastructure

W0

W1

W2

Fig. 1 Workflow execution model in cloud [10]

11

16 23

27 23
13

11 9

t1

t2 t3 t5t4
t6

t7 t8
t9

t10

Fig. 2 A sample DAG of 10 task

Cluster Computing

123

Accordingly, to normalize the diverse cost of hetero-

geneous VMs, we define the price of jth VM executing task

ti as;

Costðti; vmjÞ ¼ p vmj � eti;j ð1Þ

CostðGÞ ¼
XTj j

i¼1

p vmf ðiÞ � eti;f ðiÞ ð2Þ

where, f (i) is the index of VM assigned to task ti, eti,f(i) is

the execution time of task ti on f(i) VM and p_vmf(i) is base

price of vmf(i) [12]. Table 2 shows the different notations

and symbols used in this paper.

The execution of every task on each VM provides the

minimum cost as well as the maximum cost. The minimum

cost of execution, i.e. Costmin(G) is the choice of least

expensive VMs for execution wherein Costmax(G) is the

summation of costly VMs for execution, respectively.

CostminðGÞ ¼
XTj j

i¼1

CostminðtiÞ ð3Þ

CostmaxðGÞ ¼
XTj j

i¼1

CostmaxðtiÞ ð4Þ

The cost budget must be greater than or equal to

Costmin(G) and smaller than or equal to Costmax(G).

Otherwise, the budget lying outside the defined range is not

valid. Hence, our model assumes:

CostminðGÞ�CostbgðGÞ�CostmaxðGÞ ð5Þ

3.3 Problem formulation

The objective of the proposed model is to design an

approach for assignment of tasks on appropriate VMs such

that makespan of a DAG in a user-defined budget con-

straint is minimized. Makespan is the time at which the

execution of the last task finishes. Makespan is determined

only when the exit task finishes its execution. This is

defined as follows:

makespan ¼ AFTðtexitÞ ð6Þ

where AFT is the Actual Finish time of exit task. In brief,

the objective is to minimize the makespan under budget

constraints. This is defined as;

CostðGÞ ¼
XTj j

i¼1

Costðti; vmf ðiÞÞ �CostbgðGÞ ð7Þ

4 Budget constrained and cost-efficient
algorithms

This section comprises of two parts. Section 4.1 pertains to

study of some existing algorithms namely HBCS [11],

MSBL [12] and POSH [15]. HBCS and MSBL are budget

constrained scheduling algorithms created with the aim of

minimizing the makespan of budget-constrained applica-

tions, whereas POSH is the only cost-efficient algorithm.

Section 4.2 introduces a fair budget-constrained workflow

scheduling algorithm (FBCWS) for heterogeneous cloud

environments. Our proposed FBCWS approach produces a

fair scheduling strategy and also minimizes the makespan

of running applications by satisfying the user-defined

budget constraints. FBCWS also provides a mechanism to

save budget by considering low-cost time factor value for

the defined minimization problem.

4.1 Existing algorithmic approaches

Heterogeneous Budget Constrained Scheduling (HBCS):

The objective of HBCS is to provide scheduling with

minimum execution time under user-defined budget. Pro-

cessors are selected according to the highest worthiness

value, and tasks are arranged rank wise. The working of

HBCS is as follows.

1. HBCS first obtains CostHEFT(G) and Costmin(G) by

invoking the HEFT algorithm.

2. DAGs are scheduled using HEFT if their cost of

execution is lower than user-defined budget.

3. Task priorities are assigned using upward rank value.

Tasks are selected in descending order of their priority.

4. For each task on every processor, HBCS determines

the finish time, cost of execution, cost coefficient, and

worthiness value. The worthiness value depends upon

the available budget and the finish time of a processor.

5. The processor that has the highest worthiness value is

selected for execution, and the desired schedule is

obtained.

Table 1 Execution time of tasks

on different VMs
ti VM1 VM2 VM3

1 14 16 9

2 13 19 18

3 11 13 19

4 13 8 17

5 12 13 10

6 13 16 9

7 7 15 11

8 5 11 14

9 18 12 20

10 21 7 16

Cluster Computing

123

To have a clear conception of HBCS, we illustrate the

concept with a motivating example. We consider a DAG

with 10 tasks, as illustrated in Fig. 2. We have assumed

zero communication costs when tasks are on the same VM.

The assumed base price of each VM is shown in Table 3.

The minimum and maximum cost of executing DAG is

computed using Eqs. (3) and (4), where Costmin(G) = 398

and Costmax(G) = 935 is obtained. The budget constraint of

G as Costbg(G) = 500 is set to check the algorithm’s effi-

ciency. Table 4 illustrates the assignment of tasks using

HBCS with makepan = 92 and Cost(G) = 459. This

example verifies that HBCS produces the schedule for each

task while satisfying budget constraints. But, HBCS proves

to be unfair for low priority tasks by distributing more

budget to high priority tasks.

Minimizing Schedule Length using Budget Level

(MSBL): It introduces the concept of a budget level for

each task of the application. The objective of MSBL is to

transfer the budget constraints of an application to each

task. The algorithm sorts the tasks according to rank val-

ues. The processor that has the minimum EFT (Earliest

Table 2 Symbols and notations
Symbols and notations Meaning

T Set of tasks

W Number of tasks in each level

E Set of edges

V Set of VMs

ti ith task

p_vmj Base price of jth VM

texit Exit task

eti,j Execution time of ti task on jth VM

Cost(ti,vmj) Cost of executing ti task on jth VM

CT(tx,ti) Communication time between task tx and task ti

Cost(G) Total cost of execution of DAG

Costmin(G) Minimum cost of execution

Costmax(G) Maximum cost of execution

Costbg(G) User defined budget

CostHEFT(G) Cost of execution using HEFT algorithm

v Number of virtual machines

li Level number

ACT(ti) Average computation time of task ti on different VMs

AST(ti) Actual start time of task ti

pred(ti) Predecessor task of ti

AFT(ti) Actual finish time of ti

b Cost time factor

Neti,j Normalized execution time of task ti on jth VM

etmax(ti) Maximum execution time of task ti

costmax(ti) Maximum cost of executing the task ti

avail(j) time at which jth VM is available for execution

Table 3 Assumed base price of

VMs
p_vmj VM1 VM2 VM3

7 5 3

Table 4 Task assignment of the workflow using HBCS

Tasks (ti) Costbg(ti) AST(ti) AFT(ti) f(ti) Cost(ti, f(ti))

t1 129 0 9 3 27

t3 159 21 34 2 65

t4 134 34 42 2 40

t2 148 27 40 1 91

t5 87 9 19 3 30

t6 84 19 28 3 27

t9 105 56 68 2 60

t7 57 57 64 1 49

t8 76 69 74 1 35

t10 76 85 92 2 35

Makepan = 92 and Cost(G) = 459

Cluster Computing

123

Finish Time) is selected for each task while satisfying

individual budget constraints. The core details of MSBL

are explained in the following manner.

1. MSBL first computes the minimum cost value of DAG

and then converts the budget constraint of an applica-

tion into tasks.

2. The possibility of finding a schedule that satisfies user-

defined budget is verified.

3. The algorithm map the tasks on an appropriate

processor. At every step, the task having a higher

priority is selected, and its budget constraints are

determined. The processor that has the minimum EFT

and satisfying budget level constraint is selected. After

the assignment to a processor, the spare budget is

updated.

4. At last, Schedule length and cost of execution is

computed.

Table 5 shows the assignment of tasks using MSBL

having makespan = 87 and cost = 456. MSBL only focu-

ses on minimizing the makespan while neglecting the cost

of workflows.

Pareto Optimal Scheduling Heuristic (POSH): The

POSH algorithm schedules tasks of an application in the

heterogeneous processing environment. Tasks are assigned

on cost-efficient VMs based on Pareto dominance. VMs

selection is based on both the time and cost factors. The

working of the POSH algorithm is divided into three

phases:

1. Weighing Phase: This phase assigns the weight to the

workflow. Weights assigned to nodes are execution

time of tasks, and weights to edges are the communi-

cation time between VMs.

2. Prioritizing Phase: Tasks are sorted in descending

order of their priority. The priority of each task is

computed based on an upward priority value, which is

the sum of the node weight and execution time of

successors.

3. Mapping Phase: Assignment of task on cost-efficient

VMs is based on Pareto dominance. A predefined

objective function is used to choose VM to schedule a

task at a low cost.

Tables 6 and 7 illustrates the scheduling of tasks on

appropriate VMs using POSH algorithm. We have taken

a = 0.5 and a = 0.2 to show the efficiency of the algorithm

at different a values. POSH proves to be a cost-efficient

algorithm but, at the same time, fails to minimize the

makespan.

4.2 Proposed algorithm: fair budget constrained
workflow scheduling (FBCWS)

In this section, we discuss the proposed algorithm FBCWS,

which produces a fair scheduling strategy. FBCWS mini-

mizes the makespan while satisfying the budget constraint

of an application. This algorithm also provides the flexi-

bility to save the budget at the same time, which is not

possible in other budget-constrained algorithms. FBCWS

works in two phases; (i) Task categorization and selection

phase and (ii) VM selection phase. Tasks are selected

priority wise whereas, VMs are selected according to task

type to ensure fairness.

4.2.1 Task categorization and selection phase

To categorize tasks, FBCWS considers two types of tasks,

namely, CPU intensive task and normal task. CPU inten-

sive task requires more processing power and processing

time than normal task. In order to determine the type of

Table 5 Task assignment of workflows using MSBL

Tasks (ti) Costbg(ti) AST(ti) AFT(ti) f(ti) Cost(ti, f(ti))

t1 40 0 9 3 27

t3 74 9 28 3 57

t4 67 18 26 2 40

t2 89 28 46 3 54

t5 75 26 39 2 65

t6 49 46 55 3 27

t9 94 62 74 2 60

t7 75 51 58 1 49

t8 65 55 69 3 42

t10 79 80 87 2 35

Makespan = 87 and cost = 456

Table 6 Task assignment of workflows using POSH considering

a = 0.5

Tasks (ti) AST(ti) AFT(ti) f(ti) Cost(ti, f(ti))

t1 0 9 3 27

t3 21 34 2 65

t4 34 42 2 40

t2 9 27 3 54

t5 27 37 3 30

t6 37 46 3 27

t9 50 62 2 60

t7 57 64 1 49

t8 69 74 1 35

t10 85 92 2 35

Makespan = 92 and cost = 422 at a = 0.5

Cluster Computing

123

tasks in a workflow, the average computation time of each

task is determined in the following manner.

ACTðtiÞ ¼
Xv

j¼1

eti;j

v
ð8Þ

After ACT (ti) is computed, the mean of average com-

putation time MACT (li) at each level of DAG is

determined.

lðtiÞ ¼ max
tx2predðtiÞ

ðlðtxÞ þ 1Þ ð9Þ

MACTðliÞ ¼
1

W

XW

i¼1

ACTðiÞ ð10Þ

In order to categorize the tasks, workflows are divided

level wise and each task is assigned to the respective level

without intersection using Eq. 9. Generally, the level of a

task in a workflow is determined by its distance from the

start node having level number 1. For the exit task, the

level number is always one level more than its longest

parent. Task can be compute-intensive or normal task,

which is decided by the mean of average computation time

MACT (li) at each level. The value of MACT(li) at each

level of the DAG distinguishes the task’s type. Tasks in a

level li having higher ACT than MACT(li) are CPU inten-

sive tasks. Most Time-Consuming Task List (MTCTL) has

been created for CPU intensive tasks while normal tasks

are placed in Less Time-Consuming Task List (LTCTL).

After task categorization, task selection is done. Task

selection is based on the priority of task, which is deter-

mined by its B-level value. B-level of task represents the

length of the longest path from node ti to exit node,

including all the communication time. Task having higher

B-level has higher priority and thus will be selected first.

B-level of task is computed as;

B�level ¼ ACTðtiÞ þ max
tz2set of immediate succ:ðtiÞ

fCTðti; tzÞ

þ BlevelðtzÞg
ð11Þ

4.2.2 VM selection phase

VM selection is based on budget constraints of each task as

well as the type of the task. Setting the budget constraints

on each task is determined by the following two quantities

namely; Remaining Budget (RB) and Remaining cheapest

budget (RCB). We define RB as budget left after scheduling

the task and RCB as the cheapest cost VMs left for

unscheduled tasks excluding current scheduled task [11].

RCB is updated every time for each task before scheduling

and RB is repeatedly updated after VM selected for each

task.

RCB ¼ RCB� CostminðtiÞ ð12Þ
RB ¼ RB� Costðti; vmjÞ ð13Þ

On the other hand, the user-defined budget is divided

among each task to set the budget constraints at each task.

Budget constraints on task ti is defined by;

BCðtiÞ ¼ RB� RCB ð14Þ

where

Costðti; vmjÞ�BCðtiÞ ð15Þ

Since the tasks in MTCTL require the fastest VMs for

execution, VMs having higher processing capacity are

selected for MTCTL tasks (Algorithm 1-line no (17–18)).

As a consequence, execution time is reduced, leading to the

very high cost of execution. In order to meet the budget

constraint, the tasks in LTCTL must be scheduled on cost-

efficient VMs. However, this step would be beneficial in

compensating the higher cost. But, this will be unfair for

LTCTL tasks to always schedule on slow VMs that pro-

duce longer makespan. Most of the algorithms ignore this

aspect and become unfair to low priority tasks. Therefore,

to avoid unfair treatment to LTCTL tasks, FBCWS first

checks for the VMs, which are cost-efficient as well have

faster execution speed (Algorithm 2; line no. 3). If no such

VMs are found, then FBCWS considers VM assignment as

a multi-criteria minimization problem (Algorithm 2; line

no (7–8)). We state the minimization problem with the

combination of execution time and cost as an objective

function. FBCWS selects those VMs from remaining

available VMs that minimize the given function.

Minimize : b� Neti;j þ ð1� bÞ � NCostðti; vmjÞ
for all vmj 2 v

ð16Þ

Table 7 Task assignment of workflows using POSH a with = 0.2

Tasks (ti) AST(ti) AFT(ti) f(ti) Cost(ti, f(ti))

t1 0 9 3 27

t3 9 28 3 57

t4 18 26 2 40

t2 28 46 3 54

t5 46 56 3 30

t6 56 65 3 27

t9 69 81 2 60

t7 65 76 3 33

t8 80 85 1 35

t10 96 103 2 35

Makespan = 103 and cost = 398 at a = 0.2

Cluster Computing

123

Subject to

Neti;j ¼ eti;j=etmaxðtiÞ ð17Þ

NCostðti; vmjÞ ¼ Costðti; vmjÞ=CostmaxðtiÞ ð18Þ

b 2 ½0; 1� ð19Þ

where b is the cost time factor. We take a normalized value

of execution time and cost because time and cost may have

a different scale, and thus it is not valid to perform linear

formulation directly from actual time and cost. For

obtaining fair scheduling, we consider higher b value. For

the simulation, b = 0.8 has been set to achieve lower

execution time for LTCTL tasks to achieve fairness. For

saving the budget, a low b value is always preferred. Both

of these cases are illustrated in Tables 10 and 11. After

finding appropriate VMs, tasks are scheduled on selected

VMs according to (Algorithm 1; line no. 25).

ESTðtentry; vmjÞ ¼ 0 ð20Þ

ESTðti; vmjÞ ¼ maxfavailðjÞ
j2v

; max
tx2predðtiÞ

fAFTðtxÞ

þ CTðtx; tiÞgg ð21Þ

EFTðti; vmjÞ ¼ ESTðti; vmjÞ þ eti;j ð22Þ

Here, EST denotes the earliest start time of task ti on

assigned jth VM, and EFT is the earliest finish time of task

ti on assigned jth VM. EST of entry task is taken zero. CT

(tx,ti) is zero if tx and ti will be on the same machine [13].

Whereas, AST and AFT represent the actual start time and

finish time.

()

each level (using Eq. 9)

Cluster Computing

123

4.3 An illustration

An illustrative example is provided to understand the

working of FBCWS. A DAG of 10 tasks, as illustrated in

Fig. 2 is considered. The cost matrix is computed from the

given Tables 1 and 3.

First, the average computation time (ACT) of each task

is calculated. Afet this, the Mean of ACT (MACT (li)) of

each level of DAG is determined (shown in Table 8). The

value of MACT (li) determines the two lists, namely; Most

Time-Consuming Task List (MTCTL) and Less Time-

Consuming Task List (LTCTL). According to the value of

MACT (li), FBCWS categorizes t1, t2, t3, t9, t10 as compute-

intensive tasks and placed them in MTCTL wherein t4, t5,

t6, t7, t8 are normal tasks and are placed in LTCTL. B-level

of each task is determined to decide the priority of tasks for

execution. Task having higher B-level value has higher

priority and scheduled first. Table 9 shows the priority of

tasks based on B-level. By taking highest priority task from

the sorted task list, the appropriate VM has been selected

for each task. Additionally, EST and EFT of every task on

assigned VM is determined by using Eqs. (20) or (21) and

(22). Table 10 shows the task assignment of workflow with

Costbg(G) = 500 with b = 0.8. The makespan of an appli-

cation obtained is 80, which is less than HBCS, MSBL, and

POSH algorithm. The execution cost is recorded as 471

that satisfies the budget constraints. The complete schedule

of the application is also shown in Fig. 3. At the same time,

a case has been illustrated, where FBCWS provides a

mechanism to save the budget. Table 11 shows the task

assignment to VMs when we set b = 0.2. The cost of the

execution gets reduced to 455, and makespan becomes 90.

The schedule of application is also shown in Fig. 4. Here,

FBCWS produces minimum makespan and low-cost

schedule than HBCS and proves to be more cost-efficient

than MSBL.

5 Performance evaluation and experimental
analysis

5.1 Datasets and simulation setup

We have simulated FBCWS, HBCS, MSBL, and POSH

algorithm with the benchmark dataset having 10–1000

Table 8 Value of MACT(li) at each level of DAG

Level(li) 1 2 3 4

MACT(li) 13 13.6 12.55 14.67

Table 9 B-level of tasks
Tasks t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

B-level 108.00 77.00 80.00 80.00 69.00 63.33 42.66 35.67 44.33 14.67

Table 10 Tasks assignment of a workflow when b = 0.8

Tasks (ti) Costbg (ti) AST (ti) AFT (ti) f (ti) Cost (ti, f(ti))

t1 129 0 9 3 27

t3 159 21 32 1 77

t4 122 18 26 2 40

t2 136 32 45 1 91

t5 75 9 19 3 30

t6 72 19 28 3 27

t9 105 61 73 2 60

t7 78 45 52 1 49

t8 80 53 58 1 35

t10 80 73 80 2 35

Makespan(G) = 80 and Cost(G) = 471

Cluster Computing

123

tasks. Five real scientific workflows of diverse characters

such as Cybershake for earthquake hazard, LIGO (Inspiral)

for analyzing data obtained from analyzing the gravita-

tional waves from the coalescing of a binary system,

Montage for astronomy, Sipht and Epigenomic for biology

are analyzed. We categorize these workflows into compute-

intensive and data-intensive workflows. Inspiral, Epige-

nomic, and Sipht are computed intensive workflows

incurring high computation cost. On the other hand,

Montage and Sipht belong to data-intensive workflows, in

which data transfer cost is higher than computation cost.

Each workflow has a different structure shown in Fig. 5.

Further, structure and characterization of different work-

flows with a detailed definition is presented by Bharathi

et al. [42].

For the simulation, we assumed a cloud environment

that consists of a cloud provider offering 5, 10, 20, and 50

sets of VMs of different characteristics and capabilities.

Each VM has a unit price based on the pricing similar to

EC2 pricing. The average bandwidth between the

computation services is assumed to be 20 Mbps. The

simulations of the proposed algorithm were performed

using CloudSim simulator running on Intel(R) Core (TM)

i7-8550U CPU @ 1.80 GHz 1.99 GHz and 8 GB RAM on

Windows 10.

5.2 Performance metrics

To evaluate and compare the proposed algorithm with

other existing algorithms, we consider the normalized

makespan (NM) defined by;

NMðGÞ ¼ makespanFBCWS

makespanHEFT
ð23Þ

where NM normalizes the proposed algorithm makespan by

the lower bound value obtained from the makespan of

HEFT. HEFT [13] has been used here since it produces

minimum makespan for a DAG in a heterogeneous

environment.

To compare the achieved cost of schedule, we consider

Normalized Cost NC metric defined by;

NCðGÞ ¼ CostFBCWSðGÞ
CostbgðGÞ

ð24Þ

where NC(G) value greater than 1 means the budget con-

straint has not been satisfied. Therefore, NC lower than 1 is

always preferable.

5.3 Experimental analysis

The performance of FBCWS is validated with HBCS,

MSBL, and POSH algorithm over five types of different

workflows. We define, b = 0.8 for FBCWS to ensure

fairness to each task of LTCTL. For the POSH algorithm,

we set a = 0.2 as the algorithm performs better for a lower

a value. We consider the strict budget constraints of fixed

size for evaluation. For better analysis, we group the

Table 11 Task assignment of workflow when b = 0.2

Tasks (ti) Costbg (ti) AST (ti) AFT (ti) f (ti) Cost (ti, f(ti))

t1 129 0 9 3 27

t3 159 21 32 1 77

t4 122 18 26 2 40

t2 136 32 45 1 91

t5 75 9 19 3 30

t6 72 19 28 3 27

t9 105 61 73 2 60

t7 78 55 66 3 33

t8 80 53 58 1 35

t10 80 83 90 2 35

Makespan(G) = 90 and Cost(G) = 455

0 10 20 4030 50 60 70 80 90 100

V1

V3

V2

t3 t2 t8

t1 t5 t6

t7

t10t9t4

Fig. 3 Scheduling of sample workflow using FBCWS with b = 0.8

Cluster Computing

123

0 10 20 4030 50 60 70 80 90 100

V1

V3

V2

t3 t2 t8

t1 t5 t6 t7

t10t9t4

Fig. 4 Scheduling of sample workflow using FBCWS with b = 0.2

Fig. 5 Types of workflows where circles represent jobs of different types [42]. a Cybershake, b Epigenomic, c Montage, d LIGO (Inspiral),

e Sipht

Cluster Computing

123

workflows based on the size of the tasks, as mentioned

below.

(1) Small size workflows, consisting of 10–50 tasks

nodes

(2) Medium size workflows, having 100–400 tasks

nodes

(3) Large size workflows, consisting of 800–1000 tasks

nodes

The algorithm having minimum NM (Normalized

Makespan) and NC (Normalized cost) value is found more

efficient. Analysis of different workflows for various

algorithms is discussed in the below mentioned subsequent

sections.

5.3.1 Performance analysis of small size workflows

Figure 6 shows the result achieved for small size work-

flows. Figure 6a shows the time efficiency, and Fig. 6b

shows the cost efficiency of the considered algorithms. As

shown in Fig. 6a, FBCWS has the best performance for

Inspiral, Cybershake, and Epigenomic by achieving smal-

ler normalized makespan value than the other algorithms.

From Fig. 6a and b, it is observed that FBCWS utilizes the

whole budget for Cybershake to achieve minimal make-

span. MSBL proves to be more time-efficient than FBCWS

for Montage and Sipht. However, FBCWS is more cost-

efficient than MSBL. Further, POSH is less efficient in

terms of time but is highly cost-efficient shown in Fig. 6b.

FBCWS performs remarkably for the Epigenomic work-

flow by minimizing the makespan as well as the cost of

execution.

5.3.2 Performance analysis of medium size workflows

Results obtained for medium size workflows are shown in

Fig. 7. Figure 7a and b shows the comparison result of the

workflows of 100 tasks and Fig. 7c and d illustrates the

results of workflows having 400 tasks. As depicted in

Fig. 7a and c, it is found that FBCWS proves to be more

time-efficient than POSH as well as for HBCS in most of

the workflows. Moreover, FBCWS outperforms for

Epigenomic by achieving minimum makespan at a reduced

cost. From Fig. 7c and d, it has also been observed that,

with the increase in workflow size, FBCWS becomes more

time and cost-efficient for Sipht. Moreover, it has also been

analyzed FBCWS lags behind MSBL, as MSBL produces

schedule of minimum makespan most of the time. How-

ever, FBCWS is more cost efficient than MSBL.

5.3.3 Performance analysis of large size workflows

As illustrated in Fig. 8, with the increase in the size of

workflows, the performance of FBCWS is significantly

improved. FBCWS achieve higher efficiencies for Epige-

nomic and Sipht. On the other hand, due to the high data

transfer rate, FBCWS is not that efficient for Montage and

Cybershake. As the proposed approach doesn’t consider

any mechanism to minimize data transfer time and, there-

fore, not perform well for the data-intensive workflows. In

the case of Inspiral, FBCWS achieves lower NM and NC

value than HBCS and thus proves to be more efficient than

HBCS. However, FBCWS is more cost efficient than

MSBL but lags behind MSBL, which is more time-efficient

for Inspiral, Cybershake, and Montage. For all the types of

workflows, POSH always produces schedule of higher

makespan and hence, proves to be inefficient. However,

(a) Time Efficiency
(b) Cost Efficiency

Fig. 6 Workflows with small

range. a Time efficiency, b cost

efficiency

Cluster Computing

123

POSH is a cost-efficient algorithm. It always utilizes the

minimum cost to produce schedule of longer makespan.

5.4 Analysis of variance (ANOVA) test

In this section, the statistical significance of the obtained

result has been verified through the ANOVA test. ANOVA

is a statistical tool to check whether the mean of the given

groups are equal or not. It helps in determining whether the

null hypothesis is rejected or not. We have performed

ANOVA test on the makespan value obtained for all types

of considered workflows. For validation, we consider 15

medium and large size workflows ranging from 400 to

1000 as a sample. In our case, we define the null hypothesis

as;

H0 : lFBCWS ¼ lPOSH ¼ lHBCS ¼ lMSBL and alternative

hypothesis as;

H1 : lFBCWS 6¼ lPOSH 6¼ lHBCS 6¼ lMSBL

In order to reject the null hypothesis, the value of

F-static must be greater than F- critical. In addition to this,

P-value must be less than the selected a-level (a = 0.05).

From Table 12, it is certain that the null hypothesis can

be rejected because F-static is greater than F-critic, and

P-value is also less than a-level. Thus, it is proved that the

obtained experimental results are statistically significant.

6 Conclusion and future work

In this paper, we have proposed a novel algorithm named

FBCWS for scientific workflow scheduling. The proposed

algorithm minimizes the makespan while satisfying the

budget constraints. FBCWS also provides a mechanism to

save budget by setting a low value of the cost-time factor of

(a) Time Efficiency (b) Cost Efficiency

(c) Time Efficiency (d) Cost Efficiency

Fig. 7 Workflows of medium

size. a Time efficiency, b cost

efficiency, c time efficiency,

d cost efficiency

Cluster Computing

123

the defined minimization function. However, this approach

has been shown for sample workflows only. FBCWS also

proves to be a fair algorithm as it categorizes the task and

tries to schedule LTCTL tasks, i.e., tasks of low priority to

those VMs that have minimum execution time by adjusting

high value for the cost-time factor. In FBCWS, tasks are

(a) Time Efficiency (b) Cost Efficiency

(c) Time Efficiency (d) Cost Efficiency

Fig. 8 Workflows of large size.

a Time efficiency, b cost

efficiency, c time efficiency,

d cost efficiency

Table 12 The ANOVA test

Groups Count Sum Average Variance

POSH 15 1,246,834 83,122.27 5.92E ? 09

HBCS 15 698,655 46,577 1.21E ? 09

FBCWS (proposed) 15 550,946 36,729.73 3.88E ? 08

MSBL 15 559,658 37,310.53 5.39E ? 08

Source of variation SS df MS F P-value F crit

Between Groups 2.16E?10 3 7.21E?09 3.582847 0.019273 2.769430932

Within Groups 1.13E?11 56 2.01E?09

Total 1.34E?11 59

Cluster Computing

123

analyzed based on their type, and accordingly, they are

assigned to the capable VMs to ensure fairness while this

fairness is not provided to the HBCS, MSBL, and POSH

algorithm. Tasks of MTCTL are assigned to the VMs

having minimum execution time and hence, try to mini-

mize the execution time. For the LTCTL or low priority

tasks, FBCWS doesn’t select those expensive VMs which

don’t have minimum execution time. This step further

improves the efficiency of FBCWS and proves to be effi-

cient in minimizing the cost and time of execution. Further,

FBCWS also provides flexibility for the selection of most

time-efficient or cost-efficient VMs. FBCWS can also

prove to be cost-efficient by adjusting low value for the

cost-time factor of the minimization problem. No such

advantages are provided by the HBCS and MSBL

algorithm.

In order to show the efficiency of the proposed FBCWS,

the experiments are conducted over the five different types

of workflows. Along with this, simulation results are also

compared with the results of existing HBCS, MSBL, and

POSH algorithms. Based on the performance metrics, it is

concluded that the FBCWS gives the best results for

compute-intensive workflows like Epigenomic and Sipht.

For Inspiral, FBCWS outperforms HBCS, whereas, for

data-intensive workflows like Montage and Cybershake,

FBCWS lags behind MSBL in terms of makespan. FBCWS

is more time-efficient than POSH for all the sizes of

workflows. Furthermore, to prove the significance of the

obtained experimental result, ANOVA test has been per-

formed. However, FBCWS doesn’t give emphasis on data-

intensive workflows. Therefore, in future work, the

enhancement of the FBCWS algorithm can be done for

better performance of data-intensive workflows. Along

with this, FBCWS algorithm can be further explored for

dynamic scheduling and a multi-cloud environment. Fur-

ther, it is also intended to develop a strategy for loopy

workflows as well as the design of a new workflow gen-

erator which consider the loopy workflows.

Acknowledgements This work is supported by the Indian Institute of

Technology (ISM), Dhanbad, Govt. of India. The authors wish to

express their gratitude and heartiest thanks to the Department of

Computer Science & Engineering, Indian Institute of Technology

(ISM), Dhanbad, India, for providing their continuous research

support.

References

1. Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling

algorithms for grid computing. Metaheuristics for scheduling in

distributed computing environments, pp. 173–214. Springer,

Berlin (2008)

2. Yu, J., Buyya, R.: A taxonomy of workflow management systems

for grid computing. J. Grid Comput. 3(3–4), 171–200 (2005)

3. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid

computing 360-degree compared. Grid Computing Environments

Workshop, 2008. GCE’08, pp. 1–10. IEEE, Piscataway (2008)

4. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.:

Cloud computing and emerging IT platforms: vision, hype, and

reality for delivering computing as the 5th utility. Future Gener.

Comput. Syst. 25(6), 599–616 (2009)

5. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-

the-art and research challenges. J. Internet Serv. Appl. 1(1), 7–18
(2010)

6. Weinhardt, C., Anandasivam, A., Blau, B., Borissov, N., Meinl,

T., Michalk, W., Stößer, J.: Cloud computing: a classification,

business models, and research directions. Bus. Inform. Syst. Eng.

1(5), 391–399 (2009)

7. Juve, G., Deelman, E.: Scientific workflows in the cloud. Grids

Clouds and Virtualization, pp. 71–91. Springer, London (2011)

8. Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K.,

Berriman, B., Good, J.: On the use of cloud computing for sci-

entific workflows. IEEE Fourth International Conference on

eScience, 2008, eScience’08, pp. 640–645. IEEE, Piscataway

(2008)

9. Lewis, H.R.: Review: Garey Michael R. and Johnson David S.

Computers and intractability. A guide to the theory of NP-com-

pleteness. WH Freeman and Company, San Francisco1979, x?

338 pp. J. Symbol. Logic. 48(2), 498–500 (1983)

10. Wu, C., Lin, X., Yu, D., Xu, W., Li, L.: End-to-end delay min-

imization for scientific workflows inclouds under budget con-

straint. IEEE Trans. Cloud Comput. 1, 1–1 (2015)

11. Arabnejad, H., Barbosa, J.G.: A budget constrained scheduling

algorithm for workflow applications. J. Grid Comput. 12(4),
665–679 (2014)

12. Chen, W., Xie, G., Li, R., Bai, Y., Fan, C., Li, K.: Efficient task

scheduling for budget constrained parallel applications on

heterogeneous cloud computing systems. Future Gener. Comput.

Syst. 74, 1–11 (2017)

13. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and

low-complexity task scheduling for heterogeneous computing.

IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)

14. Bittencourt, L.F., Madeira, E.R.M.: HCOC: a cost optimization

algorithm for workflow scheduling in hybrid clouds. J. Internet

Serv. Appl. 2(3), 207–227 (2011)

15. Su, S., Li, J., Huang, Q., Huang, X., Shuang, K., Wang, J.: Cost-

efficient task scheduling for executing large programs in the

cloud. Parallel Comput. 39(4–5), 177–188 (2013)

16. Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm

optimization-based heuristic for scheduling workflow applica-

tions in cloud computing environments. 24th IEEE International

Conference on Advanced Information Networking and Applica-

tions (AINA), 2010, pp. 400–407. Piscataway, IEEE (2010)

17. Li, J., Su, S., Cheng, X., Song, M., Ma, L., Wang, J.: Cost-

efficient coordinated scheduling for leasing cloud resources on

hybrid workloads. Parallel Comput. 44, 1–17 (2015)

18. Sakellariou, R., Zhao, H.: A low-cost rescheduling policy for

efficient mapping of workflows on grid systems. Sci. Program.

12(4), 253–262 (2004)

19. Fard, H.M., Prodan, R., Barrionuevo, J.J.D., Fahringer, T.: A

multi-objective approach for workflow scheduling in heteroge-

neous environments. 12th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGrid), 2012,

pp. 300–309. IEEE, Piscataway (2012)

20. Zhu, Z., Zhang, G., Li, M., Liu, X.: Evolutionary multi-objective

workflow scheduling in cloud. IEEE Trans. Parallel Distrib. Syst.

27(5), 1344–1357 (2016)

21. Durillo, J.J., Prodan, R.: Multi-objective workflow scheduling in

Amazon EC2. Clust. Comput. 17(2), 169–189 (2014)

Cluster Computing

123

22. Zhang, F., Cao, J., Li, K., Khan, S.U., Hwang, K.: Multi-objective

scheduling of many tasks in cloud platforms. Future Gener.

Comput. Syst. 37, 309–320 (2014)

23. Tan, W., Sun, Y., Li, L.X., Lu, G., Wang, T.: A trust service-

oriented scheduling model for workflow applications in cloud

computing. IEEE Syst. J. 8(3), 868–878 (2014)

24. Talukder, A.K.A., Kirley, M., Buyya, R.: Multiobjective differ-

ential evolution for scheduling workflow applications on global

grids. Concurr. Comput. Pract. Exp. 21(13), 1742–1756 (2009)

25. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-con-

strained workflow scheduling algorithms for infrastructure as a

service clouds. Future Gener. Comput. Syst. 29(1), 158–169

(2013)

26. Ghafouri, R., Movaghar, A., Mohsenzadeh, M.: A budget con-

strained scheduling algorithm for executing workflow application

in infrastructure as a service clouds. Peer Peer Netw. Appl.

(2018). https://doi.org/10.1007/s12083-018-0662-0

27. Arabnejad, V., Bubendorfer, K., Ng, B.: Budget and deadline

aware e-science workflow scheduling in clouds. IEEE Trans.

Parallel Distrib. Syst. (2018). https://doi.org/10.1007/s10586-

018-1751-9

28. Sun, T., Xiao, C., Xu, X.: A scheduling algorithm using sub-

deadline for workflow applications under budget and deadline

constrained. Clust. Comput. (2018). https://doi.org/10.1007/

s10586-018-1751-9

29. Yu, J., Buyya, R.: A budget constrained scheduling of workflow

applications on utility grids using genetic algorithms. Workshop

on Workflows in Support of Large-Scale Science, 2006.

WORKS’06, pp. 1–10. IEEE, Piscataway (2006)

30. Yu, J., Buyya, R.: Scheduling scientific workflow applications

with deadline and budget constraints using genetic algorithms.

Sci. Program. 14(3–4), 217–230 (2006)

31. Yuan, Y., Li, X., Wang, Q., Zhu, X.: Deadline division-based

heuristic for cost optimization in workflow scheduling. Inf. Sci.

179(15), 2562–2575 (2009)

32. Yu, J., Buyya, R., Them, C.K.: Cost-based scheduling of scien-

tific workflow applications on utility grids. First International

Conference on e-Science and Grid Computing, 2005, IEEE,

Piscataway (2005)

33. Rodriguez, M.A., Buyya, R.: Deadline based resource provi-

sioning and scheduling algorithm for scientific workflows on

clouds. IEEE Trans. Cloud Comput. 2(2), 222–235 (2014)

34. Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Algorithms

for cost-and deadline-constrained provisioning for scientific

workflow ensembles in IaaS clouds. Future Gener. Comput. Syst.

48, 1–18 (2015)

35. Poola, D., Garg, S.K., Buyya, R., Yang, Y., Ramamohanarao, K.:

Robust scheduling of scientific workflows with deadline and

budget constraints in clouds. IEEE 28th International Conference

on Advanced Information Networking and Applications (AINA),

2014, pp. 858–865. Piscataway, IEEE (2014)

36. Zheng, W., Sakellariou, R.: Budget-deadline constrained work-

flow planning for admission control. J. Grid Comput. 11(4),
633–651 (2013)

37. Arabnejad, V., Bubendorfer, K., Ng, B.: Scheduling deadline

constrained scientific workflows on dynamically provisioned

cloud resources. Future Gener. Comput. Syst. 75, 348–364 (2017)
38. Calheiros, R.N., Buyya, R.: Meeting deadlines of scientific

workflows in public clouds with tasks replication. IEEE Trans.

Parallel Distrib. Syst. 25(7), 1787–1796 (2014)

39. Yang, Y., Liu, K., Chen, J., Liu, X., Yuan, D., Jin, H.: An

algorithm in SwinDeW-C for scheduling transaction-intensive

cost-constrained cloud workflows. IEEE Fourth International

Conference on eScience, 2008, eScience’08, pp. 374–375. IEEE,

Piscataway (2008)

40. Rodriguez, M.A., Buyya, R.: Budget-driven scheduling of sci-

entific workflows in IaaS clouds with fine-grained billing periods.

ACM Trans. Auton. Adapt. Syst. 12(2), 5 (2017)

41. Alkhanak, E.N., Lee, S.P., Khan, S.U.R.: Cost-aware challenges

for workflow scheduling approaches in cloud computing envi-

ronments: taxonomy and opportunities. Future Gener. Comput.

Syst. 50, 3–21 (2015)

42. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.H.,

Vahi, K.: Characterization of scientific workflows. Third Work-

shop on Workflows in Support of Large-Scale Science, 2008.

WORKS 2008, pp. 1–10. IEEE, Piscataway (2008)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Naela Rizvi is currently working

as a Junior Research Fellow at

the Department of Computer

Science and Engineering in

Indian Institute of Technology

(ISM) Dhanbad, Jharkhand,

India. She received the degree

of ME in Software Engineering

from BIT Mesra, Ranchi. She

received B.E in Computer Sci-

ence from Radharaman Institute

of Technology and Science,

Bhopal. Her area of research

includes Resource management

and Task scheduling in cloud

environment.

Dharavath Ramesh is a Profes-

sor (Asst.) in the Computer

Science and Engineering

Department at Indian Institute

of Technology Dhanbad, Jhark-

hand, India. He obtained his

Ph.D. from Indian Institute of

Technology (Indian School of

Mines), Dhanbad under the

supervision of Professor Chi-

ranjeev Kumar. His Master’s

degree in Computer Science and

Engineering with a specializa-

tion as Software Engineering is

from Jawaharlal Nehru Tech-

nological University, Hyderabad, India. His Bachelor of Engineering

degree in Computer Science and Engineering is from KITS, War-

angal, India. Dr. Ramesh’s research interests include Blockchain &

Distributed Computing, Distributed Databases, Cloud Databases,

Modelling Big Data, Processing Big Data, Virtualization and

Scheduling in Cloud Environment, Load balancing approaches, Deep

learning strategies, Brain Computer Interaction, Community Detec-

tion in Social Networks, ML paradigms in Agriculture. He has pub-

lished over a hundred technical papers in refereed journals and

conference proceedings. He has served in various capacities for

journals and conferences. He was Organizing Co-Chair for RAIT

2018, RAIT 2014, and advisory committee member of various

International and National conferences/workshops/symposiums. He

has served on the program committees of various conferences

including BDA, ICDCIT, ADCONS, RAIT, and ICDE. He is a senior

member of the IEEE and a professional member of ACM.

Cluster Computing

123

https://doi.org/10.1007/s12083-018-0662-0
https://doi.org/10.1007/s10586-018-1751-9
https://doi.org/10.1007/s10586-018-1751-9
https://doi.org/10.1007/s10586-018-1751-9
https://doi.org/10.1007/s10586-018-1751-9

	Fair budget constrained workflow scheduling approach for heterogeneous clouds
	Abstract
	Introduction
	Related work
	Single objective workflow scheduling (SOWS)
	Multi-objective workflow scheduling (MOWS)
	QoS constrained workflow scheduling

	Problem definition
	Workflow execution model in cloud
	Cost model and budget constraint
	Problem formulation

	Budget constrained and cost-efficient algorithms
	Existing algorithmic approaches
	Proposed algorithm: fair budget constrained workflow scheduling (FBCWS)
	Task categorization and selection phase
	VM selection phase

	An illustration

	Performance evaluation and experimental analysis
	Datasets and simulation setup
	Performance metrics
	Experimental analysis
	Performance analysis of small size workflows
	Performance analysis of medium size workflows
	Performance analysis of large size workflows

	Analysis of variance (ANOVA) test

	Conclusion and future work
	Acknowledgements
	References

