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The longest common subsequence (LCS) problem with gap constraints (or the gapped LCS), 
which has applications to genetics and molecular biology, is an interesting and useful 
variant to the LCS problem. In previous work, this problem is solved in O (nm) time when 
the gap constraints are fixed to a single integer, where n and m denote the lengths of the 
two input sequences A and B , respectively. In this paper, we first generalize the problem 
from fixed gaps to variable gap constraints. Then, we devise an optimal approach for the 
incremental suffix maximum query (ISMQ), which helps us obtain an efficient algorithm 
with O (nm) time for finding LCS with variable gap constraints. In addition, our technique 
for ISMQ can be applied to solve one of the block edit problems on strings, reducing the 
time complexity from O (nm logm + m2) to O (nm + m2). Hence, the result of this paper is 
beneficial to related research on sequence analysis and stringology.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Algorithms for finding the longest common subsequence (LCS) [1–7] have been widely and extensively studied for a long 
time. Motivated by its applications to genetics and molecular biology, Iliopoulos and Rahman [8] introduced an interesting 
variant for finding the LCS, called the fixed gap LCS (FGLCS) problem, where a value k of the fixed gap constraint is given 
and the distance between two consecutive matches is required to be limited to at most k + 1. The best-known algorithm 
for solving the FGLCS problem was also proposed by Iliopoulos and Rahman [9], which takes O (nm) time, where n and m
denote the lengths of the two input sequences A and B , respectively.

An important application of the FGLCS is to detect motif patterns in bio-sequences [8]. Taking two protein sequences 
A = “RCLPCRR” and B = “RPPLCPLRC” in Fig. 1 for example, for three different fixed gap constraints k = 2, k = 1, and k = 0, 
the detected motifs of A and B are of the form “R..L..C..R”, “L.P.R”, and “RC”, respectively, where ‘.’ represents the wildcard 
symbol that can match any amino acid. Here the symbol ‘.’ may be an empty character.

For general motifs, however, the length of each segment containing ‘.’ may not be fixed. As a result, some motifs may not 
be revealed by the approach of FGLCS. In the above example, one can verify that the motifs “R...C..R” and “R...C...C” cannot 
be obtained by applying any fixed k. Note that “R...L...C...R”, rather than “R...C...C”, will be obtained if k = 3. To overcome 
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Fig. 1. An example for illustrating the FGLCS between two sequences 
A = “RCLPCRR” and B = “RPPLCPLRC” with three different fixed gap 
constraints k = 2, k = 1, and k = 0.

Fig. 2. An example for illustrating the VGLCS between two sequences 
A = “RCLPCRR” and B = “RPPLCPLRC” with G A = [2, 3, 0, 0, 3, 2, 2]
and G B = [2, 0, 0, 0, 3, 0, 0, 2, 3].

such circumstances, in this paper we consider a more flexible variant, called the variable gap LCS (VGLCS) problem, in which 
the gap constraints are defined by two gap functions G A and G B , where G A(i) and G B( j) denote the two gap constraints 
(integers) applied to the ith character of A and the jth character of B , respectively. More precisely, when the ith character in 
A is picked in the common subsequence, then its previously picked character is bounded by the distance G A(i) +1 (likewise, 
for the jth character of B). Fig. 2 presents an example showing that two motifs “R...C..R” and “R...C...C”, which cannot be 
obtained by FGLCS, can now be revealed by VGLCS. In this example, we set the gap constraints to 2, 3, 0, and 0 for amino 
acids “R”, “C”, “L”, and “P”, respectively. This example also indicates an important application of VGLCS: to detect motifs 
where different types of amino acids are of different interests [10,11]. In this paper, we propose an efficient algorithm with 
O (nm) time for finding VGLCS, offering a new flexible tool for analyzing sequences.

The rest of this paper is organized as follows. In Section 2, we formally define the VGLCS problem, and present a simple 
algorithm that takes O (n2m2) time. Next, in Section 3 we improve the required time to O (nm) by using the incremental 
suffix maximum query (ISMQ). In Section 4, we give two other applications of ISMQ. Finally, in Section 5, we conclude our 
results.

2. Preliminaries

For a sequence (array) S , let S[i] denote the ith character (element) in S , and S[i, j] denote the substring (subarray) 
ranging from S[i] to S[ j], for 1 ≤ i ≤ j ≤ |S|, where |S| denotes the length (size) of S . A sequence S ′ = S[i1], S[i2], · · · , S[ip]
is called a subsequence of length p in S , where 1 ≤ i1 < i2 < · · · < ip ≤ |S|. Also, let G S denote the gap function of S , and 
G S (i) denote the gap constraint (a non-negative integer) on S[i]. For a two-dimensional n ×m array X , let X[i][ j] denote the 
element in the ith row and the jth column of X . For specifying subarrays, let X[i1, i2][ j1, j2] denote the two-dimensional 
subarray (rectangle) of X , which is a collection of X[i][ j] that 1 ≤ i1 ≤ i ≤ i2 ≤ n and 1 ≤ j1 ≤ j ≤ j2 ≤ m. In the following, 
we first define the VGLCS problem. After that, we present a simple algorithm with O (n2m2) time for solving the problem.

Definition 1. The variable gap subsequence (VGS): Given a sequence S and its gap function G S , a subsequence S ′ =
S[i1], S[i2], · · · , S[ip] is called a VGS of length p in S if ix − ix−1 ≤ G S (ix) + 1, for 2 ≤ x ≤ p.

Definition 2. The variable gap common subsequence (VGCS): Given two sequences A and B with their gap functions G A and G B , 
a sequence Z is a VGCS of A and B if Z is both a VGS of A with G A and a VGS of B with G B .

Given two sequences A and B with their gap functions G A and G B , the variable gap LCS (VGLCS) problem asks one to 
find the VGCS of maximal length. Clearly, by setting G A(i) = k and G B( j) = k, for 2 ≤ i ≤ n and 2 ≤ j ≤ m, one can solve the 
FGLCS problem by the VGLCS algorithm.

Now we present a simple algorithm for solving the VGLCS problem, which is adapted from a previous algorithm for 
FGLCS [8]. Let V be an n × m array, where each V [i][ j] denotes the length of VGLCS between A[1, i] and B[1, j]. Also, let 
F be an n × m array, where each F [i][ j] denotes the maximal length of VGCS between A[1, i] and B[1, j] when A[1, i]
and B[1, j] are picked as the last common character. According to this denotation, we have F [i][ j] ≤ V [i][ j]. Let MG(i, j)
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be the set of matching indices (i′, j′) satisfying that 1 ≤ i′ ≤ i − 1, 1 ≤ j′ ≤ j − 1, A[i′] = B[ j′], i − i′ ≤ G A(i) + 1, and 
j − j′ ≤ G B( j) + 1. A simple recursive formula for computing V [i][ j] and F [i][ j] is given as follows:

F [i][ j] =
⎧⎨
⎩

0 if i = 0 or j = 0,

0 if A[i] �= B[ j],
max{(i′, j′)∈MG (i, j) F [i′][ j′]} + 1 if A[i] = B[ j],

V [i][ j] =
{0 if i = 0 or j = 0,

max{V [i − 1][ j], V [i][ j − 1]} if A[i] �= B[ j],
max{F [i][ j], V [i − 1][ j], V [i][ j − 1]} if A[i] = B[ j].

The correctness of the above formula can be easily verified by discussing whether A[i] and B[ j] are picked as the last 
character in the VGLCS. However, note that a straightforward implementation takes O (n2m2) time in the worst case, since 
the size of MG (i, j) could be O (nm). In the next section, we propose an efficient algorithm that determines V [n][m] in 
O (nm) time.

3. An improved algorithm for the VGLCS problem

In this section, we first relate the above VGLCS algorithm to the incremental suffix maximum query (ISMQ). Then, we 
propose an efficient technique for solving ISMQ, with which our algorithm for solving the VGLCS problem reduces the 
required time to O (nm).

3.1. Finding VGLCS with incremental suffix maximum queries

Given a string (array) D of numbers, a suffix maximum query SMQ D(i) reports the maximum number in the suffix 
D[i, |D|] of D . When D is given beforehand, one can reversely scan D , storing all answers for SMQ D(i) in O (|D|) time, for 
1 ≤ i ≤ |D|. After that, each SMQ D(i) can be determined in O (1) time by a simple table lookup. However, if D is given 
incrementally, this one-time scanning is not applicable for determining SMQ D(i), because each SMQ D(i) can vary as D
grows. Taking D = [10, 3, 7, 2] for example, we have SMQ D = [10, 7, 7, 2], where the ith number in SMQ D represents the 
answer for SMQ D(i). Suppose that D grows to [10, 3, 7, 2, 5] and [10, 3, 7, 2, 5, 8], then we have SMQ D = [10, 7, 7, 5, 5] and 
SMQ D = [10, 8, 8, 8, 8, 8], respectively. Since we assume D to be incremental, we thereby name these queries as incremental 
suffix maximum queries (ISMQ). For ease of understanding, we leave our technique for ISMQ to the next section, but first 
propose a new algorithm that finds VGLCS by using ISMQ.

Recall that in the VGLCS problem, we are given two sequences A and B , and their gap functions G A and G B . For keeping 
the information of the VGLCS, we use two n × m arrays V and F defined in Section 2. To calculate the maximum value 
in the formula for F [i][ j], we construct two n × m arrays Col and All, where Col[i][ j] and All[i][ j] denote the maximum 
element in the one-dimensional subarrays F [i − 1 − G A(i), i − 1][ j, j] and Col[i, i][ j − 1 − G B( j), j − 1], respectively. With 
this arrangement, one can see that All[i][ j] stores the maximum element of the two-dimensional (G A(i) + 1) × (G B( j) + 1)

rectangle F [i − 1 − G A(i), i − 1][ j − 1 − G B( j), j − 1]. With the above variables, our algorithm for finding the VGLCS is 
proposed in Algorithm 1. For completeness, let V [i][ j] = 0, F [i][ j] = 0, Col[i][ j] = 0, and All[i][ j] = 0 if i ≤ 0 or j ≤ 0.

Algorithm 1 Algorithm for finding VGLCS.
for i = 1 to n do

for j = 1 to m do
Col[i][ j] ← max{F [i − 1 − G A(i)][ j], F [i − G A(i)][ j], · · · , F [i − 1][ j]}.
All[i][ j] ← max{Col[i][ j − 1 − G B ( j)], Col[i][ j − G B ( j)], · · · , Col[i][ j − 1]}.
if A[i] = B[ j] then

F [i][ j] ← All[i][ j] + 1.
V [i][ j] ← max{F [i][ j], V [i − 1][ j], V [i][ j − 1]}.

else
F [i][ j] ← 0.
V [i][ j] ← max{V [i − 1][ j], V [i][ j − 1]}.

end if
end for

end for
Retrieve the VGLCS by tracing V [n][m].

Lemma 1. Algorithm 1 solves the VGLCS problem in O (αnm) time, provided that each Col[i][ j] and All[i][ j] can be determined in 
O (α) time.

Proof. To verify the correctness of this algorithm, we discuss both conditions A[i] = B[ j] and A[i] �= B[ j]. For A[i] = B[ j], 
one can see that F [i][ j] refers to All[i][ j], which stores the length of VGLCS that ends with some A[i′] and B[ j′] satisfying 
that A[i′] = B[ j′], i − 1 − G A(i) ≤ i′ ≤ i − 1, and j − 1 − G B( j) ≤ j′ ≤ j − 1. Note that A[i] and B[ j] need not form a common 
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character, so we have V [i][ j] = max{F [i][ j], V [i − 1][ j], V [i][ j − 1]}. For A[i] �= B[ j], it is clear that F [i][ j] = 0, and that 
V [i][ j] should be determined by max{V [i − 1][ j], V [i][ j − 1]}. Therefore, Algorithm 1 is an implementation for the recursive 
formula in Section 2. Suppose that each Col[i][ j] and All[i][ j] in the loop can be computed in O (α) time, then V [n][m], 
F [n][m], Col[n][m], and All[n][m] can all be determined in O (αnm) time. Finally, one can easily design an algorithm with 
O (n + m) time for tracing the VGLCS. Hence, the lemma holds. �

Note that in Algorithm 1, each Col[i][ j] and All[i][ j] can be determined by ISMQ, because each column of F and each 
row of Col can be deemed as incremental strings of numbers. To handle ISMQ, a typical approach is to use a balanced binary 
search tree or a van Emde Boas tree [9,12], which reduces α to log n or log log n, respectively. In the following, we propose 
a more efficient technique for ISMQ, reducing the factor O (α) to O (1).

3.2. Handling ISMQ by union and find

The disjoint set union problem (or the union-find problem) [13,14] is a well-known problem that has many applications in 
algorithm design. A data structure for solving the union-find problem is therefore called a union-find data structure [13,14]. 
In a union-find data structure, there are three operations available as follows:

make(x, C): Create a new singleton set {x} whose name is C . This operation is forbidden if x is already in some existing 
set.

find(x): Retrieve the name of the unique set containing x.
unite(x, y, C): Unite the two different sets containing x and y into one new set named C .
Interestingly, we notice that the ISMQ problem can in fact be reduced to the union-find problem. With Algorithm 2, 

we show how to accomplish ISMQ by a union-find data structure. Here we treat the indices of the number string in ISMQ 
as elements, and treat each number in the string as a name of some set. In this way, we can ensure that each element 
x is unique. Suppose that D = d1, d2, · · · , di−1 is an incremental string of numbers that can be further incremented by 
adding some number di , where i denotes the order (index) of the added number. In addition, let W = w1, w2, · · · , w |W |
be an increasing list of dominating indices of D , where dw j = max{dw j−1+1, · · · , dw j−1, dw j }. In other words, dw j denotes 
a suffix maximum (incremental maximum scanned backward) and it represents a unique name for one existing set, for 
1 ≤ j ≤ |W |. For example, if D = [10, 3, 7, 2, 5], then W = [1, 3, 5]. For simplicity, we always use w |W | to refer to the last 
index in W , even though some indices may be appended to or removed from W . For ease of understanding, we again take 
D = [10, 3, 7, 2, 5, 8] as an example, showing the process of Algorithm 2 with Fig. 3 from left to right. In Fig. 3, the numbers 
in grey circles represent the indices stored in W , and nodes surrounded by the same bold oval are the elements in the 
same set, whose name is denoted by the bold number beside the bold oval.

Algorithm 2 Answering ISMQ with Union-find Operations.
Create an empty union-find data structure, and an empty W with |W | = 0.
i ← 1.
while there exists input di do

make(i, di).
while |W | > 0 and di ≥ dw |W | do

//If di ≥ dw |W | , then di becomes a new suffix maximum that causes updates.
unite(w |W |, i, di).
Delete w |W | from W .

end while
Append i to W .
while there exists a query SMQ D ( j) do

Report SMQ D ( j) = find( j).
end while
i ← i + 1.

end while

Lemma 2. Algorithm 2 reports all SMQ D( j) in O (β(|D| +|Q |)) time, where β , |D|, and |Q | denote the required time of one union-find 
operation, the length of the input string, and the number of ISMQs, respectively.

Proof. Based on the make and the unite operations applied in Algorithm 2, one can verify that the set containing j is 
always named by the maximum number among d j, d j+1, · · · , d|D| . Therefore, one can use find( j) to determine SMQ D( j), 
which proves the correctness of Algorithm 2. Note that the number of operations caused by make and unite is bounded by 
O (|D|). In addition, the number of operations caused by find is exactly |Q |. Finally, the total operations on W take O (|D|)
time. As a result, Algorithm 2 takes O (β(|D| + |Q |) + |D|) = O (β(|D| + |Q |)) time, where β denotes the required time to 
perform one union-find operation. �

For the general case of the union-find problem, the lower bound of β was proved to be a functional inverse of Acker-
mann’s function [13], which unfortunately cannot be eliminated. However, noticing that the union-find operations involved 
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Fig. 3. The process of Algorithm 2 with D = [10, 3, 7, 2, 5, 8], where the numbers in grey circles represent the indices stored in W , and nodes surrounded 
by the same bold oval belong to the same set, whose name is denoted by the bold number beside the bold oval.

in Algorithm 2 correspond to the incremental tree set union [14], the factor β can be reduced to O (1). In Algorithm 2, each 
newly added element can be deemed as a single node of a union tree T that contains only one single path (please refer to 
Fig. 3). Besides, the sets created by make and unite always correspond to consecutive disjoint paths in T . In Fig. 3, one can 
see that each make inserts one single node into T . In addition, each unite can be achieved by uniting two nodes v and p(v)

in T , where p(v) is the parent of v . Note that v is always the highest node of a set, thus it takes merely O (1) time to locate 
such v for any given set. Therefore, the union-find operations in Algorithm 2 can be implemented with the incremental tree 
set union [14], which reduces β to O (1).

For finding the VGLCS, one can verify that Algorithm 1 invokes no more than O (nm) makes and unites. Meanwhile, the 
number of invoked ISMQs in Algorithm 1, which equals to the number of finds, is also bounded by O (nm). That is, we have 
reduced O (α) to O (1), obtaining an algorithm with O (nm) time for finding the VGLCS.

Theorem 1. The VGLCS problem for two given sequences A and B can be solved in O (nm) time, where n and m denote the lengths of 
A and B, respectively.

Note that for the FGLCS problem, the invoked ISMQs are special queries having the same suffix length. For this case, one 
can simplify the union-find structure to a list, which turns out to be the previous result of Iliopoulos and Rahman [9].

4. Other applications of ISMQ

In this section, we present two other applications of ISMQ, showing its contribution to sequence analysis and stringology.

4.1. Extension for elastic gaps

The first related application of ISMQ is to extend the case of elastic gaps [8]. In the original elastic gap LCS problem [8], 
two values k1 and k2 are given and the distance between two consecutive matches is now required to be at least k1 + 1
and at most k2 + 1. Similar to the VGLCS problem, we can extend k1 and k2 to involve variable gaps.

Definition 3. The variable elastic gap subsequence (VEGS): Given a sequence S and its pair of elastic gap functions E1S and E2S , 
a subsequence S ′ = S[i1], S[i2], · · · , S[ip] is called a VEGS of length p in S if E1S(ix) + 1 ≤ ix − ix−1 ≤ E2S(ix) + 1, for 
2 ≤ x ≤ p, where E1S(ix) and E2S (ix) denote the lower and the upper bounds of the distance constraint on S[ix].

Definition 4. The variable elastic gap common subsequence (VEGCS): Given two sequences A and B with their elastic gap 
functions E1A , E2A , E1B , and E2B , a sequence Z is a VEGCS of A and B if Z is both a VEGS of A with E1A and E2A , and a 
VEGS of B with E1B and E2B .

Here we redefine F [i][ j] as the maximal length of the VEGCS between A[1, i] and B[1, j] whose last common character 
is A[i] and B[ j], and MG (i, j) as the set of matching indices (i′, j′) satisfying that 1 ≤ i′ ≤ i − 1, 1 ≤ j′ ≤ j − 1, A[i′] = B[ j′], 
E1A(i) + 1 ≤ i − i′ ≤ E2A(i) + 1, and E1B( j) + 1 ≤ j − j′ ≤ E2B( j) + 1. With this slight modification, the formula in Section 2
can then be applied to finding the longest VEGCS between A and B . Note that the elastic gap functions of A and B
are given beforehand, which means we can generate all required ISMQs with an O (nm)-time preprocessing. Therefore, by 
proper arrangement of these ISMQs, one can easily derive an algorithm with O (nm) time to obtain the longest VEGCS, 
which extends Iliopoulos and Rahman’s results for finding LCS with elastic gaps [9].
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4.2. The gapped all-suffix copy

Interestingly, we notice that our technique for ISMQ can also be applied to improving the result on the block-edit 
problem P (E I, L) [15]. P (E I, L) is a block-edit problem which allows both external copies and internal copies, and the cost 
of a block-copy operation is linear to the copied length. For the detailed explanation of P (E I, L), one can refer to Ann et 
al.’s article [15]. Here we focus on a related little problem. For clarity, we name this problem as the gapped all-suffix copy 
problem, which is an important part in Ann et al.’s algorithm for solving P (E I, L). Given a string S of length |S| with its gap 
function G S and its splitting cost function H S , the gapped all-suffix copy problem on A is to compute each minimal copy 
cost R S (i) = min{H S( j) + h × (i − j) | i − G S (i) ≤ j ≤ i} for 1 ≤ i ≤ |S|, where G S(i) is a non-negative integer (gap constraint) 
that limits the distance between i and j, H S( j) denotes the cost to split the string S[1, i] with index j, and h is a constant 
factor (not necessarily an integer). For solving this problem, Ann et al. first compute the function H ′

S (i) = H S (i) −h × (i − 1), 
and then locate the required index j for R S(i) by computing R ′

S (i) = min{H ′
S( j)|i − G S (i) ≤ j ≤ i}. To compute R ′

S(i) for 
non-integer h, Ann et al. adopt a balanced binary search tree, resulting in an O (|S| log |S|)-time algorithm. Obviously, with 
our technique of ISMQ, the required time can be reduced to O (|S|). We point out that by applying our technique for ISMQ, 
the required time for solving P (E I, L) [15] can be improved from O (nm log m + m2) to O (nm + m2), where n and m denote 
the lengths of the two input strings, respectively.

5. Conclusion

In this paper, we propose an optimal approach for handling the incremental suffix maximum query (ISMQ), which can be 
adopted to derive an efficient algorithm with O (nm) time for solving the VGLCS problem. In addition to the VGLCS problem, 
the definition of elastic gaps [8] can also be extended from two fixed integers to four gap functions. To our knowledge, 
our extension to the gap constraint is the first-known investigation on variable gaps, which offers a more flexible tool for 
sequence analysis. Besides, we notice that our technique for ISMQ can be applied to solving the block edit problem with 
gap constraints on suffix copy [15], reducing the time complexity from O (nm log m + m2) to O (nm + m2). Therefore, our 
result is also beneficial to stringology.
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