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Abstract—The paper proposes a neural model for a direct
comparison of the two so-called Double Dummy Bridge Problem
(DDBP) instances, along with a practical use-case for determining
which pair, NS or WE, should propose the higher deal during
a bidding phase in a Bridge game. The proposed system is com-
posed of two identical subnetworks combined by a comparator
layer placed on top of them. The base of each subnetwork is
a shallow autoencoder (AE) which is further connected with a
Multilayer Perceptron. The system is trained in two phases - an
unsupervised one - used to create a meaningful feature-based
input representation in AE compression layer, and a supervised
one - meant for fine-tuning of the whole model. Training and test
data are composed of pairs of Bridge deals in which the second
deal in a pair is the first one rotated by 90 degrees. Since the task
is to point which of the two deals promise a higher contract for the
NS pair, due to deal rotation within a pair, the system effectively
answers the title question “Who should bid higher, NS or WE, in a
given deal?”. The proposed approach is experimentally compared
with two other methods: one relying on a neural system solving
the DDBP and the other one employing several estimators of hand
strength used by experienced players. The results clearly indicate
that both neural network approaches outperform the usage of
human-scoring systems by a large margin, most notably in the
trump (suit) contract.

Index Terms—Autoencoder, Classification, Bridge

I. INTRODUCTION

One of the most popular and fast-growing fields on Artificial

Intelligence (AI) research is concerned with various aspects

of creating game AI. Such an entity would be expected to

obtain promising results in a predefined competition. Initially

classic board games were considered an interesting research

goal including the game of checkers [19], [20], this resulted

in creating one of the first self-learning programs as well as

in coining the term ”machine learning”. Later on, another

challenge in form of Chess [2], [21] was taken on with a

very impressive result, beating one of the most skilled Chess

players in the world. All this furnished research leading to the

recent successes in the game Go [7], [22], [23]. The research

domain focuses on several major problems of machine game

playing, the above mentioned were all perfect-information

games, but with time new challenges and ideas have arisen

giving attention to partial-information games as well, in these

some information is concealed from the participant, thus

limiting the determinism of the outcome and the ability to

fully judge the situation. As a full-fledged example of the

aforementioned game type we can consider Bridge, a popular

card game.

A. Rules of Bridge

Bridge is a well-known trick-taking card game which, in

the variant of the so-called Contract Bridge [15] considered

in this paper, requires the presence of four contestants. The

participants (referred to as North, East, South and West or N ,

E, S, W , for short) compete in teams of two (NS vs WE)

using a standard 52 card deck. Each Bridge game is composed

of two phases: the bidding and the play.

1) The Bidding Phase: The first step of every game is

the bidding phase, in which the adversaries decide about the

final contract to be played. This phase requires every player -

starting with the dealer and proceeding clockwise - to either

pass or propose a contract. The specified contract must be

higher than all previously proposed calls. Every non-passing

call must include one of the five game types (♣ - Clubs, ♦
- Diamonds, ♥ - Hearts, ♠ - Spades, NT - No trump) and a

number referring to the quantity of claimed tricks. A contract

is considered superior if the number of trick is higher or - in

case of contracts with the same specified number of tricks -

when the game suit is superior. The descending order of suits

is the following: NT, ♠, ♥, ♦, ♣.

2) The Play Phase: After having finalized the auction, the

team which has proposed the most valuable contract is bound

to attain their prior declaration. Their opponents are expected

to spare no efforts in order to hinder their success. In the

next phase, also known as the play phase, one of the team

members who proposed the higher contract during bidding

remains in play, the other one lays his cards down on the table

face up, from this moment he no longer actively takes part

in the current play phase. The opponent left to the remaining

team member initiates the game by placing a card of his choice

on the table. Every participant is now expected to match the

suit of the first card played in the current trick, after having

done so, the trick is claimed by the owner of the highest-ranked

card (including the trump suit cards). The winning player is

entitled to be the one to initiate the next trick.

The ultimate goal of the game is to fulfill the previously

declared contract. In a single game the highest number of

tricks to be claimed is limited to 13, so if x tricks were claimed

by the playing pair, the opponent pair succeeds if they manage
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to collect more than 13−x tricks. Please consult the rule book

of the World Bridge Federation [15] for a detailed explanation

of the game rules.

The remainder of the paper is arranged as follows. In the

next section the DDBP is formally defined along with a short

discussion on its practical relevance and presentation of our

motivation for pursuing this research. Section III provides

a brief overview of main scoring systems used by human

Bridge players for an estimation of the hand’s strength, which

will serve as one of baseline approaches in this study. Our

neural comparator of DDBP instances is presented in detail

in section IV, followed by a description of the experimental

setup and discussion of results in section V. Conclusions and

directions for future research are addressed in the last section.

II. DOUBLE DUMMY BRIDGE PROBLEM

The bidding phase is without any doubts rather complex.

Not only must two partners be able to estimate which cards

their opponents hold but, at the same time, they also have to

try to account for the strength of their partner’s hand. Both

team members try their best in order to indicate essential in-

formation about their hands using various calling conventions

but, nevertheless, some details concerning their associate’s

cards remain uncovered. The above reasons contribute to

the advanced difficulty and unpredictability of Bridge. On a

general note, humans cope with this issue by planning, making

predictions and certain assumptions about location of the most

relevant cards based on the bidding phase, and finally using a

great deal of experience

It is worth noting that Bridge programs contemporarily

represent a similar skill level as humans although they have

not been able to dominate and reach grand master levels

yet [26]. With progress a few very strong Bridge programs

have appeared, among others Wbridge5 [25], these programs

usually rely on simulations of various scenarios which later

allow to employ the Monte Carlo method and estimate the

outcome of the game. This method was further refined using

random seed methodology [25].

The above considerations lead directly to the Double

Dummy Bridge Problem (DDBP), which consists in answering

the question about how many tricks should be taken by the

pair NS with all cards revealed, assuming a given trump

suit (or NT game), and with perfect play of all four parties.

Event though, the problem addresses the perfect-information

situation (locations of all cards are known), due to its intrinsic

complexity and high sensitivity to changes in card distribution

(even swapping only two card between adversaries can cause

the result to be vastly different), solving the DDBP poses a real

challenge for Machine Learning (ML) classification methods.

As mentioned above, from a practical point of view ex-

tremely fast solving of DDBP is of paramount importance

in simulation-based Bridge solvers which rely on solving its

numerous instances so as to perform an accurate estimation

of the expected outcome, considering various scenarios. In

particular DDBP is extensively used by the partition search
algorithm [1], [8] or upper-confidence-bound algorithms [10].

A. Related work

As mentioned in the previous section, the DDBP was

extensively used is several Bridge playing programs, most

notably the Ginsberg’s Intelligent Bridge player [8] which

employed partition search to support calculation of the exact

DDBP solutions. Ginsberg’s approach was recently revisited

by Beling [1] who proposed several improvements resulting

in a significant reduction of the search tree size and the

calculation time.

A different approach relying on bandit-based method [11]

was proposed in [10] where the problem of bidding was

transformed into a learning problem and tackled accordingly

using cost-sensitive classifiers and upper-confidence-bound

algorithms. With respect to application of neural networks to

solving DDBP, one could mention our Multilayer Perceptron

(MLP) approach, which is summarized in the following sec-

tion, it was followed by several recent papers of Dharmalingam

and Muthusamy. In particular, in [4] the influence of the

training method selection on the overall network performance

is analyzed leading to a conclusion about the advantage of

the Resillient Backprop (RProp) method over the classical

BackProp formulation. In a subsequent paper [5] they analyze

the impact of the selected activation transfer function on

the network output error and experimentally demonstrated an

advantage of the hyperbolic tangent function over sigmoid

one. Another two papers were devoted to testing other than

MLP architectures, namely the Elman network [6] and the

Cascade Correlation network [18], using the RProp training

algorithm in both cases. The first provides a slight insight on

the advantages of the Elman network concerning time benefits

as well as architecture. The latter also concerns itself with the

comparison of learning algorithms confirming the conclusions

presented in [4].

B. Summary of our previous approaches to DDBP

Our previous Bridge-related research was concentrated on

efficiently solving the DDBP with the use of neural networks.

Chronologically and methodologically it can be divided into

two phases, briefly summarized below.

1) Multilayer Preceptrons: Our initial approach to solving

the DDBP [16] relied on testing several Multilayer Perceptron

(MLP) approaches with the research focus gradually shifting

from the problem of efficient architecture selection (in terms

of input deal representation and connection weight layout),

through comparison of MLP performance with that of world-

class human players in solving the DDBP, to the problem of

explainability of the Bridge related knowledge acquired by

the networks during the training process. Partial outcomes

referring to the above-mentioned aspects have been published

in several papers and summarized in [17].

Our initial concern was the selection of an efficient neural

architecture (among the feed-forward MLP networks) in terms

of the number of layers, weight connection pattern and, above

all, suitable deal representation in the input layer. In extensive

tests it was proven that the best encoding among several tested

possibilities was the one that assigned 52 neurons to each hand
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and explicitly pointed a relevant subset of 13 cards belonging

to each of them. The reason for a superior performance

of this particular representation should be attributed to the

high sensitivity of the classification results with respect to

particular location of main cards, such as honors (AKDJT)

and trump cards. The resulting input layer was composed of

208 neurons out of which 52 inputs were active (equal to

1) and the remaining were equal to 0. Apparently, only in

the case of explicitly pointing out the location of these cards

in a highly redundant but at the same time straightforward

way, the network could properly handle the deal information

presented as the input (please consult [17] for a more detailed

discussion). The best MLP architecture found during our

experiments was composed of 4 layers 208 − 52 − 13 − 1
or, more precisely, 52x4− 13x4− 13− 1, i.e. with dedicated

connections between the input and the first hidden layer (1hl)

to make independent hand representations in the 1hl. The

network has full connections between the 1hl and the 2hl,

and between 2hl and the output. A single sigmoid output

neuron predicted the number of tricks to be taken by NS - its

output range was divided into 14 sub-intervals of equal length

representing 14 possible answers. This winning architecture

is depicted in Figure 1. This architecture trained on 100 000

Fig. 1. Network and input encoding from a previous approach

deals and tested on another set of 100 000 deals was able

to accomplish the accuracy of 53.11% for suit contracts and

37. 80% for NT (No Trump) ones [13]. In order to assess

these outcomes a comparative experiment was run among

world class Bridge players who took part via Internet. A group

of 10 internationally recognized players (4 Grand Masters, 3
International Masters and 3 Masters), on a subset of testing

deals accomplished the level of 53.06% and 73.68% for suit

and NT contracts, respectively. While in the case of NT deals

the human dominance in undisputable, for suit deals they are

on par with out MLP approach. The reasons for this results

discrepancy between suit and NT contracts are discussed in

detail in [13].

During experiments we have analyzed the weight patterns

in the network, we have seen the network concentrate on

honor connections, a very clear case were the input neurons

representing Aces (A♠, A♥, A♦, A♣), where the absolute

value of the connection was clearly the largest. Another

interesting phenomenon were neurons specialized in honors

in a specific suit, as well as those “dedicated” to one suit in

general [12], [17].

2) Baseline training with autoencoders (AE-MLP ap-
proach): As over the years the computation capabilities

of everyday-use computers have drastically increased more

complicated models have become possible, this essentially

led to the growth of popularity of deep-learning models.

Taking this into account we revisited the DDBP problem by

devising another neural approach, relying on the compression

abilities of autoencoders (AE). The AE’s capability to extract

distinctive features allowed to reduce the dimensionality of

the problem and in several experiments allowed to slightly

surpass the previously achieved above-mentioned MLP-based

approach [14], [24].

In short, the method (abbreviated as AE-MLP) employed

shallow AEs during an unsupervised pretraining phase and

Multilayer Perceptron networks (MLPs) with three hidden

layers, built on top of these trained AEs, in the final fine-

tuning training phase. The AE networks were composed of 3
layers: the input layer with 208 neurons using deal encoding

presented in Figure 1, a compression layer composed of 104

or 156 units, and an output layer with 208 neurons. Once the

training of AE was completed the output layer was discarded

and the first two layers (input and compression one) were used

as the base of the final network architecture, which underwent

final, fine-tuning training. This final architecture, besides the

two AE layers, was composed of 3 additional fully connected

hidden layers with 52 and 13 units, resp. The output layer was

composed of either 1 neuron (with the output range divided

into 14 subintervals) or 14 neurons with a softmax function.

In either case the output represented one of the 14 possible

classes - the number of tricks to be taken by pair NS, from

0 to 13.

Two variants of AE architectures were considered in [14]

which differed by the topology of connections between the

input and the compression layer. In the baseline case the

layers were fully connected leading to a 208−156/104−208
architecture. In the other case, each 52-neuron representation

of a given hand in the input layer was fully connected with

1/4 of the compression layer neurons (26 or 39 depending

on the particular setup), without any connections to other

compression units. This way in the compression layer each

52-neuron hand representation was transformed to a 26 or 39
unit one. The network architectures of both types are presented

in Figures 2 and 3, and denoted as F (fully connected) and D
(dedicated connections), resp.

In the DDBP experiments reported in [14] the network of

type D appeared to be slightly superior to its F counterpart,

achieving the final accuracy of 51.28% and 41.73%, respec-

tively for suit and NT contracts. In both cases the compression

layer with 104 units outperformed slightly the 156 unit version.

C. Motivation and research goals

One practically-relevant aspect of Bridge research is the

nature of Bridge tournaments in which 4-player teams are most

often considered, and each deal is simultaneously played twice

Who should bid higher, NS or WE, in a given Bridge deal?
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Fig. 2. AE network of type F (fully connected). The size of the 1hl is equal
to 104 or 156, depending on the experimental setup

Fig. 3. AE network of type D (dedicated connections). The size of the 1hl
is equal to 104 or 156, depending on the experimental setup

- on one table in the line (NS) by one pair of the team and

on the other table in the line WE - by the other pair from the

team. This way the team’s performance becomes independent

on the “luck factor” related to the strength of each hand in

(randomly) selected deal. This leads to a question which line

(NS or WE) is stronger and consequently which pair (NS or

WE) is more likely to play it. This question can be approached

in the three straightforward ways, which are experimentally

verified and compared is this work.

The first one is a straightforward extension of our recent

approach to solving DDBP [14], [24] which relies on using

the AE networks and is briefly summarized above. Since the

solution to the DDBP answers the question about the number

of tricks to be taken by pair NS one can easily check if it is

greater than 6, and if so - appoint NS as the stronger pair, or

appoint WE, otherwise.

The second possibility is to train a classifier to point which

of the two deals presented in the input promises stronger

contract on NS line. Application of such a classifier to a pair

composed of an original deal and the same deal rotated by 90
degrees will directly answer the question whether the stronger

line is NS (if the original deal is selected by the classifier) or

WE (otherwise). This latter approach (a direct comparison) is

inspired by DeepChess approach [3] which was successfully

applied to compare two Chess board positions and is described

in more detail in section IV.

The third option is to use the human hand-strength estima-

tors which are applied by experienced Bridge players, and sum

up the hand points separately in pairs NS and WE. A pair

with a higher assessment - by means of human estimators - is

a stronger one. The most commonly used human hand strength

estimators are discussed in the next section.

In summary, our research goals are twofold:

• a comparison between indirectly addressing the above

mentioned problem, by means of using the specifically

designed AE+MLP architecture for the estimation of the

number of tricks to be taken by the pair NS, with

addressing it directly, by means of a comparison of two

deals, one of which is a rotated version of the other;

• a comparison of both above mentioned methods with the

hand strength estimators commonly used by professional

Bridge players.

III. BRIDGE TRICK ESTIMATION METHODS

Generally speaking the methods of hand strength assessment

used by human Bridge players are relatively simple and mostly

base on assigning points to higher-ranked cards (Point Count
methods) and adding correctional points for long / short suits

(Distributional Count methods).

A. Points based methods

The base methods reward hands with high cards, known as

honors, which are in the range from A to 10. The most popular

point-based systems are presented in Table I. The Work Point

Count (WPC) is the absolute leader among them.

TABLE I
POINT-BASED METHODS

Method A K Q J 10
Work Point Count (WPC) 4 3 2 1 0

Bamberger Point Count (BPC) 7 5 3 1 0
Collet Point Count (CPC) 4 3 2 0.5 0.5

AKQ Points (AKQ) 4 3 2 0 0

B. Distribution based methods

The WPC method is usually used as a stand-alone approach

in NT contracts (additionally assuming that the suits on

the playing hands are appropriately “balanced”). In the suit

contracts WPC is often extended by introduction of some

correctional points which take into account suits distributions.

Several popular distributional methods are mentioned below.
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1) Assert system (AS): This method looks for voids (suits

without any cards) and singletons (one card in a given suit)

in a hand, respectively contributing another +2 and +1 to the

WPC score. For each longer suit (with more than 4 cards) an

additional +1 is added to the result as well.

2) Rule of three and four (R34): The rule of three and four

is an extension of the WPC that specifically considers suit

lengths. For each card, starting from the 5th in the trump suit,

an additional point is added. The same is also done for non-

trump suits, but in that case the rewarding starts already from

the 4th card.

3) Plus value (PV): This method looks for honors in a

hand, and for every Ace an extra value of 0.25 becomes part

of the final estimation, a further bonus of 0.5 is foreseen for a

10 with any other honor or with a 9. Finally, a supplementary

value of 0.5 is accounted for every suit with 3 honors or 2 out

of the top 3 ones (AKQ).

C. Sample deals

In order to illustrate the human hand strength estimation

methods in practice let us consider two sample deals depicted

in Figures 4 and 5. Point-based evaluation of both of them is

presented in Table II.

Fig. 4. First sample deal - trump suit is ♠

TABLE II
POINT-BASED AND DISTRIBUTION-BASED EVALUATION OF SAMPLE DEALS

FROM FIGURES 4 AND 5. IN PARENTHESES THERE ARE BONUSES FROM

THE RESPECTIVE DISTRIBUTIONAL METHODS. PLEASE NOTE THAT IN

EACH METHOD EACH HAND IS scored separately AND ONLY THEN THE

RESULTS ARE COMBINED INTO A PAIR ASSESSMENT

Deal Fig 4 Deal Fig 5
System NS WE NS WE
WPC 15 25 25 15
BPC 23 41 40 24
CPC 14 26 24.5 15.5
AKQ 12 24 23 13
AS 22 (+7) 27 (+2) 30 (+5) 19 (+4)
R34 22 (+7) 31 (+6) 32 (+7) 20 (+5)
PV 15.75 (+0.75) 27.75 (+2.75) 27 (+2) 17 (+2)

In the deal from Figure 4, when taking AS into account,

one has to add +1 for every singleton in N hand, another

+2 for the void in S hand and a total of +3 for suits longer

than 4 cards (♠,♣,♦). For WE there are two point for long

suits (♥,♣). When considering the R34 and NS, one has

to contribute +1 for the 5th card in the trump suit (♠) and

6 points for the remaining long suits. For WE the bonus

equals 6. For PV and NS one adds 0.25 for A♦ and 0.5 for

(10♣,K♣). For WE, 0.75 for A♥, A♠, A♣, 1 for (10♠, 9♠)
and (10♥,K♥/Q♥) and 1 for the two of the highest honors

(twice: in ♥ and in ♦).

Fig. 5. Second sample deal - trump suit is ♠

Regarding the deal presented in Figure 5, applying AS will

result in 2 points for a single card in ♦ in both hands of pair

NS and 3 for long suits (♥,♣,♣). For WE the bonus equals

4 - 2 for singles (♣ in both hands) and 2 for long suits (♦
twice). The R34 will add a total of 7 for NS and 5 for WE
for long suits. In PV, both teams receive 0.5 for the Aces. NS
additionally receives 0.5 for 10♣ and a honor, and 1 point for

(K♥, Q♥) and (K♣, Q♣) honors, while WE 1 and 0.5 resp.

for (Q♠, 10♠), (10♦, 9♦) and (A♦,K♦).

IV. ADAPTATION OF THE DEEPCHESS APPROACH

In a direct comparison approach we have adapted the idea

of DeepChess [3] where two chess positions were directly

compared to answer the question about which one of them

is more promising for a given playing side (White or Black).

Similarly to our previous work [14], the model for DeepChess

is trained in two stages, first one is used to extract high

level features from a given position, likewise for an AE

an alternative representation is built. Then in the second

stage, which is now supervised, the model learns to compare

chess positions and point out which one of them is more

advantageous. The concept, in the context of Bridge deals,

is drafted in Figure 6. In each of the subnetworks a respective

deal is processed and in the final comparator layer a decision

is output with three possible choices: the left deal is more

promising for NS, both promise the same number of tricks,

the right one is more promising for NS. If the deals under

comparison represent a raw deal and a deal rotated by 90

degrees, then the system actually answers the question about

which pair has more promising cards, NW or WE.

Each subnetwork is built in the following way: in the initial

stage an AE is pretrained in accordance with the previously

mentioned principles. Hidden layers of an AE are meant to

extract relevant features from the data provided, this allows

for the model to focus its attention on particular preselected

information which in general should have the largest impact

on the final output. The compression CR is set to 2 (leading

Who should bid higher, NS or WE, in a given Bridge deal?
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to 104 neurons in the first hidden layer) based on a bunch

of preliminary experiments from previous work [14]. The

resulting encoding layers (208 and 104) are extended by

adding two MLP layers on top of them (52 and 13).

Two copies (clones) of such architectures are fed together

into a softmax output layer composed of 3 units, which is

meant to assess which of the two deals fed into the network

will end with a higher outcome for the pair NS.

Keeping in mind the conclusions drawn in our previous

paper [14] we have thoroughly explored two alternative topolo-

gies for our network F and D (cf. Figures 2 and 3). The final

design of the system (in version F of the weights topology)

is presented in Figure 7.

A. A deal representation in the input layer

The input layer was prepared based on previously conducted

experiments [17]. The most efficient representation was de-

voting 208 neurons to serve as binary input, this allowed

the deal to be fed to the network. The input consisted of

4 major parts, every one of which belongs to one of the

players provided in a preset order, i.e. 52 inputs for W ,

52 input for N , 52 inputs for E and finally 52 input for

S. A brief representation was already presented before, in

Figure 1. Within one section every neuron corresponded to

one given card from all the possibilities found in the deck in

the following order: A♠, . . . , 2♠, A♥, . . . , 2♥, A♦, . . . , 2♦,

A♣, . . . , 2♣. The cards that were assigned to a specific player

were marked with a 1 as input, the ones that a player did

not possess remained set to 0. This led to every card being

represented in the input four times - once for every player,

among those two inputs exactly one was set to 1. As aftermath

there were exactly 13 active inputs in every section - equal to

the number of cards in a Bridge hand.

Fig. 6. Schematic presentation of a comparator-based DDBP model

V. EXPERIMENTAL SETUP AND RESULTS

Similarly to our previous approaches we trained two sepa-

rate models for NT and suit games, due to reference to our

previous work where we have seen that the respective game

strategies vary significantly.

Fig. 7. Variant with 3 outputs

A. Training and testing data

All the deals used during the experiments were part of the

Ginsberg’s GIB Library [9] which consists of over 700 000
samples. Every sample represents a complete card distribution

for every of the 4 players and is accompanied by 20 numbers

representing the expected outcome for the pair NS in different

scenarios. These scenarios are grouped by 5 possible game

types - every suit as trump and no trump - and by the

player making the opening hand, this giving a total of 20
combinations.

The size of the no trump train set was 400 000 samples thus

resulting in 800 000 deals (for N and S making the initial

lead), the test set consisted of 200 000 samples or a total of

400 000 deals. For trump samples the numbers were 100 000
for training and testing respectively, giving a total of 800 000
deals in each case (due to inclusion of all possible trump suits).

Training and test data were selected and converted to the

appropriate format as specified in the section IV-A. In the

input pairs generation process, the two paired samples needed

to represent the same deal but seen as two adversaries what

resulted in randomly selecting a sample and, as a paired

sample, rotate it by 90 degrees (as by default the described

results correspond to the pair NS). Rotating has allowed to

trick the network into thinking that the other pair is now

serving as the pair NS. We also had to keep in mind that the

expected outcome for the game for the other pair had to be
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accounted for as well, thus we obliged to subtract the expected

value for NS from 13 (the total number of tricks in a game)

in order to acquire the results of the game for the other.

B. Training phase 1 - training of an autoencoder

Training of the model included two major phases, the first

one referred to AEs and focused on creating a simplified

representation of the input. A network consisting of 208 input

neurons, 104 hidden units and finally again 208 outputs was

temporarily constructed for the requirements of this phase.

The provisional model was trained to reproduce the input and

minimize the cross-entropy error function as well as possible.

The training was aborted when the change in the applied error

function was below 0.01, this condition was checked every

100 iterations. Normally, the next stage would be freezing

the already obtained weights, cloning the 104 unit layer and

embedding the next one between the clone and its original. In

our case the model was limited to just one step due to previous

experience with exactly this structure [14].

Since the input and output for AE model the same cardi-

nality the recommended error function for binary and sparse

input vectors is crossentropy and can be described with the

following formula:

H(x, z) = −
d∑

k=1

[xk log zk + (1− xk) log (1− zk)]. (1)

where xk is the desired output, zk is the actual output

and d being the size of a training sample. The Root Mean

Square Propagation (RMSProp) algorithm with a learning rate

η1 = 0.001 was used in this phase. The value of η1 was

also taken from our previous research and experience with

this methodology.

C. Training phase 2 - final training of a classifier

After having pretrained a suitable AE the model was taken

into the next fine-tuning phase. In this phase the decoder

layer was removed as it served no purpose anymore. An exact

copy (clone) of the pretrained encoder part was created and

both of these were finally embedded into a final model. Each

encoder was connected to a suitable independent remainder -

two additional layers composed of 52 and 13 units, resp. and

a common output (comparator) layer. In this stage the newly

created architecture was further trained to deem if one of the

presented deals was more promising or in certain cases if both

were equal.

D. Experimental results

Please recall from section II-C that our goal is to compare

the three different ways of predicting Who should bid higher,
NS or WE, in a given deal?. The first approach is to indirectly

use our previous model from [14], [24] and its results. Please

note that if comparing two pairs in the same game the total

count of tricks must be equal to 13. Therefore, if the result

of one team is higher or equal to 7 it means that team being

in a better position. Keeping in mind that the result for the

opposing team is equal to 13− x one can easily compare the

adversaries capabilities.

The second option is to train a DeepChess-like model

introduced in section IV to point which of the two deals

presented in the input promises stronger contract on NS line

in the case when the second deal is a rotated (by 90 degrees)

version of the first one.

The third possibility is to use the human hand-strength

estimation methods presented in section III and sum up the

assessment of N and S hands versus those of W and E. A

higher scored pair is considered a stronger one.

Every method was tested on exactly the same set, this also

was the set we have later tested our network on. The accuracy

of considered approaches is presented in Table III.

TABLE III
ACCURACY OF TESTED METHODS

Method No Trump Trump (suit)
Work point count 80.81% 67%

Bamberger point count 82.19% 68.47%
Collet point count 82.16% 68.71%

AKQ points 79.91% 66.49%
Assert system 81.09 % 69.75%

Plus value 82.2% 69.23%
Rule of three and four 81.25% 66.58%

DeepChess-like neural system 83.42% 88.14%
AE-MLP – full connections (F) 87.18% 92.2%

AE-MLP – dedicated connections (D) 90.01 92.44%

Firstly, it can be easily observed in Table III that the

results relying on human estimators are better for NT deals,

what is most probably caused by the fact that the estimators

mainly assign values to individual hands, and therefore, the

synergetic effect of combining two hands into a pair is not

taken into account. This situation is particularly harmful in

the trump (suit) contracts where the exact distribution of

cards on two cooperating hands is of critical importance.

Neural network approaches, due to taking into account all

card related information simultaneously (together) are able to

infer a combined strength of a pair of players, and therefore,

practically do not suffer from this problem.

Secondly, the human estimators are based on several dif-

ferent aspects, but they, more or less, deliver the same perfor-

mance. In comparison all three neural approaches (DeepChess-

like and AE-MLP ver. F and D) are clearly superior, in

particular for suit contracts.

Thirdly, among neural network approaches - an indirect

method, in which a deal is tested in the DDBP regime and

the estimated number of tricks is compared with 6 to point

out whether NS or WE has an advantageous position proved

to be a few percent points stronger than a direct method

relying on the DeepChess approach. This conclusions stems,

most probably, from a high accuracy of AE-MLP in case one

or two trick errors are allowed [14]. In the respective cases,

the accuracy exceeds 95.3% and 99.7% for suit contracts and

86.1% and 96.3% for NT deals.

Finally, since both the dedicated (D) and fully-connected

(F) networks acquire similar results for suit games, we belief

Who should bid higher, NS or WE, in a given Bridge deal?
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that there is a factor which does not depend on the topology

of connections, though yet remains of cardinal importance for

suit games - this could be also related to the importance of

the trump suit.

Referring to two example deals presented in Figures 4 and 5,

in the first one of them, in each estimation system, the pair

NS is at a disadvantage, although in reality the NS pair can

claim 10 tricks in ♠. On the contrary, both network approaches

have chosen NS pair to be more promising. In the case

of deal from Figure 5, NS will only score 3 tricks which

makes the poin/distribution-based estimations inaccurate once

again, although the answers of both neural network systems

are correct.

VI. SUMMARY AND CONCLUSIONS

This paper proposes and experimentally evaluates three

approaches to a classification problem which consists in an-

swering the question which pair, NS or WE, has higher

potential to play in a given deal. While the problem is of

specific interest for the Bridge playing community, on a

general note, it presents a challenging classification task, hard

to solve without exhaustive simulation of the playing phase,

which is avoided in this paper. The question is to be answered

exclusively based on the information about a deal distribution

among hands (N , E, S, W ).

Generally speaking, the two neural network methods, which

rely on combination of AE and MLP and apply a two-

phase training regime, but differ in a way of approaching the

baseline classification task visibly surpassed the third method

which employs human hand strength estimators to assess the

bidding potential of each pair. One of the main reasons of

this phenomenon should, most probably, be attributed to the

fact that unlike neural network approaches which effectively
combine two hands into a pair, point-based systems simply

sum up estimations of two hands and this way loose any

synergetic effects. Such a situation is well illustrated in trump

(suit) deals for which the effect of synergy is of paramount

importance compared to NT deals. In the former the advantage

of neural systems is enormous.

Overall, the neural networks accuracy above 90% seems

to be comparable to that of the top human players. While

this statement is only a hypothesis and requires experimen-

tal verification, our previous studies on a related problem

(DDBP) [17] revealed that the accuracy of top human Bridge

players solving this problem slightly exceeds 53.0% in the

case of suit contracts and is slightly above 73.6% for the NT

contracts.
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[13] Mańdziuk, J., Mossakowski, K.: Neural networks compete with expert
human players in solving the double dummy bridge problem. In: 2009
IEEE Symposium on Computational Intelligence and Games. pp. 117–
124 (Sept 2009)
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