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Abstract

We consider the problem of :nding the longest increasing subsequence in a sliding window
over a given sequence (LISW). We propose an output-sensitive data structure that solves this
problem in time O(n log log n+OUTPUT) for a sequence of n elements. This data structure sub-
stantially improves over the na?@ve generalization of the longest increasing subsequence algorithm
and in fact produces an output-sensitive optimal solution.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Given a sequence a1a2 · · · an of distinct values from a linearly ordered set its longest
increasing subsequence (LIS) is a subsequence of maximum length, whose values in-
crease as the indices increase. The underlying set of the given sequence can be, and
usually is, taken to be {1; 2; : : : ; n}, so that the sequence can be viewed as a permu-
tation �= �(1)�(2) · · · �(n). In this setting the LIS consists of a sequence of indices
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16i1¡i2¡ · · ·¡ik6n such that �(i1)¡�(i2)¡ · · ·¡�(ik) where k is the largest num-
ber for which such a sequence exists.
The longest increasing subsequence problem refers either to identifying the longest

increasing subsequence(s) or, alternatively, to determining the length k of the LIS. In
either of these forms, this problem has been the subject of intense study by mathemati-
cians and computer scientists alike (see Section 2.1 for a more detailed discussion of
previous work). This problem has interesting properties both from a purely combina-
torial perspective (see e.g. [13]) as well as actual applications in :elds such as DNA
sequence matching [6]. This problem should not be confused with the longest common
subsequence (LCS) problem which considers two sequences and locates a series of
entries that appear in the same order in both sequences. However, LIS is a subcase of
LCS.
In this paper, we consider the problem of :nding the length of a longest increasing

subsequence in every window of a sequence (LISW) of given width w; that is, the
LISs of substrings of � of the form �(i+1)�(i+2) · · · �(i+w). This work is inspired
by the study of the relationship and theoretical underpinnings of a problem and its
windowed version [5,7]. We propose an output sensitive data structure which solves
LISW in optimal time; that is, linear on the size of the output.

2. Problem de�nition

Given a sequence �= �(1)�(2) · · · �(n) and a window size w6n, a window of � of
width w is a subsequence �(i+1)�(i+2) · · · �(i+w) for some 06i6n−w. We also
consider the truncated windows �(1) · · · �(j) for j6w and �(j) · · · �(n) for j¿n − w
as windows of size w. The general problem that we consider is that of determining a
LIS in each of the windows Wi. Within this framework, several related questions can
be posed regarding this problem, each with potentially diNerent time complexity.
Local Max Value For each window report the length k of the longest increasing

subsequence in that window.
Local Max Sequence Explicitly list a longest increasing sequence for each window.
Global Max Sequence Find the window with the longest increasing sequence among

all windows.
We will deal with the Local Max Sequence form of the LISW. The algorithm we

present runs in linear time on the size of the output for this problem and hence is
optimal both in the worst case and adaptive sense. The same algorithm solves the
other two versions of the problem described above, although its optimality in these
cases is an open question.

2.1. Previous work

Algorithms for :nding the length of the LIS date back to Robinson [12] and Sch-
ensted [14] with a generalization due to Knuth [10]. These algorithms have time com-
plexity O(n log n) which is optimal in the comparison model. Hunt and Szmanski [9]
give an algorithm with time complexity O(n log log n) using the van Emde Boas data



M.H. Albert et al. / Theoretical Computer Science 321 (2004) 405–414 407

structure [15]. Chang and Wang [4] also give an O(n log log n) algorithm based on a
permutation graph interpretation. Bespamyatnikh and Segal [3] present an O(n log log n)
algorithm that determines all longest increasing subsequences. The algorithm we present
here is O(n log log n+ OUTPUT). Probabilistic results related to this problem have been
discussed in Aldous and Diaconis [1] and Groenboom [8]. The question also has ap-
plication in bioinformatics in the MUMmer system for :nding matches between DNA
sequences [6].
Apostolico et al. [2] consider the problem of :nding maximum cliques in circle

graphs. This problem can be translated to a longest increasing subsequence problem.
The approach in [2] is to restrict consideration to just part of the sequence at a time and
search for an LIS in just that part of the sequence. However, the concept of window
de:ned there is diNerent than ours. One edge of their window is always one of the
ends of the original sequence, so that their window is not a sliding window but is
rather an expanding input sequence. Furthermore their window does not include all
sequence elements so that, depending on the location of the edges in the circle graph,
a window of size m could contain as many as m elements in the permutation or as
few as zero.

2.2. Summary of contributions

LISW has an obvious na?@ve algorithm for the local max sequence which simply
computes the LIS in each window separately. Using the methods described in the
preceding section, this gives an algorithm whose complexity is O(nw log log n). In the
case where the average length of the LIS in each window is P(w) then, our algorithm
oNers no asymptotic improvement over this method.
However, it is well known in the permutation case that the average length of the

LIS of a permutation of length n is asymptotically 2
√

n (see [1] for this result, and
references). Suppose that a permutation � of length n is chosen uniformly at random.
Consider any :xed window of �. The relative ordering of values observed in that
window will also be uniformly chosen from among the patterns of permutations of
length w. Thus the expected length of an LIS in any given window is asymptotically
2
√

w and by linearity of expectation, the expected total length of all LISs is O(n
√

w).
So, in the expected case, or in any situation where the average length of the LIS in
each window is o(w), our algorithm oNers a signi:cant improvement on the na?@ve one.
To wit, the na?@ve algorithm processes (n−w+1) windows and requires O(w log logw)
time for each, giving O((n − w + 1)w log logw). For w suQciently large, e.g. w= cn,
given that the LIS in the whole sequence is length O(

√
n) our algorithm gives worst

case bounds of O(n1:5). Even for small w, given that the expected length of each LIS
in each window is O(

√
w) then our algorithm gives O(n

√
w) (ignoring smaller order

terms) while the na?@ve algorithm gives O(nw log logw).
This improvement is obtained largely through the judicious use of a particular data

structure. This data structure implicitly represents information pertinent to determining
the LISs of the current window and to determining the LISs of all suQxes of the
current window. This information can then be used to update the structure each time
we drop an element oN the beginning of the window and add one to the end. As with
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Fig. 1. Tableau P created by Robinson–Schensted–Knuth Algorithm for �=35274816. First 3 is inserted in
the tableau. Then 5 is inserted. As 5 is greater than 3 it is placed to the right of 3. Next 2 is inserted. As
it is less than 3 it bumps 3 and takes its place while 3 goes to the second row. The insertion continues in
this fashion.

most algorithms concerned with aspects of the LIS problem, our starting point will be
the original constructions of Robinson and Schensted, so it will be helpful to review
these next.

2.3. Tableaux and the Robinson–Schensted–Knuth algorithm

The Robinson–Schensted–Knuth algorithm (see Van Leeuwen [16] and references
therein; for background see also Knuth [11] or Sagan [13]) is based on the concept of
a tableau which can be used to determine increasing subsequences of a permutation.
More formally,

De�nition 2.1. A tableau of shape �= �1; �2; : : : ; �m where �1 + �2 + · · ·+ �m= n is a
collection of n elements arranged in left-justi:ed rows such that row i has �i elements,
and the elements increase weakly across rows and increase strictly down columns. (See
Fig. 1 for an example of a tableau.)

Although we concern ourselves mostly with permutations, we will discuss the
Robinson–Schensted–Knuth algorithm in its full generality as applied to sequences of
possibly repeated elements that come from a linearly ordered set. The algorithm we in-
troduce in this paper uses a generalization of the Robinson–Schensted–Knuth algorithm
and, in particular, uses the same “bumping” rules as Robinson–Schensted–Knuth.
Given a sequence �= �1; �2; : : : ; �n, the Robinson–Schensted–Knuth algorithm con-

structs a pair of tableaux P and Q both of shape � where � is a partition of n. We
describe here just the construction of P as that includes the bumping technique we use.
Given �, elements �1; �2; : : : ; �n are inserted one at a time in that order to form P. At
step 1 place a single element, �1, as the :rst element of the :rst row of P. At step i,
place �i using the following algorithm: Scan the :rst row of P from left to right to
locate the smallest element t that is greater than �i. If no such element t exists, place
�i at the end of the :rst row of P. If t does exist, remove t from the :rst row of P
and put �i in its place. We say �i bumps t. Then scan the second row of P from left
to right to locate the smallest element in the second row of P that is greater than t.
If no such element exists, place t at the end of the second row of P. If t does bump
an element, insert that element into the third row of P and continue bumping elements
until the currently bumped element comes to rest at the end of a row in P. Continue
until all elements of � are exhausted (see Fig. 1 for an example).
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The length of the :rst row of tableau P is equal to the length of the LIS for the
permutation. This sequence can be determined via Schensted’s basic subsequences.
Schensted [14] de:ned the ith basic subsequence to be those elements that had occu-
pied the ith position in the :rst row of P. It is easy to see that the basic subsequences
are decreasing and that each element belongs to exactly one basic subsequence. Any
longest increasing subsequence includes exactly one element from each basic subse-
quence and an increasing subsequence can be determined by associating each element
a with the element b to its left when it entered the :rst row of P. This result shows the
signi:cance of the :rst row of the Robinson–Schensted–Knuth construction and indeed
in our algorithm we make use of the :rst row only and discard the rest.

3. Algorithm

In order to deal with the problem of determining the longest increasing subsequences
in the windows of a permutation we :rst consider a data structure which addresses a
slightly more general question. In this structure we maintain information about the LIS
of a sequence in such a way that we can:
• remove the :rst element of the sequence,
• add an element to the end of the sequence,
• query the data structure for the length of the current LIS.
For a given initial sequence �= �1�2 · · · �n let �j

i = �i�i+1 · · · �j denote the subsequence
from the ith to the jth element. We apply Robinson–Schensted–Knuth to � but keep
track of only the :rst row in the tableau. We call this row the principal row of � and
denote it by P(�). Our data structure will maintain principal rows for all the suQxes of
the current sequence �; that is, all the rows P(�n

1); P(�
n
2); : : : ; P(�

n
n). It will be helpful

to think of these rows as lying one above the other in a row tower (see Fig. 2).
Now consider this data structure applied to the LISW problem, beginning with the

subsequences {�(1)}; {�(1); �(2)} : : : of a permutation � of length n.
The removal operation is easy: to remove the :rst element we need only delete the

:rst row of the row tower. Adding a new element corresponds to inserting it using a
Robinson–Schensted–Knuth approach in each of the rows stored so far and creating a
new row consisting of this element only. The length of the LIS of the current window
is the length of the :rst principal row we store.

Fig. 2. Row towers for �=35274816.
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A na?@ve implementation of this data structure using a van Emde Boas priority queue
[15] for each row takes O(1) time for expiring, O(w log log n) time for adding each
element and O(1) time for outputting the length of each subsequence. Total time com-
plexity would be O(nw log log n).
However, observe that each row other than the :rst in the row tower is either the

same as the one above, or can be obtained from it by deleting a single element. This
claim is easily veri:ed by induction. In the trivial case this claim holds when the :rst
element is added, since there is only a single row in this case. Now consider two
consecutive rows before insertion of a new element b. If they are the same then they
will remain the same after inserting b. Alternatively if they diNer in a single element
r, then if b does not bump r from the :rst row, they will still diNer in the same way.
If b does bump r, then either it bumps the next element of the second row, or is added
to the end of that row. In the :rst case the two rows still diNer by one deletion (the
next element after r), while in the second case they are now the same. Thus we have
proven:

Lemma 3.1. Let sequence S be a su:x of sequence T . Then P(S) is a subsequence
of P(T ) and |P(T )| − |P(S)|6|T | − |S|.

Since we now know that the row tower forms an inclusion chain we can remove
duplicate rows and record the original multiplicity of remaining rows in a sequence m.
From now on, when we refer to the row tower, we will assume that the rows have been
made distinct in this way. After this modi:cation the data structure still supports all
the operations as described above, but the time complexity for adding is O(‘ log log n)
and space is O(n‘) at this time, where ‘ denotes the length of the current LIS.
Suppose that the :rst row of the row tower contains ‘ symbols. Then, to each

position in this row, we associate the number of the last row in which this symbol
occurs. Since each row diNers from the preceding one by the removal of exactly one
symbol, this gives a permutation � on the elements 1; 2; : : : ; ‘. We call � the drop out
permutation of the row tower. We can also de:ne a drop out sequence, d, of drop
out times, by replacing each element of the drop out permutation by the actual index
of the last row in which the corresponding element of the principal row occurs.
For the example in Fig. 2, we have m=(1; 2; 4; 1), d=(7; 3; 8; 1) and �=(3; 2; 4; 1).

Fig. 3 illustrates the transformation of the row tower as the window slides.
We use the values of the principal row, d, and �, as an implicit representation of all

but the :rst row in the row tower. That is, this data structure has three components,
the principal row R=R1, the drop out sequence d, and the drop out permutation �.
Although it is clear that the :rst two of these suQce to describe the complete row
tower, we will make use of the third when we wish to produce actual LISs from each
window, rather than simply the length of the LIS in each window. Next we describe
how to update these parts under expire and add operations.
The expire operation simply subtracts 1 from each element of d and deletes the

element with expiry time 0 (if there is one) from R. If no deletion occurs then � is
unchanged. Otherwise, the element 1 is deleted from � and the remaining values are
decreased by 1.
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Fig. 3. Construction for �=257368491.

The add operation for an element b requires that b be used to bump an element out
of each row of the row tower (unless it is appended to all of them). Since, as we have
observed, the rows form an inclusion chain, if b bumps a certain element s out of a
row, then it bumps the element s out of all further rows to which s belongs. In other
words, the drop out time for s changes to the index of the :rst row from which it is
bumped by b. Now consider the next row of the row tower (if one exists) after s has
dropped out. In this row there may or may not be elements larger than s. If there are
such elements then b bumps the smallest of them. If not, then b is appended to the
end of this and all subsequent rows.
So there is a sequence of indices i1¡i2¡ · · ·¡ik for the sequence d de:ned as

follows: i1 is the least index of an element of the principal row which is larger than b
(if no such index exists, then the sequence is empty), and it+1 is the least index larger
than it for which d(it+1)¿d(it). These indices represent the elements of the principal
row which are bumped by b. Since b is placed in position i1 in the :rst row and does
not drop out until the very end, the sequence d is updated according to:

d(it+1) = d(it) for t = 1; 2; : : : ; k − 1;

d(i1) = w + 1:

Similarly, the update of � is

�(it+1) = �(it) for t = 1; 2; : : : ; k − 1;

�(i1) = ‘:

At this point, we have a data structure with expire/add time O(‘) per element, query
time for the length of the LIS in the current window O(1) and space O(n).
In order to support the operation of outputting an LIS we maintain a tree for each

row Ri. In the tree associated to R1 the paths from vertices to the root will constitute
reversals of (some) increasing sequences in the current window. In particular, the path
from the last element of R1 to the root will be an LIS.
The reason for including multiple trees is to allow for the expiry operation. When

the last element of a principal row expires, we consider the row itself to expire. At the
point where a principal row expires, it will be necessary to have access to the tree for
the new principal row. The basic idea is simply that whenever an element is added to
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a row it is also added to the tree corresponding to that row and its parent in the tree
is the element of the row immediately to its left. The property claimed of paths from
vertices to the root then follows immediately.
However, the diQculty with this approach is that all but the :rst row have implicit

representations, and hence looking up the predecessor of an element in each row as
required above is a non-trivial operation. We overcome this diQculty by noting that
each parent operation takes us one column to the left in some row tower. This row
tower is not necessarily the current one, since the element whose parent we seek may
already have been bumped from the current row tower, as happens for instance when
we look for the LIS in 1342, the element 3 which is 4’s parent, no longer occurs in
the row tower after 2 arrives. Suppose that we have a value v and a column c that v
occupies in some row tower. When v is :rst added to the row tower, there is a unique
row in which it occupies column c. We set the parent of v in column c to be the
predecessor of v in that row. In other words, at the time that v is added we establish
an array whose entry in position c is the parent of v in column c − 1. This can easily
be accomplished from the explicit information available.
Namely, when v is :rst added, it is added in, say, column C. Its predecessor in that

column is its immediate predecessor, say p1, in the principal row. This remains its
predecessor in columns C − 1 through C − �(p1) + 1. In column C − �(p1) its parent
will be the rightmost element p2 of the principal row which satis:es �(p2)¿�(p1),
and this will remain its parent through column C − �(p2) + 1. Thus, by scanning
leftwards along the principal row we can create references to all the parents of v in
each column. When we exhaust the elements to the left of v (that is, thinking in terms
of the row tower, when we reach the :nal block of rows of which v is the initial
element) the parent of v is simply set to the root element of the tree.
Now, we can construct the reversal of the LIS in a given window in constant time per

element. Namely, we begin with the rightmost element of the principal row (column
‘). Using the array associated with this element we determine its parent in column
‘ − 1, the second (last) element of the LIS. In turn using the array associated with
that element we :nd its parent in column ‘ − 2, and so on.
Hence the data structure proposed computes longest subsequences on a sliding win-

dow, with a cost for the ith window of O(‘i) where ‘i is the length of the longest
increasing sequence in window i. Thus, the total time is given by

∑n−w
i=0 ‘i =OUTPUT.

However, in the beginning we need to initialize the data structure. Creating an empty
van Emde Boas data structure can be done in O(1) time. Adding a new element to
the van Emde Boas data structure costs at most O(log log n) time plus at most O(1)
for updating all additional structures described above. Thus the total initialization time
is O(w log log n+

∑w
i=1 l

′
i)=O(w log log n+ w2), where l′i is the length of the LIS in

�(1); �(2); : : : ; �(i).

Theorem 3.2. The algorithm described above computes the n longest increasing se-
quences, one for each window, in total time O(n log log n+ OUTPUT).

As an interesting side bene:t, the algorithm obtained computes the LISW in an
on-line fashion.
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4. Conclusions and open problems

We proposed a data structure for :nding the longest increasing subsequence in a
sliding window over a given sequence (LISW). The data structure uses an implicit
representation of principal rows for each of the subsequences on a window, and re-
sults in an output-sensitive algorithm. This data structure substantially improves over
the na?@ve generalization of the longest increasing subsequence algorithm. An on-line,
output-sensitive optimal algorithm is derived from this data structure. The time com-
plexity is O(n log log n + OUTPUT). In particular if we have O(n) possible outputs of
length o(w) then our algorithm will always do better than the na?@ve algorithm.
Other variations of the problem remain open, in particular the exact time complexity

of the global max sequence problem remains an open question. Another interesting
case is the oN-line case, in which a pre-processing step in o(n log log n+OUTPUT) time
is allowed. Then a query is issued for the longest subsequence within a given window
which must be answered in time o(w log log n).
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