
Information and Computation 289 (2022) 104924
Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Order-preserving pattern matching indeterminate strings

Luís M.S. Russo a,∗, Diogo Costa a, Rui Henriques a, Hideo Bannai b,
Alexandre P. Francisco a

a INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Portugal
b Department of Computer Science, Kyushu University, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 June 2020
Received in revised form 4 October 2021
Accepted 25 May 2022
Available online 30 May 2022

Keywords:
Order-preserving pattern matching
Indeterminate string analysis
Generic pattern matching
Satisfiability

Given a pattern p of size m and a text t, the problem of order-preserving pattern matching
(OPPM) is to find all substrings of t that satisfy one of the orderings defined by p. This
problem has applications on time series analysis. However given its strict nature this model
is unable to deal with indetermination, thus limiting its application to noisy time series.
In this paper we introduce indeterminate characters to alleviate this limitation. We then
propose two polynomial time algorithms. If the indetermination is limited to p confirming
one occurrence can be computed in O (rm lg r) time, where r is a bound on the number of
uncertain characters per position. If the indetermination alternates, but does not occur at
the same position in t and p, we present an algorithm that requires O (rm(m + log r)) time.
We also show that the general problem is NP-hard and provide a polynomial size boolean
formula.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Given a pattern string p and a text string t , the exact order preserving pattern matching (OPPM) problem is to find
all substrings of t with the same relative orders as p. The problem is applicable to strings with characters drawn from
numeric or ordinal alphabets. Illustrating (with 0-based indexes), given p=(1,5,3,3) and t = (5, 1, 4, 2, 2, 5, 2, 4), substring
t[1..4] = (1, 4, 2, 2) is reported since it satisfies the character orders in p, p[0] ≤ p[2] = p[3] ≤ p[1]. Despite its relevance,
the OPPM problem has limited potential since it prevents the specification of errors, uncertainties or don’t care characters
within the text.

Indeterminate strings allow uncertainties between two or more characters per position. Given indeterminate strings p
and t , the problem of indeterminate order preserving pattern matching (μOPPM) is to find all substrings of t with an as-
signment of values that satisfy the orders defined by p. For instance, let p = (1, 2|5, 3, 3) and t = (5, 0, 1, 2|1, 2, 5, 2|3, 3|4).
The substrings t[1..4] and t[4..7] are reported since there is an assignment of values that preserve either p[0] < p[1] <
p[2] = p[3] or p[0] < p[2] = p[3] < p[1] orderings: respectively t[1..4] = (0, 1, 2, 2) and t[4..7] = (2, 5, 3, 3).

Order-preserving pattern matching captures the structural isomorphism of strings, therefore having a wide-range of rel-
evant applications in the analysis of financial times series, musical sheets, physiological signals and biological sequences
[1–3]. Uncertainties often occur in these domains. In this context, although the OPPM problem is already a generalisation of
the traditional pattern matching problem, the need to further handle localised errors is essential to deal with noisy strings

* Corresponding author.
E-mail address: luis.russo@tecnico.ulisboa.pt (L.M.S. Russo).
https://doi.org/10.1016/j.ic.2022.104924
0890-5401/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2022.104924
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2022.104924&domain=pdf
mailto:luis.russo@tecnico.ulisboa.pt
https://doi.org/10.1016/j.ic.2022.104924

L.M.S. Russo, D. Costa, R. Henriques et al. Information and Computation 289 (2022) 104924
[4]. For instance, given the stochasticity of gene regulation (or markets), the discovery of order-preserving patterns in gene
expression (or financial) time series needs to account for uncertainties [5,6]. Numerical indexes of amino-acids (represent-
ing physiochemical and biochemical properties) are subjected to errors, which makes the analysis of protein sequences
difficult [7]. Another example are ordinal strings obtained from the discretization of numerical strings, often having two
uncertain characters in positions where the original values are near a discretization boundary [4].

Let m and n be the length of the pattern p and text t , respectively. The exact OPPM problem has a linear solution on the
text length O (n + m lgm) based on the Knuth-Morris-Pratt algorithm [8,2,9]. Alternative algorithms for the OPPM problem
have also been proposed [10–12]. Contrasting with the large attention given to the resolution of the OPPM problem, there
are no polynomial-time algorithms to solve the μOPPM problem, as far as we know. Naive algorithms for μOPPM assess all
possible pattern and text assignments, bounded by O (nrm) when considering up to r uncertain characters per position.

This work discusses the first polynomial time algorithms able to answer restricted instances of the μOPPM problem.
Accordingly, the contributions are organised as follows:

• In Section 3 we show that finding an order-preserving match between an indeterminate string of length m and a
determinate string with the same length, if it exists, is possible in O (rm lg r) time based on their monotonic properties.
We also show that an O (rm(m + log r)) time algorithm exists when the indeterminate positions in p and t do not
coincide. Both these algorithms are extended to the general case where t is larger than p, by using filtration techniques.

• In Section 4 we show that the general μOPPM problem is NP-hard as soon as we allow for 3 indeterminacies to occur
simultaneously in p and t . In this Section we also provide a polynomial size boolean formula that encodes a general
μOPPM instance, thus allowing this problem to be handled by SAT-solvers.

A preliminary version of this work was presented at the Annual Symposium on Combinatorial Pattern Matching
(CPM) [13]. In this paper, we present significant new developments on those initial results.

2. Background

Let � be a totally ordered alphabet and an element of �∗ be a string. The length of a string w is denoted by |w|.
The empty string ε is a string of length 0. For a string w = xyz, x, y and z are called a prefix, substring, and suffix of
w , respectively. The i-th character of a string w is denoted by w[i] for each 0 ≤ i < |w|. For a string w and integers
0 ≤ i ≤ j < |w|, w[i.. j] denotes the substring of w from position i to position j. For convenience, let w[i.. j] = ε when i > j.

Given strings x and y with equal length m, y is said to order-preserving match x [8], denoted by x ≈ y, if the order
relation between the characters of x and y is the same, i.e., x[i] � x[j] ⇔ y[i] � y[j] for any 0 ≤ i, j < m, and any relation
� ∈ {<, =, >}. A non-empty pattern string p is said to order-preserving match (op-match in short) a non-empty text string
t if and only if there is a position i in t such that p ≈ t[i − |p| + 1..i]. The order-preserving pattern matching (OPPM) problem
is to find all such text positions.

2.1. The problem

Given a totally ordered alphabet �, an indeterminate string is a sequence of disjunctive sets of characters x[0]x[1]..x[n −
1] where x[i] ⊆ �. Each position is given by x[i] = {σ1, . . . , σr} where r ≥ 1 and σi ∈ �.

Given an indeterminate string x, a valid assignment $x is a (determinate) string with a single character at position i,
denoted $x[i], contained in the x[i] set of characters, i.e. $x[0] ∈ x[0], . . . , $x[m −1] ∈ x[m −1]. For instance, the indeterminate
string (1|3, 3|4, 2|3, 1|2) has 24 valid assignments.

Given a determinate string x of length m, an indeterminate string y of equal length is said to be order-preserving against
x, identically denoted by x ≈ y, if there is a valid assignment $y such that the relative orders of the characters in x and $y
are the same, i.e., x[i] � x[j] ⇔ $y[i] � $y[j] for any 0 ≤ i, j < m and any relation � ∈ {<, =, >}. Given two indeterminate
strings x and y, with length m, y preserves the orders of x, x ≈ y, if there exists $y in y that respects the orders of an
assignment $x in x.

A non-empty indeterminate pattern string p is said to order-preserving match (op-match in short) a non-empty indeter-
minate text string t if and only if there is a position i in t such that p ≈ t[i −|p| +1..i]. The order-preserving pattern matching
with character uncertainties (μOPPM) problem is to find all such text positions.

To understand the complexity of the μOPPM problem, let us consider a solution that is a naive application of state-of-
the-art OPPM techniques. In particular we may use the algorithm by Kubica et al. [8], which requires O (n+q) time, where
q = m for alphabets of size mO (1) (q = m lgm otherwise). Given a determinate string x of length m, an integer i (0 ≤ i < m)
is said in the context of this work to be an order-preserving border of x if x[0..i − 1] ≈ x[m − i..m − 1]. In this context, given
a pattern string p, the orders between the characters of p are used to linearly infer the order borders. The order borders
can then be used within the Knuth-Morris-Pratt algorithm to find op-matches against a text string t in linear time [8].

Given an indeterminate string p of length m and a determinate string t of length n, we consider all the possible as-
signments of p. Note that there may be O (rm) such assignments. For each such assignment we can apply the algorithm by
Kubica et al., thus yielding an O ((n + q)rm) time solution. This complexity is further increased when indetermination is also
considered in the text, thus stressing the need for more efficient solutions.
2

L.M.S. Russo, D. Costa, R. Henriques et al. Information and Computation 289 (2022) 104924
2.2. Related work

The exact OPPM problem is well-studied in the literature. Kubica et al. [8], Kim et al. [2] and Cho et al. [9] pre-
sented linear time solutions on the text length by combining order-borders, rank-based prefixes and grammars with the
Knuth–Morris–Pratt (KMP) algorithm [14]. Cho et al. [10], Belazzougui et al. [11], and Chhabra et al. [12] presented O (nm)

algorithms that show a sublinear average complexity by either combining bad character heuristics with the Boyer–Moore
algorithm [15] or applying filtration strategies. Recently, Chhabra et al. [16] proposed further principles to solve OPPM using
word-size packed string matching instructions to enhance efficiency.

In the context of numeric strings, multiple relaxations to the exact pattern matching problem have been pursued to
guarantee that approximate matches are retrieved. In norm matching [17–20], matches between numeric strings occur
if a given distance threshold f (x, y) ≤ θ is satisfied. In (δ,γ)-matching [21–27], characters is at most δ and the sum of
differences is at most γ .

In the context of nominal strings, variants of the pattern matching task have also been extensively studied to allow for
don’t care symbols in the pattern [28–30], transposition-invariant [25], parameterised matching [31,32], less than matching
[33], swapped matching [34,35], gaps [36–38], overlap matching [39], and function matching [40,41].

Despite the relevance of the aforementioned contributions to answer the exact order-preserving pattern matching and
generic pattern matching, they cannot be straightforwardly extended to efficiently answer the μOPPM problem.

3. Polynomial μOPPM cases

Section 3.1 introduces the first efficient algorithm to solve the μOPPM problem when one string is indeterminate. Sec-
tion 4 discusses the existence of efficient solvers when both strings are indeterminate. Section 3.2 introduces a polynomial
time, algorithm for the Alternate-μOPPM, a subproblem of μOPPM where both strings may have indeterminate characters,
but never in the same position.

Section 3.3 finishes by discussing how to OPPM search a text that is larger than the pattern, using filtration techniques
to skip sure misses.

3.1. O (mr lg r) time μOPPM with one determinate string

Given a determinate string x, of length m, we can start by sorting x so that its characters form a non-decreasing sequence.
We will represent the sorted sequence as xπ , where π is the permutation that transforms x into xπ .

For example, given x = (1, 4, 3, 1) we have that x[0] = x[3] < x[2] < x[1] and therefore π = (0, 3, 2, 1) and xπ =
(1, 1, 3, 4).

Now let us focus on y, which we assume also has size m. First let us consider the simpler case when y is also determi-
nate. To verify if x ≈ y it is enough to verify the m − 1 order relations of its sorted characters. For example, if y = (2, 5, 4, 3)

then there is no op-match as not all the order relations are preserved in y, since y[0] < y[3] < y[2] < y[1]. In particular
we have x[0] = x[3] but y[0] < y[3]. As illustrated by this example, an effective process to obtain this conclusion is to
permute y according to π into yπ and compare the resulting strings. In this example we obtained xπ = (1, 1, 3, 4) and
yπ = (2, 3, 4, 5). Notice that both are sorted into non-decreasing. However whereas this is expected of xπ , in the case of yπ

it is a fortunate coincidence. This condition is actually necessary for an op-match to occur. However, as seen in this example,
it is not sufficient. The issue being that whereas the first two characters of xπ are equal the same does not happen in yπ .
Hence the decisive test to guarantee an op-match is to compare the sequence of order relations in xπ with the sequence
of order relations in yπ . To obtain this sequence we compare the consecutive values in xπ [i], i.e., we compare xπ [i] with
xπ [i + 1]. The same is done for yπ . In this case these sequences are (=, <, <), for xπ , and (<, <, <) for yπ . Since these
sequences differ, namely in the first relation, there is no op-match between x and y. Moreover notice that because xπ is a
non-decreasing sequence the only possible relations in the order sequence for xπ are equality (=) and smaller than (<). For
yπ the greater than relation may occur, which makes it a mismatch guarantee.

Let us now focus on generalising this approach to the case where y is an indeterminate string. Let xπ and yπ be
the permuted strings, as before, but note that now yπ contains indeterminate characters. Consider The example where
x = (4, 1, 4, 2) and y = (2|7, 2, 7|8, 1|4|8). By ordering x we obtain xπ = (1, 2, 4, 4). Applying the same permutation π =
(1, 3, 0, 2) on y yields yπ = (2, 1|4|8, 2|7, 7|8). We can still produce the order sequence for xπ , which in this case is
(<, <, =). However due to the indeterminate nature of the characters in y there is no meaningful way to produce a similar
sequence for yπ . In essence the problem is that yπ simultaneously represents several sequences at the same time. A
naive approach would be to generate all those sequences and examine them one by one. This process can easily become
overwhelming, as illustrated in Table 1. The problem is that there may be a huge number of such sequences and only a few
are relevant. In this example only one sequence corresponds to an op-match.

Let us then focus on how to determine the matching sequence without having to enumerate all the possible sequences
represented by yπ . As noticed before the order sequence of xπ contains only relations that are equalities or smaller than
relations. For now let us ignore equalities. The process of removing equalities reduces our example to xπ = (1, 2, 4) and
yπ = (2, 1|4|8, 7). We will explain how after the exposition of the main algorithm.
3

L.M.S. Russo, D. Costa, R. Henriques et al. Information and Computation 289 (2022) 104924
Table 1
All possible determinate strings and
order relation sequences for yπ =
(2, 1|4|8, 2|7, 7|8).

2 1 2 7 > < <

2 1 2 8 > < <

2 1 7 7 > < =
2 1 7 8 > < <

2 4 2 7 < < <

2 4 2 8 < > <

2 4 7 7 < < =
2 4 7 8 < < <

2 8 2 7 < > <

2 8 2 8 < > <

2 8 7 7 < > =
2 8 7 8 < > <

When all the relations are inequalities determining if an op-match exists reduces to verifying if it is possible to obtain
an increasing sub-sequence from yπ . The following Lemma summaries this observation.

Lemma 1. Given a determinate string x and an indeterminate string y, let xπ be a non-decreasing sort of x and yπ the result of
applying the same permutation to y. Then x and y have an op-match if and only if there is valid assignment of yπ that is an increasing
sequence.

Proof. (⇒) If x and y are an op-match then there is a valid assignment $y of y that is an op-match with x. Hence applying
π to x and $y also yields an op-match, meaning that xπ and $yπ are also an op-match. Now xπ is an increasing sequence
so $yπ most also be an increasing sequence, which moreover is a valid assignment of yπ .

(⇐) If there is valid assignment $yπ of yπ that is an increasing sequence then yπ and xπ are an op-match, since both
are strictly increasing sequences. Finally we can apply the inverse permutation π−1 to $yπ which yields a valid assignment
of y that is op-match with x. �

Hence let us now focus on describing a polynomial algorithm for verifying if there is valid assignment of yπ that is an
increasing sequence. Our first non-trivial approach consists in reducing this problem to the longest increasing subsequence
(LIS) problem. For this reduction to work appropriately, we do not want that an indeterminate character maps to more than
one element of the LIS. This is assured by sorting the possible elements of an indeterminate character in decreasing order.
In our example we have yπ = (2, 1|4|8, 7). The resulting integer sequence is z = (2, 8, 4, 1, 7), where the numbers 8, 4, 1
stand for yπ [1] = {1, 4, 8}. Polynomial algorithms for computing the LIS are readily available [42]. The LIS of sequence of n
numbers can be computed in O (n lg n) time and O (n) space. This gives us an O (mr lg(mr)) time and O (mr) space algorithm
for the μOPPM problem when one string is determinate. This approach has the advantage that information from all the
increasing sub-sequences can be obtained from this data structure. This information reveals all the ways a op-match may
exist and about longest partial op-matches, which are matches that preserve most relations but not all.

Still for the exact μOPPM problem we are interested in determining whether the LIS is big enough. More precisely the
LIS only guarantees a match when its size is |yπ |. In our running example there is only an op-match if the LIS is of size 3,
which is the case because the LIS of z = (2, 8, 4, 1, 7) is (2, 4, 7). Hence there is a faster and more straightforward way to
obtain a valid assignment of yπ that is an increasing sequence. It is enough to maintain a minimum counter (nextMin)
that gets updated as it processes the indeterminate characters of yπ . At each character yπ [i] this counter is updated to the
smallest possible value that is strictly larger than its current value.

Let us illustrate this process with our current example. We initialise nextMin to −∞ and process yπ [0] = {2}. This
updates nextMin to 2. Next we process yπ [1] = {1, 4, 8} and update nextMin to 4, because 1 is smaller than 2. Finally
nextMin gets updated to 7 by processing yπ [2] = {7}. The resulting sequence is again (2, 4, 7) as expected. This process
is only a linear scan and requires O (mr) time, thus reducing the performance of the resulting algorithm to O (mr lg r). The
corresponding pseudo-code is given in Algorithm 1.

Theorem 2. It is possible to determine if strings x and y, of size m, where x is determinate and y is indeterminate, are a μOPPM in
O (rm lg r) time and O (mr) space.

Proof. First we will explain the procedure for handling equalities. The time necessary for this process is the only time that
was not yet accounted by our explanation.

Consider again our initial example with xπ = (1, 2, 4, 4) and yπ = (2, 1|4|8, 2|7, 7|8). In this case the character 4 occurs
twice at the end of xπ . We can handle equalities by contracting the sequence xπ , so that consecutive equal characters
get removed. We represent the resulting sequence by x′

π = (1, 2, 4). To enforce this restriction on yπ we instead intersect
the corresponding sets, in this case we intersect the last two sets yπ [2] and yπ [3]. The resulting sequence is denoted
y′
π . We thus obtain y′

π [2] = yπ [2] ∩ yπ [3] = {2, 7} ∩ {7, 8} = {7}. This greatly simplifies the problem as now the number
4

L.M.S. Russo, D. Costa, R. Henriques et al. Information and Computation 289 (2022) 104924
Table 2
Alternate-μOPPM instance with r = 2.

i 0 1 2 3 4

p 1 6|7 5 3 1|4
t 8|10 19 2|17 15|30 16

of sequences represented by y′
π = (2, 1|4|8, 7) is much smaller. We have only three sequences, instead of the twelve. The

sequences are (2, 1, 7), (2, 4, 7) and (2, 8, 7). Here (2, 4, 7) is the desired sequence, as now we are searching for a strictly
increasing sequence, given that equalities were removed. We can now apply the procedure above to x′

π and y′
π .

The only time that was not accounted so far was the time to compute intersections. For this purpose we can sort both
sets yπ [j] and yπ [i] and intercept then by a process similar to merging on mergesort. Essentially we scan both strings
at the same time increasing the pointer of the smallest value. An element is selected for the interception if it is being
considered in both lists at the same time. This procedure requires O (r lg r) time per intersection. Alternatively we can use
binary search trees which require the same time or hash tables which have even better best and average case performance
but may be worse in the worst case. For simplicity we assume O (r lg r) time per intersection. �
3.2. Polynomial time alternate-μOPPM

In this section we define Alternate-μOPPM as the subproblem of μOPPM where both strings (x and y, interchangeable)
may have indeterminate characters, but never in the same position (an example is shown in Table 2). In this section we
assume that p = x and t = y, the case where |t| > |p| is discussed in Section 3.3. We show that Alternate-μOPPM is
polynomial in both the number of indeterminacies r (which may be different in each position and string) and the length of
the strings m.

We present a Dynamic Programming solution that merges two subproblems (of the kind in Section 3.1) in O (m2 × r)
time and space. For simplicity, we will assume that r is the same in every position. It is always possible to add repeats up
to the maximum r when they are not.

Intuition. We partition the strings p and t (see example in Table 2) into two subproblems: one subproblem where only p
has indeterminacies and t has fixed letters (pind and t f ix , see Table 3), and another where only t has indeterminacies and p
has fixed letters (tind and p f ix , see Table 4). Then, we sort the subproblems by t f ix and p f ix , respectively. Finally, we use a
DP algorithm to merge the two by extending our solution one position at a time, choosing the leftmost available position of
either pind or tind until all the positions have been used. It is important to notice that this DP algorithm assumes that the
problems does not contain equality restrictions. In particular this means that the numbers in the fixed parts are all distinct,
in each string. If this is not the case we proceed as in Section 3.1 by intercepting the corresponding sets of indeterminate
characters. We illustrate this situation in Table 5. Note that on this table the number 3 occurs twice in pfix , to be precise
we have that pfix[1] = pfix[2] = 3. This means that we should intercept the sets tind[1] and tind[2]. In this case this yields
{7, 15, 30} ∩ {15, 30, 55} = {15, 30}. This reduces Table 5 to Table 4, to which our DP algorithm can now be applied. The
time for this pre-processing step is O (rm log r) because we need to sort the indeterminate characters to obtain linear time
interception, as seen in Algorithm 1. We are also assuming the sorted condition of the indeterminate sets in the remaining
algorithm.

Algorithm 1 O (mr lg r) μOPPM algorithm with one determinate string.
Require: determinate x, indeterminate y (|x| = |y| = m)

1: π ← sortedIndexes(x) � O (m) if |�| = O (m);O (m lgm) otherwise
2: xπ ← permute(x, π) � O (m)

3: yπ ← permute(y, π) � O (mr)
4: j ← 0
5: y′

π [0] ← yπ [0]
6: for i = 1 to m − 1 do � O (mr lg r)
7: if xπ [i] = xπ [i − 1] then � O (r lg r)
8: y′

π [j] ← y′
π [j] ∩ yπ [i]

9: else
10: j ← j + 1
11: y′

π [j] ← yπ [i]
12: end if
13: end for
14: s ← |y′

π |
15: nextMin ← −∞
16: for i = 0 to s − 1 do � O (mr)
17: nextMin ← min{a | a ∈ y′

π [i], a > nextMin} � O (r)
18: if � nextMin then return false
19: end if
20: end for
21: return true
5

L.M.S. Russo, D. Costa, R. Henriques et al. Information and Computation 289 (2022) 104924
Table 3
Sorted pind and t f ix partition of Table 2.

i 0 1

pind 1|4 6|7
tfix 16 19

Table 4
Sorted tind and p f ix partition of Table 2.

i 0 1 2

pfix 1 3 5
tind 8|10 15|30 2|17

Table 5
Sorted tind and p f ix partition of Table 2.

i 0 1 2 3

pfix 1 3 3 5
tind 8|10 7|15|30 15|30|55 2|17

Table. Let mp and mt be the lengths of pind (and t f ix) and tind (and p f ix), respectively. In our example, we have mp = 2 and
mt = 3 as shown in Tables 2, 3 and 4. We fill a table T with dimensions T[mp + 1, mt + 1, r, 2]. Because we are interested
in an exact match (rather than a longest match), each entry T[i, j, k, l] only needs to be filled with a boolean value that
indicates whether a match of length i + j exists, where the first i positions of pind and the first j positions of tind have
been chosen, and the last extension was done by choosing the indeterminate character at index k of string l ∈ {pind, ttind}.
We represent these boolean values by using a bit b ∈ {0, 1}, where 0 corresponds to false and 1 to true. The problem has
a solution if and only if ∃k,l : T[mp, mt, k, l] = 1. We can recover the solution by backtracking in the table, as we use 1 to
represent the existence of a match.

Algorithm. To initialise the table, we set T[0, 1, k, tind] and T[1, 0, k, pind] to 1, for all valid k. All other entries start with 0.
To fill the remaining entries, we use the following equalities:

T [i, j,k, pind] =
⎧⎨
⎩

1, if ∃k′ ∈ [0..r − 1] : checkPP(i, j,k,k′)
1, if ∃k′ ∈ [0..r − 1] : checkTP(i, j,k,k′)
0, otherwise

(1)

T [i, j,k, tind] =
⎧⎨
⎩

1, if ∃k′ ∈ [0..r − 1] : checkPT(i, j,k,k′)
1, if ∃k′ ∈ [0..r − 1] : checkTT(i, j,k,k′)
0, otherwise

(2)

where:
Note that although the condition in Equations (1) and (2) is that ∃k′ , in reality we only need the minimum such k′ .

We can maintain an auxiliary table A[mp + 1, mt + 1, l] to store and retrieve it in constant time. A is initialised with ∞.

Algorithm 2 Try to extend solution through pind after pind .
k′ =A[i − 1, j, pind];
checkPP(i, j, k, k′)
return T[i − 1, j, k′, 0] = 1 and pind[i − 1, k] > pind[i − 2, k′]

Algorithm 3 Try to extend solution through pind after tind .
k′ =A[i − 1, j, tind];
checkTP(i, j, k, k′)
return T[i − 1, j, k′, 1] = 1 and pind[i − 1, k] > p f ix[j − 1] and t f ix[i − 1] > tind[j − 1, k′]

Algorithm 4 Try to extend solution through tind after pind .
k′ =A[i, j − 1, pind];
checkPT(i, j, k, k′)
return T[i, j − 1, k′, 0]= 1 and tind[j − 1, k] > t f ix[i − 1] and p f ix[j − 1] > pind[i − 1, k′]

Algorithm 5 Try to extend solution through tind after tind .
k′ =A[i, j − 1, tind];
checkTT(i, j, k, k′)
return T[i, j − 1, k′, 1] = 1 and tind[j − 1, k] > tind[j − 2, k′]
6

L.M.S. Russo, D. Costa, R. Henriques et al. Information and Computation 289 (2022) 104924
Table 6
Dynamic Programming table T for the instance shown in Table 2. The top table corresponds to T[i, j, 0, pind], second table to
T[i, j, 0, tind], the third table to T[i, j, 1, pind] and the bottom table to T[i, j, 1, tind].

0 1 2 3

0 1 0 0 0

1 1 0 0 0

2 1 1 1 1

0 1 2 3

0 1 1 1 0

1 0 0 0 0

2 0 0 0 0

0 1 2 3

0 1 0 0 0

1 1 1 1 0

2 1 1 1 1

0 1 2 3

0 1 1 1 1

1 0 0 0 1

2 0 0 0 0

Table 7
Auxiliary Table A for the instance shown in Table 2. The top table stores values A[i, j, pind]
and the bottom table stores values A[i, j, tind].

A[i, j, pind] 0 1 2 3

0 0 ∞ ∞ ∞
1 0 1 1 ∞
2 0 0 0 0

A[i, j, tind] 0 1 2 3

0 0 0 0 1
1 ∞ ∞ ∞ 1
2 ∞ ∞ ∞ ∞

Whenever we fill any entry T[i, j, k, l], we set A[i, j, l] = min(k, A[i, j, l]), thus building it in the same bounds as the original
table. We can retrieve k′ in constant time using the Obtain line in functions checkPP, checkPT, checkTP, or checkTT
described in Algorithms 2, 3, 4, and 5, respectively.

Retrieving the solution. We start by finding some k, l such that T[mp, mt, k, l] = 1. At T[i, j, k, pind], we retrieve the previous
solution at T[i − 1, j, k′, pind] or T[i − 1, j, k′, tind]; at T[i, j, k, tind] we retrieve it at T[i, j − 1, k′, pind] or T[i, j − 1, k′, tind]. In
each case, we need to check both. We can find one correct k′ in constant time by checking the two respective entries of the
auxiliary table A. We repeat the process i + j times, until we construct the whole solution and reach (i, j) = (0, 0).

Time and Space. The dynamic programming table T , described above, uses O (mp × mt × r × 2) ≤ O (m2 × r) space, as m =
mp + mt . We also have an auxiliary table A that is strictly smaller than T . Time-wise, we take constant time to fill each
entry (we have to check two entries of the matrix, do three character comparisons, and one check on the auxiliary table to
retrieve the minimum k′), hence the algorithm will also take O (m2 × r) time.

Theorem 3. Two strings of size m can be verified to Alternate-μOPPM in O (rm(m + lg r)) time and O (m2) space.

Proof. We start by solving equalities by intercepting the corresponding sets in O (rm log r) time. We then sort two pairs of
strings of size mp and mt in O (mp × lg(mp)) and O (mt × lg(mt)). For the dynamic programming we fill the two tables, T
and A of size at most O (mp × mt × r × 2), each entry taking constant time. We can retrieve the solution by O (mp + mt)

accesses. The overall algorithm, then, takes O (mp × mt × r × 2) and is polynomial in both time and space.
To reduce the space to O (m2) notice that table A requires only this amount of space. Also note that when k′ = A[i −

1, j, 0] then T [i − 1, j, k′, 0] = 1, i.e., the table A can be used to obtain all the values of T that correspond to true. Hence
table A can be computed without using table T . Table T was given for presentation purposes as its boolean values are
simpler than the index positions stored by table A. �
Example. The dynamic programming table T of the example of Table 2 is shown in Table 6. The respective auxiliary table A
is shown in Table 7. We show here some computations of interest to elucidate how the algorithm works.
7

L.M.S. Russo, D. Costa, R. Henriques et al. Information and Computation 289 (2022) 104924
Table 8
Solution of the example of Table 2.

i 0 1 2 3 4

p 1 3 1|4 5 6|7
t 8|10 15|30 16 2|17 19

Consider, for example, positions T[0, 3, 0, tind] and T[0, 3, 1, tind] in Table 6. Because i = 0, we are merely trying to com-
pare tind[2] with tind[1], by choosing the smallest k at tind[2]. First, we note that T[0, 2, 0, tind]= 1, i.e., it is possible to form
an increasing sequence by using only the first letter in the first two indeterminate sets of tind . These letters are respectively
tind[0, 0] = 8 < 15 = tind[1, 0]. However T[0, 3, 0, tind]= 0, whereas T[0, 3, 1, tind]= 1. The value T[0, 3, 0, tind] corresponds to
the sequence formed by using only the first letter in the first three indeterminate sets of tind in this case we now have
tind[1, 0] = 15 ≥ tind[2, 0] = 2. Hence the sequence 8, 15, 2 is not increasing and so T[0, 3, 0, tind]= 0. On the other hand if
we are allowed to choose any of the two letters in the indeterminate sets we can fix this situation, in particular by using
tind[1, 0] = 15 < tind[2, 1] = 17. We then obtain the sequence 8, 15, 17, which is increasing and therefore T[0, 3, 1, tind]= 1.

Let us now see how to recover a solution. The entries in bold are the ones we follow, here, part of the solution. To start
with, note that both T[2, 3, 0, tind] and T[2, 3, 1, tind] are set to 0, so we know that our solution must end with a choice
in pind . We can see that both choices of k work in pind[2], consistent with the solution working with either pind[1] = 6
or pind[1] = 7. We choose pind[1] = 6, the one with the minimum value of k (cf. A[2, 3, pind]= 0). Then, we must check
whether the solution comes from T[2 − 1, 3, k′, pind], or from T[2 − 1, 3, k′′, tind], for the respective minimum k′ and k′′ .
The only entry of T[1, 3, k, l] set to 1 is T[1, 3, 1, tind], corresponding to choosing tind[2] = 17 (cf. A[1, 3, tind]= 1). Because
the last choice was through tind , we move to (i, j − 1) = (1, 2). Once again, only one entry is set to 1, T[1, 2, 1, pind],
corresponding to choosing pind[0] = 4 (cf. A[1, 2, pind]= 1) and we move to (i, j) = (0, 2). At this point, we know that all
remaining choices come from tind , but we will continue following the algorithm. Both T[0, 2, 0, tind] and T[0, 2, 1, tind] are
set to 1, but we only need the minimum k, which is 0 (cf. A[0, 2, tind]= 0), corresponding to choosing tind[1] = 15. Finally,
we consider at (i, j) = (0, 1). Once again, both T[0, 1, 0, tind] and T[0, 1, 1, tind] are set to 1, and we choose the minimum k,
0 (cf. A[0, 1, tind]= 0), corresponding to tind[0] = 8. Having reached (i, j) = (0, 0), we have a complete solution. The solution
is shown in Table 8, with the chosen values in bold.

3.3. Handling larger texts

In this Section we consider the case where the pattern p and the text t are not necessarily the same size. The next
lemma summarises the strait-forward approach of testing p against every position of t , by considering a smaller sub-string.

Lemma 4. Given an indeterminate pattern string p of length m and a determinate text string of length n, the μOPPM problem can be
solved in O (nmr lg r) time.

Proof. From Theorem 2, verifying if two strings of length m op-match can be done in O (mr lg r) time (indetermination in
one string). We repeat this procedure for at most n − m + 1 sub-strings of t . �

Note that only one of the strings needs to be determine so the same approach applies when p is determinate and t is
indeterminate. Moreover the same procedure can be applied with the algorithm in Theorem 3.

This Lemma further triggers the research question “Is O (nmr lg r) a tight bound to solve the μOPPM?”, here left as an open
research question.

Irrespectively of the answer, the analysis of the average complexity is of complementary relevance. State-of-the-art re-
search on the exact OPPM problem shows that the average performance of some O (nm) worst case time algorithms can
outperform linear time algorithms [12,43,44].

Motivated by the evidence gathered by these works, we suggest the use of filtration procedures to improve the average
complexity of the proposed μOPPM algorithm while still preserving its complexity bounds. A filtration procedure encodes
the input pattern and text, and relies on this encoding to efficiently find positions in the text with a high likelihood to
op-match a given pattern. Despite the diversity of string encodings, simplistic binary encodings are considered to be the
state-of-the-art in OPPM research [12,43]. In accordance with Chhabra et al. [12], a pattern p can be mapped into a binary
string p′ expressing increases (1), equalities (0) and decreases (0) between subsequent positions. By searching for exact
pattern matches of p′ in an analogously transformed text string t′ , we guarantee that the verification of whether p[0..m −1]
and t[i..i +m −1] orders are preserved is only performed when exact binary matches occur. Illustrating, given p = (3, 1, 2, 4)

and t = (2, 4, 3, 5, 7, 1, 4, 8), then p′ = (1, 0, 1, 1) and t′ = (1, 1, 0, 1, 1, 0, 1, 1), revealing two matches t′[1..4] and t′[4..7]:
one spurious match t[1..4] and one true match t[4..7].

When handling indeterminate strings the concept of increase, equality and decrease needs to be redefined. Given
an indeterminate string x, consider x′[i] = 1 if max(x[i]) < min(x[i + 1]), x′[i] = 0 if min(x[i]) ≥ max(x[i + 1]), and
x′[i] = ∗ otherwise. Under this encoding, the pattern matching problem is identical under the additional guard that a
character in p′ always matches a do not care position, t′[i] = ∗, and vice-versa. Illustrating, given p = (6, 2|3, 5) and
8

L.M.S. Russo, D. Costa, R. Henriques et al. Information and Computation 289 (2022) 104924
Table 9
μOPPM instance corresponding to the 3CNF-SAT formula (z1 ∨ ¬z2 ∨ z3) ∧ (¬z1 ∨ z2 ∨ z4).

i 0 1 2 3 4 5

Formula z1 z2 z3 z4 c1 c2

Pattern 1 2 3 4 1|2|3 1|2|4
Text 1|2 3|4 5|6 7|8 2|3|6 1|4|8

t = (3|4, 5, 6|8, 6|7, 3, 5, 4|6, 7|8, 4), then p′ = (0, 1) and t′ = (1, 1, ∗, 0, 1, ∗, 1, 0), leading to one true match t[3..5] – e.g.
$t[3..5] = (6, 3, 5) – and one spurious match t[5..7]. The ∗ characters play the role of wild cards. Efficient algorithms for
this problem were described by Gusfield [45, Sec 9.3]. If there are w wild cards in p′ the algorithm requires O (w) time to
check a position in t′ . Hence scanning t′ for all the wild card matches of p′ takes O (nw) time.

The properties of the proposed encoding guarantee that the wild card matches of p′ in t′ cannot skip any op-match of
p in t . Thus, when combining the premises of Lemma 4 with the previous observation, we guarantee that the computed
μOPPM solution is sound.

The application of this simple filtration procedure prevents the recurring O (mr lg r) verifications n −m + 1 times. Instead,
the complexity of the proposed method to solve the μOPPM problem becomes O (nw + dmr lg r + n) (when one string is
indeterminate) where d is the number of wild card matches, which is potentially smaller than n. According to previous
work on exact OPPM with filtration procedures [12], SBNDM2 and SBNDM4 algorithms [46] (Boyer-Moore variants) were
suggested to match binary encodings. In the presence of small patterns, Fast Shift-Or (FSO) [47] can be alternatively applied
[12].

A similar approach can be used for alternate μOPPM, in which case w must count the total amount of wild cards, in p
and t , and the O (w) worst case bound per position becomes worse. In this case we note that the trivial O (m) bound must
also apply, but the average case may be significantly better.

4. General cases

In this Section we start by showing that general μOPPM is NP-hard, Section 4.1. We then show how to encode an
instance into a boolean formula, of polynomial size, so that it can be tackled with a SAT solver.

4.1. μOPPM is NP-hard

In this section, we define {3, 3}-μOPPM as the subproblem of μOPPM where both the pattern and the text have in-
determinate characters in any position (with at least one position having three or more indeterminate characters in both
pattern and text) and prove it NP-hard (thus proving the same for general μOPPM). We do this with a direct reduction from
3CNF-SAT, first presenting the construction and then the proof of equivalence between the two instances. The construction
is similar to the one by Bose et al. for the permutation matching problem [48].

Construction. To ease the description of the construction itself, we start by describing how we represent an instance of 3CNF-
SAT. First, we assume that every literal and clause has some ordering. We have a set V of literals, and a set C of clauses.
Each clause c is represented by two tuples, (zc,0, zc,1, zc,2) and (lc,0, lc,1, lc,2). zc,i ∈ {0, . . . , |V | − 1} represents the index of
literal i of clause c; lc,i ∈ {0, 1} represents the value of the literal i in clause c, having the value of 0 for positive literals and
1 for negative literals. For example, the clause (v1 ∨ ¬v2, ∨v5) would be represented by the two tuples z = (1, 2, 5) and
l = (0, 1, 0).

Although the designations of text or pattern are interchangeable in this section, we will use pattern for the simpler string
(with less indeterminacies) and text for the more complicated string (with more indeterminacies). We use p and t for the
pattern and text, respectively, or s when they are interchangeable.

Both text and pattern have two parts, one representing literals and the other representing clauses. Each literal, and clause,
has a single position in each string to represent it, dividing s into sV = s[0..|V | − 1] and sC = s[|V |..|V | + |C | − 1]. In pV ,
we have a simple sequence of literals given by their indexes, so p[i] = i + 1, for i ∈ {0, . . . , |V | − 1}; in tV we have a similar
sequence, but each literal takes one of two variable values to represent an assignment of true or false, so t[i] = 2 × (i + 1) or
2 ×(i +1) −1. We choose the larger value to represent the assignment of true. In sC , each position has three indeterminacies,
corresponding to the three variables of the clause. In pC , we choose one of the three literals of the respective clause. For
clause c, with literals v1, v2, v5 (regardless of their value being positive or negative), its position in p, p[|V | + c] = 1|2|5.
In tC , as in pC we choose one of the literals, but now the value of the literal must match the clause. More precisely for a
positive literal it should be an even value and for a negative literal it should be an odd value, i.e., for zi it should be 2i − 0
and for ¬zi it should be 2i − 1. For example for clause c, (v1 ∨ ¬v2 ∨ v5), t[|V | + c] = 2 × 1 − 0 | 2 × 2 − 1 | 2 × 5 − 0
= 2|3|10. An example of this construction is shown in Table 9.

Lemma 5. The construction above takes polynomial time.

Proof. It is easy to see that, assuming that variables and clauses are numbered, we can simply scan the formula once to
construct our two strings in linear time. �
9

L.M.S. Russo, D. Costa, R. Henriques et al. Information and Computation 289 (2022) 104924
Lemma 6. The initial 3CNF-SAT clause is satisfiable if and only if there is an μOPPM match between the two constructed strings.

Proof. We start by showing how solving the μOPPM instance solves the initial 3CNF-SAT instance. To solve μOPPM, we
need to choose exactly one value for each position in p and t that leads to two order-isomorphic strings. To extract the
solution, we can limit ourselves to look at the initial part of t , t[0, |V | − 1], which sets the value of each literal.

First, note that p function is to maintain consistency between the values of literals chosen in t . By choosing only literals
in p, and not their values, we force equality between all such literals. Because of order-isomorphism, this equality must be
kept in t , forcing a valid solution to use a single value for each literal (since different values match in p but mismatch in t).
If we choose a literal to be positive/negative at some position in t , we force the value of that literal to be positive/negative
at every position in t .

Now, we focus on tC . Every clause has exactly one position in tC , and each of these positions have three choices of
value, matching only the three values that satisfy a clause. Because we must choose one value in each position to solve our
μOPPM instance, we must choose one value that satisfies each clause, for every clause.

Putting these two properties together, to solve μOPPM we must choose a literal value that satisfies each clause and those
literals must have consistent values. This establishes the equivalence between the solutions of the two instances.

We can easily extract the solution from μOPPM to 3CNF-SAT by checking whether the values in tV are even or odd, true
or false, respectively. There is a unique solution to 3CNF-SAT given an μOPPM solution.

To extract the solution from 3CNF-SAT to μOPPM, we take the values assigned to each variable and choose the respective
values in tV . Then, we need to choose values for pC and tC , which can easily be done by choosing any of the literals that
satisfies its respective clause. There may be multiple μOPPM solutions for a given 3CNF-SAT solution. �
Theorem 7. {3, 3}-μOPPM is NP-hard.

Proof. Using Lemmas 5 and 6 we show that 3CNF-SAT ≤p {3, 3}-μOPPM by constructing an instance of μOPPM in polyno-
mial time. The solutions can also be retrieved and translated in polynomial time. �
Theorem 8. μOPPM is NP-hard.

Proof. Since {3, 3}-μOPPM is a particular case of μOPPM, and it is NP-hard, then μOPPM is NP-hard. �
4.2. Encoding μOPPM with indeterminate pattern and text in SAT

To solve the general μ-OPPM with two indeterminate strings, we will present a simple SAT encoding of this problem.
First, we build a visual representation of the problem in the form of a graph, which can be seen as finding an independent
set in an m-partite graph. This leads to a straightforward and conceptually simple formulation of μOPPM in terms of SAT
clauses.

Constructing the graph. We build an m-partite graph, where each layer corresponds to a position in the strings.
Each layer has rx × ry nodes, where rx (ry) is the number of indeterminate characters in string x (y, respectively).

This leads to a total of m × r2 nodes in the graph. We use r throughout this section to indicate the maximum value of
indeterminate characters at any position, in either string.

We add an edge between every pair of nodes in each layer, leading to r2 × m edges. This will enforce an at most one
character choice per string and position in the encoding. These are cardinality constraints.

Then, for every pair of layers, and every pair of nodes in the different layers, we add an edge if the order between the
character choices in string x does not match the ones in string y. This leads to, at most, (m × r2)2 edges. These are conflict
constraints.

In total, our graph has m × r2 nodes and m2 × r4 + m × r2 edges, for a total size of O(m2 × r4). Fig. 1 shows an example
of this step for the strings x = (2, 2|4, 0) and y = (2, 0|1|3, 1|3). The edges within layers are not shown. The only solution is
given by $x = (2, 4, 0) and $y = (2, 3, 1), and can be seen in the graph as the only independent set (of size 3, which is the
number of layers).

SAT encoding. The μOPPM problem is trivially reduced to finding an independent set (of size m) in the graph G described
above. Every edge e represents a violation of the order-isomorphism between two positions, and we must choose exactly
one node per layer (character per string position).

This can be encoded in SAT. Our variables correspond to the nodes in the graph, given by zi,$x[i],$y[i] where i is the layer,
$x[i] is the choice of x[i]’s character and $y[i] is the choice of y[i]’s character. We first add a clause of size O(r2) for each
layer of the graph, to choose at least one node per layer. These are cardinality clauses. Then, for every edge (from node
$x[i], $y[i] to node $x[j], $y[j]) on the graph, we add a clause (¬zi,$x[i],$y[i] ∨ ¬z j,$x[j],$y[j]) to prevent choosing both nodes
(since they are incompatible). These include both cardinality and conflict clauses.

In total, we have a formula with O(m × r2) variables and O(m2 × r4) clauses. It may also be worthwhile to note that only
m of those clauses have more than 2 variables. The resulting formula is of the form:
10

L.M.S. Russo, D. Costa, R. Henriques et al. Information and Computation 289 (2022) 104924
0 1 2

2,2

2,0

2,1

2,3

4,0

4,1

4,3

0,1

0,3
<

<

=

=

=

>

>

>

>

>

>

>

>

>

>

>

Fig. 1. Conflicts when matching x = (2, 2|4, 0) against y = (2, 0|1|3, 1|3). In each node, the left character corresponds to string x, and the right character to
string y. The edges represent a conflict, with labels by a mismatch between the order in x and y.

φ =
m−1∧
i=0

(
∨

$y[i]∈y[i]
$x[i]∈x[i]

zi,$x[i],$y[i])

∧
∧
e∈G

(¬zi,$x[i],$y[i] ∨ ¬z j,$x[j],$y[j])

(3)

Theorem 9. The μOPPM can be reduced to SAT with the encoding above.

Proof. If x ≈ y then φ is satisfiable, and if x does not op-match y then φ is not satisfiable. (⇒) When x op-matches y,
there is an assignment of values in x and y such that $x ≈ $y. At each position i, and given the assignments $x[i] and $y[i],
we set the SAT variable zi,$x[i],$y[i] to true. Because every clause derives from a conflict (or selecting multiple characters
per position) and none is present (by assumption), the formula φ is satisfied. (⇐) When x does not match y, there is
no assignment of values $x ∈ x and $y ∈ y such that $x ≈ $y. Any choice of character violates either a conflict clause (by
assumption, because there is no valid match), or a cardinality clause (setting to true less/more than one variable per position
i), thus making φ formula unsatisfiable. �

Given the unique properties of the proposed SAT encoding, effective backtracking in accordance with the clauses in the
first line of (3), as well as dedicated conflict pruning principles derived from remaining clauses in (3), can be considered to
optimise efficient SAT solvers to solve the μOPPM problem.

5. Discussion and conclusion

We studied the μOPPM problem according to the number and position of the indeterminate characters. We have shown
that, for any number of indeterminacies, μOPPM has a polynomial-time algorithm for indeterminate characters in a single
string (Section 3.1), or in both strings, but never in both strings at the same position (Section 3.2). For indeterminate char-
acters in both strings at the same position, we have also shown that for at least three indeterminacies (at select positions),
the problem is NP-hard (Section 4).

There is a gap in between these two results. For the strings where there are at most two indeterminate characters in both
strings at the same position. This issue is not settled by this paper. Interestingly this question was very recently studied
by Gawrychowski, Ghazawi, and Landau [49] which established that indeed the problem is NP-hard even with only two
indeterminate characters.1 This result hence means that we now have efficient algorithms for the polynomial cases and the
remaining cases are known to be NP-hard.

1 See section 4.
11

L.M.S. Russo, D. Costa, R. Henriques et al. Information and Computation 289 (2022) 104924
In conclusion, this work addressed the relevant but not yet studied problem of finding order-preserving pattern matches
on indeterminate strings (μOPPM). We showed that the problem has a linear time and space solution when one string
is indeterminate. In addition, the μOPPM problem (when both strings are indeterminate) was mapped into a satisfiability
formula of polynomial size and two simple types of clauses in order to study efficient solvers for the μOPPM problem.
Moreover the μOPPM problem was shown to be NP-hard in general. Finally, we showed that solvers of the μOPPM prob-
lem can be boosted in the presence of filtration procedures and we identified a still open problem in what concerns the
computational complexity of the μOPPM problem when restricted to at most two indeterminate characters in both strings
at the same position.

Declaration of competing interest

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the
article or revising it critically for important intellectual content; and (c) approval of the final version.

This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue.
The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter

discussed in the manuscript

Acknowledgments

We thank an anonymous reviewer for pointing out the space improvement in Theorem 3.
This work was developed in the context of a secondment granted by the BIRDS MASC RISE project funded in part

by EU H2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no.690941. The work
reported in this article was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference
UIDB/50021/2020 and projects, PTDC/CCI-BIO/29676/2017, TUBITAK/0004/2014, SAICTPAC/0021/2015.

References

[1] X. Ge, Pattern matching in financial time series data, in: Final Project Report for ICS, Vol. 278, 1998.
[2] J. Kim, P. Eades, R. Fleischer, S.-H. Hong, C.S. Iliopoulos, K. Park, S.J. Puglisi, T. Tokuyama, Order-preserving matching, Theor. Comput. Sci. 525 (2014)

68–79.
[3] R. Henriques, A. Paiva, Seven principles to mine flexible behavior from physiological signals for effective emotion recognition and description in

affective interactions, in: PhyCS, 2014, pp. 75–82.
[4] R. Henriques, Learning from High-Dimensional Data using Local Descriptive Models, Ph.D. thesis, Instituto Superior Tecnico, Universidade de Lisboa,

Lisboa, 2016.
[5] R. Henriques, S.C. Madeira, Bicspam: flexible biclustering using sequential patterns, BMC Bioinform. 15 (2014) 130.
[6] R. Henriques, C. Antunes, S. Madeira, Methods for the efficient discovery of large item-indexable sequential patterns, in: New Frontiers in Mining

Complex Patterns, in: LNCS, vol. 8399, Springer International Publishing, 2014, pp. 100–116.
[7] S. Kawashima, M. Kanehisa, Aaindex: amino acid index database, Nucleic Acids Res. 28 (2000) 374.
[8] M. Kubica, T. Kulczyński, J. Radoszewski, W. Rytter, T. Waleń, A linear time algorithm for consecutive permutation pattern matching, Inf. Process. Lett.

113 (2013) 430–433.
[9] S. Cho, J.C. Na, K. Park, J.S. Sim, A fast algorithm for order-preserving pattern matching, Inf. Process. Lett. 115 (2015) 397–402.

[10] S. Cho, J.C. Na, K. Park, J.S. Sim, Fast order-preserving pattern matching, in: Combinatorial Optimization and Applications, Springer, 2013, pp. 295–305.
[11] D. Belazzougui, A. Pierrot, M. Raffinot, S. Vialette, Single and multiple consecutive permutation motif search, in: Int. Symposium on Algorithms and

Computation, Springer, 2013, pp. 66–77.
[12] T. Chhabra, J. Tarhio, A filtration method for order-preserving matching, Inf. Process. Lett. 116 (2016) 71–74.
[13] R. Henriques, A.P. Francisco, L.M.S. Russo, H. Bannai, Order-preserving pattern matching indeterminate strings, in: Proceedings of the Symposium on

Combinatorial Pattern Matching (CPM), 2018.
[14] D.E. Knuth, J.H. Morris Jr, V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (1977) 323–350.
[15] R.S. Boyer, J.S. Moore, A fast string searching algorithm, Commun. ACM 20 (1977) 762–772.
[16] T. Chhabra, S. Faro, M.O. Külekci, J. Tarhio, Engineering order-preserving pattern matching with simd parallelism, Softw. Pract. Exp. 47 (2017) 731–739.
[17] A. Amir, O. Lipsky, E. Porat, J. Umanski, Approximate Matching in the l1 Metric, CPM, vol. 5, Springer, 2005, pp. 91–103.
[18] O. Lipsky, E. Porat, Approximate matching in the l∞ metric, Inf. Process. Lett. 105 (2008) 138–140.
[19] A. Amir, Y. Aumann, P. Indyk, A. Levy, E. Porat, Efficient computations of l1 and l∞ rearrangement distances, Theor. Comput. Sci. 410 (2009) 4382–4390.
[20] E. Porat, K. Efremenko, Approximating general metric distances between a pattern and a text, in: ACM-SIAM Symposium on Discrete Algorithms, SIAM,

2008, pp. 419–427.
[21] E. Cambouropoulos, M. Crochemore, C. Iliopoulos, L. Mouchard, Y. Pinzon, Algorithms for computing approximate repetitions in musical sequences, Int.

J. Comput. Math. 79 (2002) 1135–1148.
[22] M. Crochemore, C.S. Iliopoulos, T. Lecroq, W. Plandowski, W. Rytter, Three heuristics for delta-matching: delta-bm algorithms, in: CPM, Springer, 2002,

pp. 178–189.
[23] R. Clifford, C. Iliopoulos, Approximate string matching for music analysis, Soft Computing 8 (2004) 597–603.
[24] P. Clifford, R. Clifford, C. Iliopoulos, Faster algorithms for δ, γ -matching and related problems, in: Annual Symposium on Combinatorial Pattern Match-

ing, Springer, 2005, pp. 68–78.
[25] I. Lee, R. Clifford, S.-R. Kim, Algorithms on extended (δ, γ)-matching, Comput. Sci. Appl., ICCSA 2006 (2006) 1137–1142.
[26] I. Lee, J. Mendivelso, Y.J. Pinzón, δγ –parameterized matching, in: International Symposium on String Processing and Information Retrieval, Springer,

2008, pp. 236–248.
[27] J. Mendivelso, I. Lee, Y.J. Pinzón, Approximate function matching under δ-and γ -distances, in: SPIRE, Springer, 2012, pp. 348–359.
[28] J. Holub, W. Smyth, S. Wang, Fast pattern-matching on indeterminate strings, J. Discret. Algorithms 6 (2008) 37–50. Selected papers from AWOCA 2005.
[29] R. Cole, C. Iliopoulos, T. Lecroq, W. Plandowski, W. Rytter, On special families of morphisms related to δ-matching and don’t care symbols, Inf. Process.

Lett. 85 (2003) 227–233.
12

http://refhub.elsevier.com/S0890-5401(22)00077-3/bib8559DD579215C00CA90A8A45A17F0E67s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibFB1EAF2BD9F2A7013602BE235C305E7As1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibFB1EAF2BD9F2A7013602BE235C305E7As1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibBA2A0727CCA17F3621D0741AF2220E85s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibBA2A0727CCA17F3621D0741AF2220E85s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib3700C96EADC5F7DC7176B6134FF4C833s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib3700C96EADC5F7DC7176B6134FF4C833s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib795C27505800CE2AACEEB91FA8BC9BA6s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib1666C7BD5BBEA32083EDCCA05F210259s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib1666C7BD5BBEA32083EDCCA05F210259s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibE4345C13B7B52DB42B5EED756766A628s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib09CF211C22BC027EFB1580A8D4561090s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib09CF211C22BC027EFB1580A8D4561090s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibAC228E1899F93CAE0472C73CED21C54Es1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib055CD59B7CCFB7B2BB1B2DC3C9A76E45s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib8B8AEB6F1FA5A8FE1A3A0794A4AD8998s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib8B8AEB6F1FA5A8FE1A3A0794A4AD8998s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib234332003D547C37812421158D9CC364s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib38F252F4A3C7E6E053B059250710ED12s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib38F252F4A3C7E6E053B059250710ED12s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib1815C0D9A3E1C713671AD6C9C9DBE9F7s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibB23740E586CE807CD38F8D2A5FFB27E1s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibED706AF224F50B362FAFA74A1F2752C4s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib2AC1226CBCFAE043F000544B71048BC4s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib8968CEE7FDCA9CCF005B014287D50326s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibD2187898EBE460EE6623013A74F692EDs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibA3DF1ABC150D0FBD705169DA566568FDs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibA3DF1ABC150D0FBD705169DA566568FDs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib79FE230FC0E37C06B1495CCFA246BFCEs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib79FE230FC0E37C06B1495CCFA246BFCEs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib21B0A67A3DEC3C8FE0B3DFC02E7098EBs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib21B0A67A3DEC3C8FE0B3DFC02E7098EBs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib5012B6C3DAEDC377B3D2E026D3158089s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib7CC354BBD9BA1E496F07C5B762D62B56s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib7CC354BBD9BA1E496F07C5B762D62B56s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib941603D0EA1D38DC8898092454B0D13Bs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibF28B94363B2945FA94902AB47B3D9CBAs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibF28B94363B2945FA94902AB47B3D9CBAs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibF571B5FE2DE81E6FBE3D279B63E7B628s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib44560D82707CCE3B8111A770924CF0E2s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibDCE93E39C7BFD0AD8BB6F2128E7225F0s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibDCE93E39C7BFD0AD8BB6F2128E7225F0s1

L.M.S. Russo, D. Costa, R. Henriques et al. Information and Computation 289 (2022) 104924
[30] A. Apostolico, Algorithms and Theory of Computation Handbook, Chapman & Hall/CRC, 2010, chapter 15.
[31] B.S. Baker, A theory of parameterized pattern matching: algorithms and applications, in: ACM Symposium on Theory of Computing, ACM, 1993,

pp. 71–80.
[32] A. Amir, M. Farach, S. Muthukrishnan, Alphabet dependence in parameterized matching, Inf. Process. Lett. 49 (1994) 111–115.
[33] A. Amir, M. Farach, Efficient 2-dimensional approximate matching of half-rectangular figures, Inf. Comput. 118 (1995) 1–11.
[34] A. Amir, Y. Aumann, G.M. Landau, M. Lewenstein, N. Lewenstein, Pattern matching with swaps, J. Algorithms 37 (2000) 247–266.
[35] S. Muthukrishnan, New results and open problems related to non-standard stringology, in: Combinatorial Pattern Matching, Springer, 1995,

pp. 298–317.
[36] D. Cantone, S. Cristofaro, S. Faro, An efficient algorithm for δ-approximate matching with α-bounded gaps in musical sequences, in: IW on Experimental

and Efficient Algorithms, Springer, 2005, pp. 428–439.
[37] D. Cantone, S. Cristofaro, S. Faro, On tuning the (δ, α)-sequential-sampling algorithm for δ-approximate matching with alpha-bounded gaps in musical

sequences, in: ISMIR, 2005, pp. 454–459.
[38] K. Fredriksson, S. Grabowski, Efficient algorithms for pattern matching with general gaps, character classes, and transposition invariance, Inf. Retr. 11

(2008) 335–357.
[39] A. Amir, R. Cole, R. Hariharan, M. Lewenstein, E. Porat, Overlap matching, Inf. Comput. 181 (2003) 57–74.
[40] A. Amir, Y. Aumann, M. Lewenstein, E. Porat, Function matching, SIAM J. Comput. 35 (2006) 1007–1022.
[41] A. Amir, I. Nor, Generalized function matching, J. Discret. Algorithms 5 (2007) 514–523. Selected papers from Ad Hoc Now 2005.
[42] M.L. Fredman, On computing the length of longest increasing subsequences, Discrete Math. 11 (1975) 29–35.
[43] D. Cantone, S. Faro, M.O. Külekci, An efficient skip-search approach to the order-preserving pattern matching problem, in: Stringology, 2015, pp. 22–35.
[44] T. Chhabra, M.O. Külekci, J. Tarhio, Alternative algorithms for order-preserving matching, in: Stringology, 2015, pp. 36–46.
[45] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, 1997.
[46] B. Ďurian, J. Holub, H. Peltola, J. Tarhio, Improving practical exact string matching, Inf. Process. Lett. 110 (2010) 148–152.
[47] K. Fredriksson, S. Grabowski, Practical and Optimal String Matching, SPIRE, vol. 3772, Springer, 2005, pp. 376–387.
[48] P. Bose, J.F. Buss, A. Lubiw, Pattern matching for permutations, Inf. Process. Lett. 65 (1998) 277–283.
[49] P. Gawrychowski, S. Ghazawi, G.M. Landau, On indeterminate strings matching, in: I.L. Gørtz, O. Weimann (Eds.), 31st Annual Symposium on Combi-

natorial Pattern Matching (CPM 2020), in: Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
vol. 161, 2020, pp. 14:1–14:14.
13

http://refhub.elsevier.com/S0890-5401(22)00077-3/bibE96E9AE011F66360F6B334DE29435A35s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibD4277F68D6BE7806B30501EDFCFD0FD0s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibD4277F68D6BE7806B30501EDFCFD0FD0s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib3DA961580B1319AE35BCFD766DD5869Ds1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibC4A68DC959943CAF76D5CB46C97201F2s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib5664BAE78FC1BD444206FB1E1EB31C0Ds1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibF2D5CF2F8E2B43553B80EAE44D694DF2s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibF2D5CF2F8E2B43553B80EAE44D694DF2s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib8B199FD29573592973F1FB5CE0D5D798s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib8B199FD29573592973F1FB5CE0D5D798s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibAE275FAE6F9729C8443BCDC7C3CEEFE8s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibAE275FAE6F9729C8443BCDC7C3CEEFE8s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib877BE7EE0316A5A53A3121CD1FB1BE6Cs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib877BE7EE0316A5A53A3121CD1FB1BE6Cs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibED84D589F231F3DC4203153E6FB4B4D5s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibE466CBBF27DCFB2353E071E44F4701B3s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib4DEF8F8E77ECA32ED204AECCD953667As1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib88798FDD4A7A7018D67590B857BE6E3Fs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibDE068E2BBD09341FCB6BFDFF9FEBA20Fs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bibA4545B176A6BB0C481499673A3A5A03Fs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib814774DA2EF6AD6A5D66A21F22D2C6C9s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib0E6E8F9BEBD0F3DD459E43ABC415593As1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib89B4468864CE7BA2ECBC545BDA64CA64s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib90D377B31E1AC26D0D10D5612CE33CCCs1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib7725CEF657F04C3CB6D61A75DC424623s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib7725CEF657F04C3CB6D61A75DC424623s1
http://refhub.elsevier.com/S0890-5401(22)00077-3/bib7725CEF657F04C3CB6D61A75DC424623s1

	Order-preserving pattern matching indeterminate strings
	1 Introduction
	2 Background
	2.1 The problem
	2.2 Related work

	3 Polynomial μOPPM cases
	3.1 O(mrlgr) time μOPPM with one determinate string
	3.2 Polynomial time alternate-μOPPM
	3.3 Handling larger texts

	4 General cases
	4.1 μOPPM is NP-hard
	4.2 Encoding μOPPM with indeterminate pattern and text in SAT

	5 Discussion and conclusion
	Declaration of competing interest
	Acknowledgments
	References

