
Effective Sparse Dynamic Programming

Algorithms for Merged and Block Merged LCS

Problems
AHM Mahfuzur Rahmana, M. Sohel Rahmana

a AℓEDA Group, Department of Computer Science and Engineering, Bangladesh University of Engineering and

Technology (BUET) Dhaka-1000, Bangladesh

Abstract— The longest common subsequence problem has
been widely studied and used to find out the relationship
between sequences. In this paper, we study the interleaving
relationship between sequences, that is, we measure the
relationship among three sequences, where two of those
are interleaved in different ways and then the interleaved
sequences are subsequently matched with the third re-
maining sequence, as pairwise longest common subsequence
problems. Given a target sequence T and two other se-
quences A and B, we need to find out the LCS between
M(A,B) and T , where M(A,B) denotes the merged-
sequence which consists of A and B. We first present an
improved O((Rr + Pm) log log r) time algorithm, where
we consider only the matches between sequences; here
|T | = n, |A| = m and |B| = r (m ≥ r); R is the total
number of ordered pairs of positions at which the two
strings A and T match and P denotes the total number
of ordered pairs of positions at which the two strings B
and T match. Basing on the same idea, we also propose an
improved algorithm to solve a block constrained variation
of the problem. Running time of the blocked version is
O(max{Rβ log log r,Pα log log r}), where α denotes the
number of blocks in A and β denotes the number of blocks in
B. However, these improved algorithms do not provide best
output in every cases. Therefore we finally fabricate a hybrid
algorithm which utilizes the advantages of our proposed
algorithms and previous state of the arts algorithms to
provide best output in every possible cases, from both time
efficiency and space efficiency.

Index Terms— Bioinformatics, Dynamic Programming,
Longest Common Subsequence, Merged Sequence, Block
Constraint

I. INTRODUCTION

THE longest common subsequence(LCS) problem

is one of the most studied problems in computer

science. It is a classical approach for measuring the sim-

ilarity between sequences and has extensive applications

in different areas of computer science such as file com-

parison, spelling error correction, speech recognition and

specially in computational biology and bioinformatics.

Given a sequence S, a subsequence S′ of S can be

obtained by deleting zero or more symbols from the

sequence S. Given two sequences A and B, the LCS of

A and B, denoted by LCS(A,B), is one of the longest

sequences S̄, where S̄ is a subsequence of both A and

B. For example, if A = agcat and B = gac a longest

common subsequence is LCS(A,B) = ga. A LCS may

not be unique, as in this case, there are two other LCSs
namely gc and ac.

A. Literature Review

Algorithms for finding the LCS of two or more se-

quences have been studied extensively in the literature

[1]–[6]. Most of these algorithms are based on either

traditional dynamic programming [2] or sparse dynamic

programming [3], [5], [7] approach. Recent trend also

includes heuristic based solution of LCS problem [8].

Wagner and Fischer [2] used the traditional dynamic pro-

gramming approach to give a solution which has O(n2)
worst case running time and space, assuming |A| = |B| =
n. Masek and Paterson [9] reduced the running time to

O(n2/ log n) using “Four-Russians” technique [10].

Sparse dynamic programming can also be used to

solve the LCS problem; algorithms of this kind depend

on the nature of inputs. For example, Hirschberg [3]

gave a sparse dynamic programming algorithm having

a time complexity depending on the length of LCS; if

|LCS(A,B)| = p, |A| = m and |B| = n, where m ≤ n,

this algorithm [3] runs in O((m + 1 − p)p log n) time.

Clearly, when p is close to m, this algorithm takes time

much less than O(n2). Another interesting and perhaps

more relevant parameter for this problem isR, whereR is

the total number of ordered pairs of positions at which the

two strings match. Hunt and Szymanski [6] presented an

algorithm running in O((R + n) log n), assuming |A| =
|B| = n. They also cited applications where R ∼ n and

thereby claimed that for these applications the algorithm

would run in O(n log n) time. Recently Rahman and

Illipoulos [7] have proposed an O(R log log n+ n) time

algorithm for computing LCS.

In addition to the traditional LCS problem, considerable

works on the variants of LCS have been studied in the

literature [7], [11]–[19]. Recently Huang et al. [20] pro-

posed a new variant of LCS, the merged LCS (referred

to as MLCS) which finds out the interleaving relationship

between sequences. Another version of this problem that

considers block constraint is named block merged LCS
(referred to as BMLCS).

The motivation of interleaving relationship between se-

quences comes from biology, where two related concepts,

doubly conserved synteny (DCS) and whole genome

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1743

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.8.1743-1754

Figure 1. A simplified diagram of DCS block and WGD (borrowed from [21]).

duplication (WGD) are associated. The synteny phe-

nomenon means the order of specific genes in a chro-

mosome is conserved over different organisms [22]–[24].

A typical example for this phenomenon can be seen

between two yeast-species Kluyveromyces waltii and

Saccharomyces cerevisiae [23]. By detecting the dou-

bly conserved synteny (DCS) blocks of the two species,

where each region of K. waltii corresponds to two

regions in S. cerevisiae, Kellis et al. [23] obtain the

support for the whole-genome duplication (WGD). If we

interleave two genomes from S.cerevisiae and compare

it with a Kluyveromyces waltii genome, the mapping

becomes evident. This resolves the controversy on the

ancestry of yeast genome and can also be used to find

the ancestry of other related genomes.

The MLCS problem can be used in signal comparison.

For example, to identify the similarity between a

complete voice (one series of signals without noise), and

two incomplete voices (two series of signals sampled

with different noise). A simple application of BMLCS

is copy detection between texts. For example, we have

some input text files and a target text file. Now, we want

to compare how much of the texts in the target file are

copied from the input files. Taking the words or lines

in texts as blocks, we can check how much of the texts

written are original to the writer and how much are

copied from the input texts.

B. Our Contribution

We devise an algorithm for the merged LCS problem

using sparse dynamic approach [7]. Suppose that three

sequences A,B and T are given as input. We use the

notation R and P where R denotes ordered pairs of

positions at which two strings A and T matches and P
denotes the same for the pair of strings B and T . We first

propose an algorithm which takes O((Rr+Pm) log log r)
time (we assume m ≥ r) and θ(max{(R + P), r})
space for the MLCS problem. Later we formulate another

algorithm for the BMLCS problem whose running time is

O(max{Rβ log log r,Pα log log r}) (α denotes the num-

ber of blocks in A and β denotes the number of blocks

in B).

Huang et al. proposed traditional algorithms for MLCS

and BMLCS problem [20] for three strings T,A and B.

They proposed an algorithm to solve the MLCS problem

in O(nmr) time and space. For the BMLCS problem,

they first proposed an algorithm that requires O(n2γ) time

and space(γ = max{α, β}). Later, they gave an algorithm

using the concept of S-table [12], [25], [26] which takes

O(n2 + nγ2) space and time.

Furthermore they proposed a sparse dynamic pro-

gramming approach to give a better solution of the

MLCS and BMLCS problem [21]. They gave an O(Lnr)
time algorithm for MLCS problem which takes O(Lmr)
space, where |A| = m, |B| = r, |T | = n and

L = |MLCS(A,B, T)|. For the BMLCS problem, they

proposed an algorithm which takes O(L′nγ) time and

O(L′mγ) space, where L′ = |BMLCS(A,B, T)|. The

value of L and L′ can be at most n.

Notably the running time of the algorithm in [21] is

based on the LCS length, i.e, L and L′. On the other

hand, our approach is based on the number of matches

between A and T (R) and between B and T (P). To

compare the two results, we need to investigate possible

relations between the parameters and the inputs.

When the search space is sparse, that is there

are insignificant number of matches (R ∼ n and

P ∼ n) and the MLCS length is considerably high

1744 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

(L ∼ n), Huang’s algorithm [21] gives the runtime

of O(n2r) whereas our algorithm gives the runtime

of only O((nr + nm) log log r) = O(nm log log r)
(assuming m ≥ r) and outperforms both of the al-

gorithms in [20] and [21] clearly. Besides, for the

blocked version, Hunag’s algorithm [21] gives the runtime

of O(n2γ). But, our algorithm gives the runtime of

O(max{nβ log log r, nα log log r}. If we take α ≥ β,

which is usually the case, then the runtime becomes

O(nα log log r), which is clearly far better than the al-

gorithms described in [20], [21].

To the contrary, when the search space is dense and the

number of matches is pretty high but the MLCS length is

significantly lower than n, Huang’s algorithm [20], [21]

will perform better than our algorithm. In the worst case,

when the search space is full, R becomes O(nm) and

P becomes O(nr). Therefore, due to the log log r term,

our algorithm will behave slightly worse than existing

algorithms.

Space complexity of both our algorithms in the worst

case (R = nm and P = nr) is θ(max{nm, r}) (m ≥ r).

When search space is sparse (R ∼ n and P ∼ n), space

requirement is just θ(max{n, r}). The space complexity

of previous best algorithms described in [21] are O(Lmr)
and O(L′mγ) for the merged LCS and block merged LCS

problem respectively. Therefore irrespective of the case,

space complexities of our algorithms are better than the

previous algorithms.

It is clearly visible that no single algorithm has the

exclusive dominance in all possible cases which gives

us the opportunity to work for a hybrid algorithm. We

devise an algorithm which first decides the density of the

search space depending on the number of matches. Then

counting on that number, we take the decision to run the

algorithm which will be more facilitating; this ensures

our choice of best algorithm in every possible cases; the

time and space complexity depends on the algorithm we

choose.

The rest of the paper is organized as follows. In

Section II, we present the preliminary concepts. Sec-

tion III is devoted to a new sparse dynamic programming

algorithm for the MLCS Problem. In Section IV, we

devise a algorithm for BMLCS problem. We suggest a

hybrid algorithm in Section V and finally conclude in

Section VI.

II. PRELIMINARIES

A. Merged LCS

Given a pair of merging sequences A and B and a

target sequence T , the merged LCS problem, denoted

by MLCS(A,B, T), is to determine the LCS of T and

merged sequence of A and B, denoted by M(A,B). We

define A = a1a2 . . . a|A|, B = b1b2 . . . b|B| and T =
t1t2 . . . t|T |.

MLCS(A,B, T) = LCS(M(A,B), T)

= LCS(M(a1a2 . . . a|A|, b1b2 . . .

b|B|), t1t2 . . . t|T |)

Note that, M(A,B) is basically a set of merged

sequences and LCS(M(A,B), T) gives the longest se-

quence among all possible sequences where each of

the sequence is a LCS between a sequence of the

set M(A,B) and T . Suppose that, we have the se-

quences A = a1a2a3a4 = actt and B = b1b2b3 =
ctg and the target sequence is T = tcatcg. To orig-

inally compute MLCS(A,B, T), we have to check

all C(m + r,m) possible merging sequences (in this

case, C(m + r,m) = C(4 + 3, 4) = 35). Here

we show only three of all possible merging sequences

within which we have an answer1. These sequences are:

M1(A,B) = acctgtt = a1b1a2b2b3a3a4, M2(A,B) =
acttctg = a1a2a3a4b1b2b3 and M3(A,B) = catcgtt =
b1a1b2a2b3a3a4 and the output is: MLCS(A,B, T) =
LCS(M3(A,B), T) = catcg, whose length is 5.

B. Block Merged LCS

The block merged LCS problem arises when we

impose block restriction on the sequences A and B.

We denote the block merged sequence of A and B by

M b(A,B) and the problem by BMLCS(A,B, T). If α
and β are the number of blocks in A and B respectively

,we define A = A1A2 . . . Aα and B = B1B2 . . . Bβ .

BMLCS(A,B, T) = LCS(M b(A,B), T)

= LCS(M b(A1A2 . . . Aα, B1B2 . . .

Bβ), t1t2 . . . t|T |)

Here, M b(A,B) are calculated exactly the same way

it was done in case of merged sequences except that,

A and B are blocked sequences. We had A = actt
in the previous example. Now, we divide A = actt
into two blocks A1 = ac and A2 = tt, represented as

A = A1A2 = ac#tt#. Note that, ′#′ denotes the end

of the block only and is not actually a part of the string

A. So, ′#′ will not occur in T and will not affect the

output. Suppose, B = ctg is also divided into two blocks

B = B1B2 = ct#g#.

In this case, the total number of possible block merged

sequences are C(α + β, α) = C(2 + 2, 2) = 6; the

sequences are: M b
1(A,B) = A1B1B2A2 = acctgtt,

M b
2(A,B) = A1A2B1B2 = acttctg,M b

3(A,B) =
B1A1A2B2 = ctacttg, M b

4(A,B) = A1B1A2B2 =
acctttg, M b

5(A,B) = B1A1B2A2 = ctacgtt and

M b
6(A,B) = B1B2A1A2 = ctgactt. By check-

ing all merging sequences of M b(A,B), one can

see that both bLCS(M b
2(A,B), T) = atcg and

bLCS(M b
3(A,B), T) = ctcg are optimal solutions of

1The list of all possible merged sequences and their corresponding
MLCS lengths are listed in Table 2 in the Appendix.

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1745

© 2014 ACADEMY PUBLISHER

t c a gtt c a gt

1 2 3 4 51 2 3 4 5

T

a c

1 2 3

k =

i =

t

T

k =

A

1 2 3j =

A c t g

i = 1, A(1) = (a) matches at k = 3

i = 2, A(2) = (c) matches at k = 2

i = 3, A(3) = (t) matches at k = 1, 4

j = 1, B(1) = (c) matches at k = 2

j = 2, B(2) = (t) matches at k = 1, 4

j = 3, B(3) = (g) matches at k = 5

MB
j = {(1, 2), (2, 1), (2, 4), (3, 5)}

MA
i = {(1, 3), (2, 2), (3, 1), (3, 4)}

T = tcatg

B = ctg

A = act

Figure 2. Construction of MA
i and MB

j from A,B and T

BMLCS(A,B, T). Note that for this case, the merging

sequence M3(A,B) = b1a1b2a2b3a3a4 in our previous

example cannot be obtained from any M b(A,B) as

M3(A,B) does not conserve block information.

In this paper, we denote ap as the pth character of the

string A. For example, if A = actt, then a0 = ǫ (empty

string), a1 = a, a2 = c etc. This is also true for the other

strings B and T .

We use the following notions: a pair (i, k), 1 ≤ i ≤
|A|, 1 ≤ k ≤ |T | defines a match if ai = tk; similarly

(j, k), 1 ≤ j ≤ |B|, 1 ≤ k ≤ |T | defines a match if

bj = tk. Let,

Mi
A = {(i, k)|ai = tk, 1 ≤ i ≤ |A|, 1 ≤ k ≤ |T |}

Mj
B = {(j, k)|bj = tk, 1 ≤ j ≤ |B|, 1 ≤ k ≤ |T |}

Given A,B and T , we can calculate the matches MA
i

and MB
j as shown in Figure 2. We define the set of all

matches,M, asM =MA
i ∪M

B
j . We also define, |M| =

R+ P , where R = |MA
i | and P = |MB

j |.

III. ALGORITHM FOR MERGED LCS PROBLEM

In this section, we present a new algorithm for

the MLCS problem. We use the traditional dynamic

programming formulation for MLCS presented in [20].

We define L(i, j, k) (0 ≤ i ≤ |A|, 0 ≤ j ≤ |B|,
1 ≤ k ≤ |T |) as follows:

L(i, j, k) = LCS(M(a1a2 . . . ai, b1b2 . . . bj), t1t2 . . . tk).
We have the following dynamic programming formulation

for the MLCS problem from [20]:

L(i, j, k) =

max























L(i− 1, j, k − 1) + 1 if ai = tk
L(i, j − 1, k − 1) + 1 if bj = tk

max







L(i, j, k − 1)
L(i− 1, j, k)
L(i, j − 1, k)

if ai 6= tk and bj 6= tk

(1)

We assume |T | = n, |A| = m and |B| = r. For simplicity,

we can take that n > m and n > r. We can also assume

that m ≥ r. This does not lose generality because when

this is not the case, we can exchange A and B.

It is quite straightforward to give an O(nmr) algorithm

to implement Equation 1. Our goal is to present a new

algorithm using sparse dynamic programming. From the

dynamic programming concept of finding LCS we know

that, the positions where there are no matches do not have

any contribution to the length of LCS. This is in fact

the base of sparse dynamic programming. Keeping the

concept in mind, we reformulate Equation 1 as follows:

ν1(i,j,k) = max
0≤ℓi<i
0≤ℓj≤j
1≤ℓk<k

(ℓi,ℓk),(ℓj ,ℓk)∈M

L(ℓi, ℓj , ℓk) (2)

ν2(i,j,k) = max
0≤ℓi≤i
0≤ℓj<j
1≤ℓk<k

(ℓi,ℓk),(ℓj ,ℓk)∈M

L(ℓi, ℓj , ℓk) (3)

L(i, j, k) = max

{

ν1(i,j,k) + 1 if ai = tk
ν2(i,j,k) + 1 if bj = tk

(4)

1746 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

i′

i

j

Lk(i, j)

Lk(i
′, j)

Fact 1

Lk(i
′, j) ≤ Lk(i, j)

For Every j

i− 1

i

j − 1 j j

i

From the figure, calculation of
Lk is dependent on Lk−1 only

It can also be seen that, calculation
of Lk(i, j) is independent of every
other Lk(p, q) such that
(p, q)ǫMA

i , 1 ≤ p ≤ m
or (q, k)ǫMB

j , 1 ≤ 1 ≤ r

Fact 2 and 3

k − 1 k

Figure 3. Facts for MLCS Problem.

In our algorithm, referred to as Algorithm-MLCS

henceforth, we use a preprocessing step requiring O((R+
P) log log n+n) (Algorithm 1 in [1]) to calculate the set

MA
i and MB

j in row by row order. Then the algorithm

processes each (i, k) ∈ MA
i and each (j, k) ∈ MB

j

using Equations 2 to 4. L(i, j, k) can be thought of as a

three dimensional matrix having dimensions m+1, r+1
and n. It would be more useful to visualize it as n
two dimensional matrices instead of a three dimensional

matrix. To highlight this view, we use the notation Lk, 1 ≤
k ≤ n to denote the kth two dimensional matrix. With

this new notation, we have L(i, j, k) = Lk(i, j), 0 ≤ i ≤
m, 0 ≤ j ≤ r, 1 ≤ k ≤ n. The implementation of the

Equations 2 to 4 utilizes the following facts :

Fact 1: Suppose (i, k) ∈ MA
i (resp. (j, k) ∈ MB

j).
Then for all (i′, j, k), i′ > i(resp. (i, j′, k), j′ > j),
we must have Lk(i

′, j) ≥ Lk(i, j)(resp.
Lk(i, j

′) ≥ Lk(i, j)).

While calculating the value of Lk(i
′, j), i′ > i,

LCS length may increase but it will never decrease

which provides the basis for the greater than or equal

relationship, Lk(i
′, j) ≥ Lk(i, j). Fact 1 also implies

that, if we calculate all the j values (0 ≤ j ≤ r) for the

row i′, then we do not need the values of row i further,

where i = i′ − 1, i′ − 2, . . . , 0.

Fact 2: The calculation of the matrix
Lk, 1 ≤ k ≤ n is independent of any matrix
Lp such that p < k − 1.

From Equations 1 to 4 , we can see that calculation of

Lk is dependent only on Lk and Lk−1. Any Lp, where

p < k − 1 is therefore unnecessary in the calculation of

Lk.

Fact 3: The calculation of a Lk(i, j), 0 ≤ i ≤
m, 0 ≤ j ≤ r, 1 ≤ k ≤ n is independent of Lk(p, q),
such that (p, k) ∈ MA

i , 1 ≤ p ≤ m or (q, k) ∈ MB
j ,

1 ≤ q ≤ r.

If we consider for the matches only (MA
i orMB

j), then

from Equations 2 to 4, we can see that the calculation of

Lk considers only Lk−1 values. Lk values were necessary

in calculation of LCS in Equation 1 to propagate the

solution, which in our case will be done by the assignment

step of our algorithm. Figure 3 explains all the three

facts in detail. Along with the above facts, we use the

BoundedHeap data structure of [27], which supports the

following operations:

Insert(H, pos , val , data): Insert into the Bounded-

Heap H the position pos with value val and associated

information data.

IncV al(H, pos, val, data): If H does not al-

ready contain the position pos, perform Insert(H, pos
, val , data). Otherwise, set this position’s value to

max{val, val′}, where val′ is its previous value. Also,

change the data field accordingly.

BoundedMax(H, pos): Return the item (with

additional data) that has maximum value among all

items in H with position smaller than pos. If H does not

contain any items with position smaller than pos, return 0.

If we have more than one position where the maximum

value can be found, then note that, BoundedMax()
returns the one having minimum among these positions,

that is (i, j, k) with the minimum j value. For example, if

we have elements in H1
2 (k = 1, i = 2) as (0, 0, 2, 2, 1, 0)

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1747

© 2014 ACADEMY PUBLISHER

with indexes 0, 1, 2, 3, 4, 5 (j) respectively then a call

as BoundedMax(H1
2, 2) will return j = 2, even if

the answers could be either 2 or 3, as 2 is minimum.

The following theorem from [27] presents the time

complexity of the BoundedHeap data structure.

Theorem 1 ([27]): BoundedHeap data structure can

support each of the above operations in O(log log n)
amortized time, where keys are drawn from the set

{1, . . . , n}. The data structure requires O(n) space.

We have n (k = 1, . . . , n) two dimensional matrices in

our hand. We consider the input A along the row and B
along the column of each two dimensional matrices. So,

each of the two dimensional matrices consists of m + 1
(i = 0, . . . ,m) rows and in each row we have r + 1
(j = 0, . . . , r) elements.

Algorithm-MLCS proceeds as follows. We consider all

the matches of row i for all k two dimensional matrices.

We consider Row i+1 only when the calculation of row i
is completed for all Lk, 1 ≤ k ≤ n. We need to deal with

four BoundedHeap data structures Hk
i ,H

k
i−1 ,H

k−1
i and

Hk−1
i−1 . Each of the bounded heap, Hk

i , contains

values for LCS(M(a1, a2 . . . ai, b0), t1t2 . . . tk),
LCS(M(a1, a2 . . . ai, b0b1), t1t2 . . . tk), . . .
LCS(M(a1, a2 . . . ai, b0b1 . . . bj), t1t2 . . . tk) where

0 ≤ j ≤ r. So, a bounded heap requires O(r) space.

At first Hk
i is initialized to max{Hk

i−1 ,H
k−1
i }. If we

consider the match (i, k) ∈ Mi , 1 ≤ i ≤ m, 1 ≤ k ≤ n,

we will need Hk−1
i−1 to calculate the value Lk(i, j) as

follows:

Lk(i, j).V al = BoundedMax(Hk−1
i−1 , j + 1).V al + 1

Lk(i, j).P rev = BoundedMax(Hk−1
i−1 , j + 1).Pos

Note that, we have not considered i = 0 for a (i, k)
match. At, i = 0, a0 = ǫ, an empty string and k starts

from 1. So, T can never contain an empty string ǫ and a

match is impossible for i = 0. Similarly, we do not need

to consider j = 0 for a (j, k) match. If we consider a

match (j, k) ∈ Mj , 1 ≤ j ≤ r, 1 ≤ k ≤ n, we will need

Hk−1
i and calculate the value Lk(i, j) as follows:

Lk(i, j).V al = BoundedMax(Hk−1
i , j).V al + 1

Lk(i, j).P rev = BoundedMax(Hk−1
i , j).Pos

We have to perform the following operation in both of

the cases:

IncV al(Hk
i , j, Lk(i, j).V al, (i, j, k))

To keep track of the best MLCS found so far, we

use a global variable named glMLCS. It stores the best

MLCS length found so far in glMLCS.V al and the

corresponding position in glMLCS.Pos. If the relation

glMLCS.V al < Lk(i, j).V al becomes true, we update

the glMLCS as follows:

glMLCS.V al = Lk(i, j).V al
glMLCS.Pos = (i, j, k)

Finally, when the calculation of a Hk
i , 1 ≤ i ≤ m, 1 ≤

n ≤ n ends, we can delete Hk−1
i−1 as it will not be

necessary in any calculation further. The algorithm is

formally presented in the form of Algorithm 1

The correctness of the above procedure follows from

Facts 1 to 3 and Equation 1 to Equation 4. Due to Fact 1

, as soon as we compute the Lk value of a new match in

a column j, we can forget the previous matches of that

column. After the computation of any Lk(i, j) in Row

i, we insert it into Hk
i , 1 ≤ k ≤ n to update it for the

calculation of next Row i+ 1. Due to Facts 2 and 3, we

use Hk−1
i−1 in case of (i, k) matches and Hk−1

i , in case

of (j, k) matches to calculate Lk(i, j), where 1 ≤ k ≤
n,1 ≤ i ≤ m and 1 ≤ j ≤ r.

Algorithm 1 AlgorithmMLCS(A,B, T)

1: Construct the set M using Algorithm 1 of [1]. Let

MA
i = (i, k) and MB

j = (j, k), 1 ≤ i ≤ m, 1 ≤ j ≤
r, 1 ≤ k ≤ n

2: glMLCS.Pos = ǫ
3: glMLCS.V al = ǫ
4: H0

0 = H0
−1 = H1

−1 = ǫ
5: for i = 0 m do

6: for k = 1 n do

7: Hk
i = max(Hk−1

i ,Hk
i−1)

8: for each (j, k) ∈Mj do

9: max = BoundedMax(Hk−1
i , j)

10: Lk(i, j).V al = max.V al + 1
11: Lk(i, j).P rev = max.Pos
12: IncV al(Hk

i ,max.V al, (i, j, k))
13: if glMLCS.V al < Lk(i, j).V al then

14: glMLCS.V al = Lk(i, j).V al
15: glMLCS.Pos = (i, j, k)
16: end if

17: end for

18: for each (i, k) ∈Mi do

19: for j ← 0 r do

20: max = BoundedMax(Hk−1
i−1 , j + 1)

21: Lk(i, j).V al = max.V al + 1
22: Lk(i, j).P rev = max.Pos
23: IncV al(Hk

i ,max.V al, (i, j, k))
24: if glMLCS.V al < Lk(i, j).V al then

25: glMLCS.V al = Lk(i, j).V al
26: glMLCS.Pos = (i, j, k)
27: end if

28: end for

29: end for

30: Delete Hk−1
i−1

31: end for

32: end for

33: return glMLCS

A. Runtime Analysis

Now, we analyze the runtime of the Algorithm 1. The

first line of the algorithm, which consists the preprocess-

ing step requires O((R+P) log log n+n) time to compute

the set MA
i and MB

j .

1748 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

In the next part, we have either a MA
i or MB

j match

and we need to use two operations, BoundedMax()
and IncV al(), for each of the match. The operations

take amortized O(log log r) time. We know that, there

are R number of (i, k) matches and P number of (j, k)
matches. Now a (j, k) match can occur for every i,
1 ≤ i ≤ m. Similarly, a (i, k) match can occur for

every j values, 1 ≤ j ≤ r. So, the total running time is

O((Rr + Pm) log log r).

For the space complexity, to store the matches

in memory, we need θ(R + P) space. To

calculate the MLCS, we need to store all the

Lk(i, j).Pos, (i, k) ∈ MA
i , (j, k) ∈ M

B
j values. If

we take space for one Lk(i, j).Pos to be constant, then,

as there are in total (R + P) matches, this process also

requires θ(R + P) space. Again, We need to keep track

of four Bounded Heap data structures, requiring only

O(r) space. So, the total space requirement becomes

θ(max(R+ P), r).The time and space complexity

of Algorithm-MLCS is summarized in the following

theorem.

Theorem 2: Algorithm-MLCS runs in O((Rr +
Pm) log log r) time and θ(max{(R+ P), r}) space.

If the number of matches becomes O(n), the runtime

reduces to O(n(r + m) log log r) = O(nm log log r)
(m ≥ r) and our algorithm works far better than the

previous best runtime of O(Lnr). To the contrary, the

worst case value of R is O(nm) and P is O(nr) and

consequently the worst case running time of our algo-

rithm becomes O(nmr log log r). A detailed performance

comparison is provided in the appendix.

B. Performance Comparison

Here, we compare the performance of Algorithm-

MLCS(Algorithm 1) with the previous algorithms in [20],

[21] and show different cases with illustrative examples.

As provided in Theorem 2, our proposed MLCS

algorithm takes O((Rr + Pm) log log r) time and

θ(max{(R+P), r}) space to calculate MLCS(A,B, T).
The traditional algorithm described in [20] calculates

the MLCS in O(nmr) time and space. Sparse Dynamic

Programming based on the length of MLCS discussed

in [21] needs O(Lnr) time and O(Lmr) space, where

L = |MLCS(A,B, T)|. In rest of the section, we discuss

different cases of the MLCS problem and show how our

algorithm performs in comparison with other approaches.

The worst case of our algorithm is observed when

there is only one character in our alphabet or in the

input sequence. For example, if the input sequences are

A = ttt, B = ttt and T = tttt, we have only one

character t in our input sequences. So, every position

i, 1 ≤ i ≤ m in the sequence A and every position

j, 1 ≤ j ≤ r in the sequence B matches with every

position k, 1 ≤ k ≤ n in the target sequence T . As a

result, the number of (i, k) matches R becomes O(nm)
and the number of (j, k) matches P becomes O(nr). In

this case, we obtain the maximum possible values for R
and P .

Our run time of O((Rr + Pm) log log r) becomes

O(nmr log log r) in the worst case; space requirement

becomes θ(max{nm, r}) (m ≥ r). We now see how the

other two algorithms [20], [21] works in the worst case.

The traditional dynamic prgoramming algorithm proposed

by Huang et al. in [20] gives the running time and space

of O(nmr) in the worst case. In particular, this algorithm

takes O(nmr) time and space in every cases. Note that,

the length of the output MLCS(A,B, T) is O(n) in the

worst case. The algorithm described in [21] for MLCS

problem runs in O(Lnr) time and O(Lmr) space. So,

this algorithm takes O(n2r) time and and O(nmr) space

in the worst case. This is also the worst case runtime and

space of this algorithm as the worst case value of L is n.

Depending on the value of n,m and r, our runtime can

be better or worse than the algorithm of [21]; our space

complexity is always better than both the algorithms [20],

[21] though.

The runtime of Algorithm-MLCS depends on the num-

ber of matches R and P . If the number of matches is

not high (R ∼ n and P ∼ n), the runtime reduces to

O(n(r + m) log log r) = O(nm log log r) (m ≥ r) and

the space complexity reduces to θ(max{n, r}) and our

algorithm works far better than the traditional runtime

and space of O(nmr).
The runtime of the algorithm discussed in [21] de-

pends on the length of the output L. If the matches

are O(n) and the length of the output is L ∼ n, then

the algorithm works in O(n2r) time, but our algorithm

works in O(nm log log r) time in this case. Consequently

Algorithm-MLCS clearly outperforms the sparse dynamic

programming algorithm of [21] which depends on the

length of the output. The space complexity of Algorithm-

MLCS, which is θ(max{n, r}) also is much better than

the space complexity of O(nmr) of the algorithm de-

scribed in [21].

We give an example of the best case of our algorithm

here. Let the inputs for this case are A = bba,B = tcg
and T = tcga. We have only three (j, k) matches which

gives MB
j = {(1, 1), (2, 2), (3, 3)} and |MB

j | = P = 3,

whereMB
j is the set of matches between B and T . Again,

we have only one (i, k) match so thatMA
i = {(3, 4)} and

|MA
i | = R = 1, whereMA

i is the set of matches between

A and T . The output is MLCS(A,B, T) = tcga and

output length |MLCS(A,B, T)| = 4. So, output length L
is O(n) and the number of matchesR and P are both less

than n. Our algorithm works very efficiently for this kind

of examples but the corresponding algorithms in [20], [21]

performs considerably bad.

IV. ALGORITHM FOR BLOCK MERGED LCS

PROBLEM

In this section, we present a new algorithm for

the BMLCS problem. We use the traditional dynamic

programming formulation for BMLCS presented in [20].

We define Lb(i, j, k) (0 ≤ i ≤ m, 0 ≤ j ≤ r, 1 ≤ k ≤ n)

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1749

© 2014 ACADEMY PUBLISHER

as follows:

Lb(i, j, k)
= LCS(M b(A1A2 . . . Aα, B1B2 . . . Bβ), t1t2 . . . tk).

We have the following dynamic programming

formulation for the BMLCS problem from [20]:

Lb(i, j, k) = max







































































max























L(i− 1, j, k − 1) + 1 if ai = tk
L(i− 1, j, k) if ai 6= tk
L(i, j − 1, k − 1) + 1 if bj = tk
L(i, j − 1, k) if bj 6= tk
L(i, j, k − 1) if ai 6= tk and bj 6= tk

if ai = # and bj = #

max







L(i− 1, j, k − 1) + 1 if ai = tk
L(i− 1, j, k) if ai 6= tk
L(i, j, k − 1) if ai 6= tk

if ai 6= # and bj = #

max







L(i, j − 1, k − 1) + 1 if bj = tk
L(i, j − 1, k) if bj 6= tk
L(i, j, k − 1) if bj 6= tk

if ai = # and bj 6= #

(5)

Note that, the condition ai 6= # and bj 6= # is not

considered in the equation, because it will be excluded

by the following fact:

Fact 4: Lb(i, j, k) is independent of the positions
ai and bk, 0 ≤ i ≤ m, 0 ≤ j ≤ r when ai 6= {#, φ} and
bj 6= {#, φ}, φ deonotes empty string (when i = 0 or
j = 0).

Furthermore, we can exclude the part of Equation 5,

when “ai = # and bj = #”, as there is no possibility

of a match here (the string T do not contain any block).

In particular, the authors of [21] as well considers only

three cases:

1. (i, j) = (0, 0)
2. ai /∈ {#, φ}
3. bj /∈ {#, φ}

Additionally, as we are calculating only the matches,

we can exclude all of the cases “ai 6= tk and bj 6= tk”.

Therefore, we can reformulate Equation 5 with the help

of Equations 2 and 3 as follows:

Lb(i, j, k) = max

{

ν1(i,j,k) + 1 if ai = tk&bj ∈ {φ,#}

ν2(i,j,k) + 1 if bj = tk&ai ∈ {φ,#}

(6)

Now we can discuss our algorithm to solve BMLCS

problem namely, Algorithm-BMLCS (Algorithm 2). Like

Algorithm 1, we also need four BoundedHeap data

structures here. Calculation of matches MA
i and MB

j

and the initialization process remains the same. But in

BMLCS, according to Fact 4 the condition ai 6= #
and bj 6= # never arises. Therefore, it is impossible

to have the MA
i matches (pair of matches between A

and T) and the MB
j matches (pair of matches between

B and T) at the same iteration. When ai ∈ {φ,#} and

bj /∈ {φ,#}, we consider the (j, k) ∈ MB
j matches and

when bj ∈ {φ,#} and ai /∈ {φ,#}, we consider the

(i, k) ∈ MA
i matches, 1 ≤ i ≤ m, 1 ≤ j ≤ r and

1 ≤ k ≤ n. The calculation after getting a match is done

similarly as we did in case of MLCS.

A. Runtime Analysis

To analyze the runtime of Algorithm 2, we need to con-

siderMA
i , 1 ≤ i ≤ m only when ai /∈ {φ,#}. We calcu-

late the change within a row i only when bj ∈ {φ,#} and

there are O(β) such cases in total. We need only O(β)
positions to update within a row, but for simplicity, we

have taken the size of our bounded heap as O(r) in spite

of O(β). For this reason, we need O(Rβ log log r) time

here. Again when ai ∈ {φ,#}, we will considerMB
j , 0 ≤

j ≤ r. We have only O(α) of such ai’s. Here we will

need bounded heap structure of space O(r) each and the

space necessity becomes O(Pα log log r). As both cases

can not arrive at the same time, the total running time

becomes O(max{Rβ log log r,Pα log log r}).
We need to keep track of four Bounded Heap data struc-

tures, requiring only O(r) space. The space complexity

for the pre-calculation step remains also the same as Al-

gorithm 1(Algorithm-MLCS). Time and space complexity

of Algorithm-BMLCS is summarized in the following

theorem.

Theorem 3: Algorithm-BMLCS runs in

O(max{Rβ log log r,Pα log log r}) time and in

θ(max{(R+ P), r}) space.

The worst case value of R is O(nm) and P is O(nr)
and as a result, the worst case running time of our al-

gorithm becomes O(max{βnm log log r, αnr log log r})
whereas the space requirement is: θ(max{nm, r}),
m ≥ r. If the number of matches are such that,

R ∼ n and P ∼ n, the runtime reduces to

O(max{βn log log r, αn log log r}) and space require-

ment reduces to θ(max{n, r}) which is better than the

previous best runtime of O(L′nγ) and space complexity

of O(L′mγ), L or L′ denoting the length of the result.

A detailed performance comparison is provided in the

appendix.

1750 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

Algorithm 2 Algorithm-BMLCS(A,B,T)

1: Construct the set M using Algorithm 1 of [1]. Let

MA
i = (i, k) and MB

j = (j, k), 1 ≤ i ≤ m, 1 ≤ j ≤
r, 1 ≤ k ≤ n

2: glBMLCS.Pos = ǫ
3: glBMLCS.V al = ǫ
4: H0

0 = H0
−1 = H1

−1 = ǫ
5: for i = 0 m do

6: for k = 1 n do

7: Hk
i = max(Hk−1

i ,Hk
i−1)

8: if ai = {φ,#} and bj 6= {φ,#} then

9: for each (j, k) ∈Mj do

10: max = BoundedMax(Hk−1
i , j)

11: Lk(i, j).V al = max.V al + 1
12: Lk(i, j).P rev = max.Pos
13: IncV al(Hk

i ,max.V al, (i, j, k))
14: if glBMLCS.V al < Lk(i, j).V al then

15: glBMLCS.V al = Lk(i, j).V al
16: glBMLCS.Pos = (i, j, k)
17: end if

18: end for

19: else

20: for each (i, k) ∈Mi do

21: for j = 0 r do

22: if bj = {φ,#} and ai 6= {φ,#} then

23: max = BoundedMax(Hk−1
i−1 , j + 1)

24: Lk(i, j).V al = max.V al + 1
25: Lk(i, j).P rev = max.Pos
26: IncV al(Hk

i ,max.V al, (i, j, k))
27: if glBMLCS.V al < Lk(i, j).V al

then

28: glBMLCS.V al = Lk(i, j).V al
29: glBMLCS.Pos = (i, j, k)
30: end if

31: end if

32: end for

33: end for

34: end if

35: end for

36: Delete Hk−1
i−1

37: end for

38: return glBMLCS

B. Performance Comparison

In this section, we compare the performance of

Algorithm-BMLCS with the previous algorithms in [20],

[21] and show different cases with illustrative examples.

As described in Theorem 3, Algorithm-BMLCS

takes O(max{Rβ log log r,Pα log log r}) time

and θ(max{(R + P), r}) space to calculate

BMLCS(A,B, T). Two algorithms are described

in [20]. First of them calculates the BMLCS in O(n2γ)
time and space and the next and improved algorithm

needs only O(n2 + nγ2) time and space, where

γ = max{α, β}. A sparse dynamic programming

approach based on the length of BMLCS discussed

in [21] needs O(L′nγ) time and O(L′mγ) space, where

L′ = |BMLCS(A,B, T)|.

The worst case of our algorithm is observed when there

is only one character in the input sequence. For example,

if the input sequences are A = tt#t#, B = tt#t# and

T = tttt, we have only one character t in our input

sequences. Therefore, every position i, 1 ≤ i ≤ m in

the sequence A and every position j, 1 ≤ j ≤ r in the

sequence B matches with every position k, 1 ≤ k ≤ n
in the target sequence T . The number of (i, k) matches,

R becomes O(nm) and the number of (j, k) matches, P
becomes O(nr). We obtain the maximum possible values

for R and P in this case.

Our run time of O(max{Rβ log log r,Pα log log r})
in the worst case becomes

O(max{βnm log log r, αnr log log r}); the space

requirement in this case becomes θ(max{nm, r}),
m ≥ r. We now see how other two algorithms works

in the worst case. The traditional dynamic programming

algorithm proposed by Huang et al. in [20] gives the

running time and space of O(n2γ) in the worst case

and the improved algorithm [21] works in O(n2 + nγ2)
time and space. Note that, the length of the output

BMLCS(A,B, T) is O(n). As the algorithm described

in [21] for BMLCS problem runs in O(L′nγ) time and

O(L′mγ) space, the algorithm takes O(n2γ) time and

O(nmγ) when the worst case arises. This is also the

worst case runtime and space of this algorithm as the

worst case value of L′ is n. Depending on the value of

n,m,r and γ, our algorithm may perform better or worse

than this algorithm [21].

As the runtime of Algorithm-BMLCS depends mainly

on the amount of matches, if the number of match

between T,A and T,B is less, then our algorithm

performs better. If the number of matches are such

that, R ∼ n and P ∼ n, the runtime reduces to

O(max{βn log log r, αn log log r}) and space require-

ment reduces to θ(max{n, r}). Without the loss of gen-

erality, we can take that, α ≥ β and the runtime becomes

O(αn log log r). Our algorithm works far better than the

traditional runtime of O(n2γ) or O(n2 + nγ2) in such

cases. Also, our space requirement of θ(max{n, r}) is

much better than O(n2γ) or O(n2 + nγ2).

The runtime of the algorithm for BMLCS problem

discussed in [21] depends on the length of the output

L′. If the matches are O(n) and the length of the output

is L′ ∼ n, then the algorithm works in O(n2γ) time

and O(nmγ) space. But, Algorithm-BMLCS works in

O(αn log log r) in this case. As α is the number of blocks

in A, it is usually very small compared to m, r or n. Also,

γ ≥ α and n >> log log r. So, our algorithm clearly

outperforms the sparse dynamic programming of [21].

The space complexity of our algorithm, θ(max{n, r}) is

also far better than the space complexity of O(nmγ).

We give an example of the best case of our algorithm

here. Let the inputs for this case are A = bb#a#, B =
tc#g# and T = tcga. We have only three (j, k)
matches which gives MB

j = {(1, 1), (2, 2), (3, 3)} and

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1751

© 2014 ACADEMY PUBLISHER

|MB
j | = P = 3, where MB

j is the set of matches

between B and T . Again we have only one (i, k) match

so that MA
i = {(3, 4)} and |MA

i | = R = 1, where

MA
i is the set of matches between A and T . The

output is BMLCS(A,B, T) = tcga and output length

|BMLCS(A,B, T)| = 4. Consequently output length L
is O(n) and number of matches R and P are both less

than n. Our algorithm works very efficiently for this type

of examples where amount of matches is insignificant but

the output length is about O(n) whereas, the algorithms

described in [20], [21] work considerably bad.

V. HYBRID ALGORITHM FOR MLCS AND BMLCS

From the analysis of the algorithms proposed in this

paper so far and the previous state of the art algorithms,

we can say that none of the algorithms is a prominent

winner in every cases. Therefore we provide a hybrid

algorithm which exploits the best features from both of

our algorithms and the previous algorithms. The new

algorithm will first count the number of matches available

for the input and target strings. Then depending on the

number of matches, it will select our algorithm or the

previous best algorithm. The method is described in

Algorithm 3.

Algorithm 3 Hybrid-Algorithm(A,B,T,isMLCS)

1: Construct the set M using Algorithm 1 of [1]. Let

MA
i = (i, k) and MB

j = (j, k), 1 ≤ i ≤ m, 1 ≤ j ≤
r, 1 ≤ k ≤ n

2: Count the number of matches from M
3: if number of matches, M∼ n then

4: if isMLCS is true then

run Algorithm 1.

5: else

run Algorithm 2.

6: end if

7: else

8: if isMLCS is true then

run Algorithm 1 from [21].

9: else

run corresponding algorithm for BMLCS from

[21].

10: end if

11: end if

In Algorithm 3, isMLCS is a boolean variable which

should be assigned true before calling the algorithm if

we want to calculate the MLCS; otherwise it should

be assigned false. Depending on the value of the

inputs given to the hybrid-algorithm, it will calculate

the LCS which should be better in performance in

every cases which is not possible for the individual

algorithms. The only overhead of this algorithm is to

count the number of matches which can be done simply

in O((R + P) log log n + n) time. In the worst case

the preprocessing takes about O(n2) log log n which

is significantly less than the time necessary to run the

individual algorithms.

TABLE 1. Comparison of algorithms for the merged

LCS and block-merged LCS problem. Here n,m and r
denote the lengths of T , A and B respectively. L or L′

denotes the length of the answer and γ = max{α, β},
where α and β denotes the number of blocks in A and B
respectively; P and R retain the same meaning described

in Section II. Time and space complexity of Algorithm 3

is not shown here as it will equal Huang’s [21] or our

algorithm depending on the number of matches.

Merged LCS

Algorithm Type Complexity

Huang’s [20]
Time O(nmr)
Space O(nmr)

Huang’s [21]
Time O(Lnr)
Space O(Lmr)

Our Algorithm
Time O((Rr + Pm) log log r)
Space θ(max{nm, r})

Block Merged LCS

Algorithm Type Complexity

Huang’s [20]
Time O(n2 + nγ2)
Space O(n2 + nγ2)

Huang’s [21]
Time O(L′nγ)
Space O(L′mγ)

Our Algorithm

Time O(max{Rβ log log r,
Pα log log r})

Space θ(max{(R+ P), r})

VI. CONCLUSIONS

In this paper, we have studied the merged LCS
problem with and without block constraint that is used

to find interleaving relationship between sequences.

We used a sparse dynamic programming approach to

give efficient algorithm for those problems. First we

developed an O((Rr + Pm) log log r) algorithm for the

Merged LCS Problem. Then we adopted that algorithm

for the block constraint and gave another algorithm

for the block merged LCS problem which runs in

O(max{Rβ log log r,Pα log log r}) time. Both of those

algorithms work very efficiently when R ∼ n and P ∼ n
but in the worst case when R is O(nm) and P is O(nr),
the algorithms work slightly worse due to the log log(r)
term. To overcome this problem, we finally proposed a

hybrid-algorithm which gives better output in every cases.

For future study, it would be interesting to see whether

the approaches we have taken here to solve the MLCS

and BMLCS problem can be employed to other variants of

LCS problem to devise efficient algorithms. Also it might

be interesting to see if more practically motivated variants

of the MLCS or BMLCS problem can be introduced using

the concepts of merging sequences and block constraint.

Additionally for protein sequences, considering the effect

of gaps in sequences, merged LCS problem can be

extended to the merged-alignment problem. Furthermore

we can extend the problem to the multiple merged LCS or

1752 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

multiple merged alignment problems for merging several

sequences.

APPENDIX

TABLE 2. A total of 35 merged sequences and their

corresponding MLCS results for the input sequences

A = actt, B = ctg and T = tcatcg

M(A,B) T MLCS(A,B, T)

acttctg tcatcg 4

actcttg tcatcg 4

actcttg tcatcg 4

actctgt tcatcg 4

acctttg tcatcg 3

acctttg tcatcg 3

accttgt tcatcg 3

acctttg tcatcg 3

accttgt tcatcg 3

acctgtt tcatcg 3

acctttg tcatcg 3

acctttg tcatcg 3

accttgt tcatcg 3

acctttg tcatcg 3

accttgt tcatcg 3

acctgtt tcatcg 3

actcttg tcatcg 4

actctgt tcatcg 4

actcgtt tcatcg 4

actgctt tcatcg 3

cactttg tcatcg 4

cactttg tcatcg 4

cacttgt tcatcg 4

cactttg tcatcg 4

cacttgt tcatcg 4

cactgtt tcatcg 4

catcttg tcatcg 5

catctgt tcatcg 5

catcgtt tcatcg 5

catgctt tcatcg 4

ctacttg tcatcg 4

ctactgt tcatcg 4

ctacgtt tcatcg 4

ctagctt tcatcg 3

ctgactt tcatcg 3

REFERENCES

[1] M. S. Rahman and C. S. Iliopoulos, “Algorithms for
computing variants of the longest common subsequence
problem,” in ISAAC (T. Asano, ed.), vol. 4288 of Lecture
Notes in Computer Science, pp. 399–408, Springer, 2006.

[2] R. Wagner and M. Fischer, “The string-to-string
correction problem,” Journal of the ACM (JACM),
vol. 21, no. 1, pp. 168–173, 1974.

[3] D. S. Hirschberg., “Algorithms for the longest common
subsequence problem,” J. ACM, vol. 24, no. 4,
pp. 664–675, 1977.

[4] C.-B. Yang and R. C. T. Lee, “Systolic algorithms for the
longest common subsequence problem,” Journal of the
Chinese Institute of Engineers, vol. 10, no. 6,
pp. 691–699, 1987.

[5] B. Baker and R. Giancarlo, “Sparse Dynamic
Programming for longest common subsequence from
fragments,” Journal of algorithms, vol. 42, no. 2,
pp. 231–254, 2002.

[6] T. G. S. J. W. Hunt, “A fast algorithm for computing
longest subsequences,” Communication of ACM, vol. 20,
no. 5, pp. 350–353, 1977.

[7] C. S. Iliopoulos and M. S. Rahman, “New efficient
algorithms for the LCS and constrained LCS problems,”
Inf. Process. Lett., vol. 106, no. 1, pp. 13–18, 2008.

[8] A. Unay and M. Guzey, “A swarm intelligence heuristic
approach to longest common subsequence problem for
arbitrary number of sequences,” Metabolomics, vol. 3,
no. 120, pp. 2153–0769, 2013.

[9] W. Masek and M. Paterson, “A faster algorithm
computing string edit distances,” Journal of Computer
and System sciences, vol. 20, no. 1, pp. 18–31, 1980.

[10] V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev, “On
economic construction of the transitive closure of a
directed graph (in russian). english translation in soviet
math. dokl. 11, 1209-1210, 1975,” in Dokl. Acad. Nauk,
vol. 194, pp. 487–488, 1970.

[11] A. N. Arslan and Ömer Eǧecioǧlu, “Algorithms for the
constrained longest common subsequence problems,”
International Journal of Foundations of Computer
Science, vol. 16, no. 6, pp. 1099–1109, 2005.

[12] K. Huang, C. Yang, K. Tseng, Y. Peng, and H. Ann,
“Dynamic programming algorithms for the mosaic
longest common subsequence problem,” Information
Processing Letters, vol. 102, no. 2-3, pp. 99–103, 2007.

[13] C. S. Iliopoulos and M. S. Rahman, “Algorithms for
computing variants of the longest common subsequence
problem,” Theor. Comput. Sci., vol. 395, no. 2-3,
pp. 255–267, 2008.

[14] W. Yingjie, L. Wang, D. Zhu, and X. Wang, “An efficient
dynamic programming algorithm for the generalized lcs
problem with multiple substring exclusive constraints,”
Journal of Discrete Algorithms, 2014.

[15] A. Gorbenko and V. Popov, “The longest common
parameterized subsequence problem,” Applied
Mathematical Sciences, vol. 6, no. 58, pp. 2851–2855,
2012.

[16] S. R. Chowdhury, M. M. Hasan, S. Iqbal, and M. S.
Rahman, “Computing a longest common palindromic
subsequence,” in Combinatorial Algorithms, pp. 219–223,
Springer, 2012.

[17] E. Farhana and M. S. Rahman, “Doubly-constrained lcs
and hybrid-constrained lcs problems revisited,” Inf.
Process. Lett., vol. 112, no. 13, pp. 562–565, 2012.

[18] M. R. Alam and M. S. Rahman, “The substring inclusion
constraint longest common subsequence problem can be
solved in quadratic time,” J. Discrete Algorithms, vol. 17,
pp. 67–73, 2012.

[19] J. M. Moosa, M. S. Rahman, and F. T. Zohora,
“Computing a longest common subsequence that is
almost increasing on sequences having no repeated
elements,” J. Discrete Algorithms, vol. 20, pp. 12–20,
2013.

[20] K.-S. Huang, C.-B. Yang, K.-T. Tseng, H.-Y. Ann, and
Y.-H. Peng, “Efficient algorithms for finding interleaving
relationship between sequences,” Inf. Process. Lett.,
vol. 105, no. 5, pp. 188–193, 2008.

[21] Y.-H. Peng, C.-B. Yang, K.-S. Huang, C.-T. Tseng, and
C.-Y. Hor, “Efficient sparse dynamic programming for
the merged lcs problem with block constraints,”
International Journal of Innovative Computing,
Information and Control, vol. 6, April 2010.

[22] O. Jaillon, J. Aury, F. Brunet, J. Petit,
N. Stange-Thomann, E. Mauceli, L. Bouneau, C. Fischer,
C. Ozouf-Costaz, A. Bernot, S. Nicaud, D. Jaffe,

JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014 1753

© 2014 ACADEMY PUBLISHER

S. Fisher, G. Lutfalla, C. Dossat, B. Segurens,
C. Dasilva, M. Salanoubat, M. Levy, N. Boudet,
S. Castellano, V. Anthouard, C. Jubin, V. Castelli,
M. Katinka, B. Vacherie, C. Biemont, Z. Skalli,
L. Cattolico, J. Poulain, V. de Berardinis, C. Cruaud,
S. Duprat, P. Brottier, J. Coutanceau, J. Gouzy, G. Parra,
G. Lardier, C. Chapple, K. McKernan, P. McEwan,
S. Bosak, M. Kellis, J. Volff, R. Guigo, M. Zody,
J. Mesirov, K. Lindblad-Toh, B. Birren, C. Nusbaum,
D. Kahn, M. Robinson-Rechavi, V. Laudet, V. Schachter,
F. Quetier, W. Saurin, C. Scarpelli, P. Wincker,
E. Lander, J. Weissenbach, and H. Roest Crollius,
“Genome duplication in the teleost fish Tetraodon
nigroviridis reveals the early vertebrate proto-karyotype,”
Nature, vol. 431, no. 7011, pp. 946–957, 2004.

[23] M. Kellis, B. Birren, and E. Lander, “Proof and
evolutionary analysis of ancient genome duplication in
the yeast Saccharomyces cerevisiae,” Nature, vol. 428,
no. 6983, pp. 617–624, 2004.

[24] D. Vallenet, L. Labarre, Z. Rouy, V. Barbe, S. Bocs,
S. Cruveiller, A. Lajus, G. Pascal, C. Scarpelli, and
C. Médigue, “MaGe: a microbial genome annotation
system supported by synteny results,” Nucleic acids
research, vol. 34, no. 1, p. 53, 2006.

[25] G. M. Landau, B. Schieber, and M. Ziv-Ukelson, “Sparse
lcs common substring alignment,” in CPM (R. A.
Baeza-Yates, E. Chávez, and M. Crochemore, eds.),
vol. 2676 of Lecture Notes in Computer Science,
pp. 225–236, Springer, 2003.

[26] G. Landau and M. Ziv-Ukelson, “On the Common
Substring Alignment Problem,” Journal of Algorithms,
vol. 41, no. 2, pp. 338–359, 2001.

[27] G. S. Brodal, K. Kaligosi, I. Katriel, and M. Kutz,
“Faster algorithms for computing longest common
increasing subsequences,” in CPM (M. Lewenstein and
G. Valiente, eds.), vol. 4009 of Lecture notes in
Computer Science, pp. 330–341, Springer, 2006.

AHM Mahfuzur Rahman received his B.Sc. Engg. degree in
Computer Science and Engineering (CSE) from Bangladesh University
of Engineering and Technology (BUET) in 2011. He is currently
working as a senior software engineer in Samsung Research Institute,
Bangladesh. His research interests are in Bioinformatics and
Computational Biology, Computer Vision and Artificial Intelligence.

M. Sohel Rahman received his B.Sc. Engg. degree from the
Department of Computer Science and Engineering (CSE), Bangladesh
University of Engineering and Technology (BUET), Dhaka,
Bangladesh, in 2002 and the M.Sc. Engg. degree from the same
department, in 2004. He received his Ph.D. degree from the
Department of Computer Science, Kings College London, UK in
2008. He is currently a Professor in the Department of CSE, BUET.
His research interests include String and sequence algorithms,
Bioinformatics, Musicolgy, Design and analysis of Algorithms,

1754 JOURNAL OF COMPUTERS, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

