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The αµ Search Algorithm for the Game of Bridge

Tristan Cazenave 1 and Véronique Ventos 2

Abstract. αµ is an anytime heuristic search algorithm for incom-

plete information games that assumes perfect information for the op-

ponents. αµ addresses the strategy fusion and non-locality problems

encountered by Perfect Information Monte Carlo sampling. In this

paper αµ is applied to the game of Bridge.

1 Introduction

As superhuman level has been reached for Go starting from zero

knowledge [18] and as it is also the case for other two player com-

plete information games such as Chess and Shogi [17] some of the

next challenges in games are imperfect information games such as

Bridge or Poker. Multiplayer Poker has been solved very recently [1]

while computer Bridge programs are still not superhuman.

The state of the art for computer Bridge is Perfect Information

Monte Carlo sampling (PIMC). It is a popular algorithm for imper-

fect information games. It was first proposed by Levy [13] for Bridge,

and used in the popular program GIB [10]. PIMC can be used in other

trick-taking card games such as Skat [2, 12], Spades and Hearts [19].

The best Bridge and Skat programs use PIMC. Long analyzed the

reasons why PIMC is successful in these games [15].

However PIMC plays sub-optimally due to two main problems:

strategy fusion and non locality. We will illustrate these problems

in the second section. Frank and Basin [6] have proposed a heuris-

tic algorithm to solve Bridge endgames that addresses the problems

of strategy fusion and non locality for late endgames. The algorithm

we propose is an improvement over the algorithm of Frank and Basin

since it solves exactly the endgames instead of heuristically and since

it can also be used in any state even if the search does not have

enough time to reach the terminal states. Ginsberg has proposed to

use a lattice and binary decision diagrams to improve the approach

of Frank and Basin for solving Bridge endgames [10]. He states that

he was generally able to solve 32 cards endings, but that the running

times were increasing by two orders of magnitude as each additional

card was added. αµ is also able to solve Bridge endings but it can

also give a heuristic answer at any time and for any number of cards

and adding cards or searching deeper does not increase as much the

running time.

Furtak has proposed recursive Monte Carlo search for Skat [8] to

improve on PIMC but the algorithm does not give exact results in the

endgame and does not solve the non locality problem.

Other approaches to imperfect information games are Information

Set Monte Carlo Tree Search [3], counterfactual regret minimization

[21], and Exploitability Descent [14].

αµ searches with partial orders. It is related to partial order bound-

ing [16] and to searching game trees with vectors of integer values
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[4]. However our algorithm is different from these algorithms since

it searches over vectors only composed of 0 and 1 and uses different

backups for sets of vectors at Max and Min nodes as well as proba-

bilities of winning.

The contributions of the paper are:

1. An anytime heuristic search algorithm that assumes Min players

have perfect information and that improves on PIMC and previous

related search algorithms.

2. An anytime solution to the strategy fusion problem of PIMC that

solves the strategy fusion problem when given enough time.

3. An anytime solution to the non-locality problem of PIMC using

Pareto fronts of vectors representing the outcomes for the different

possible worlds. It also converges given enough time.

4. A search algorithm with Pareto fronts.

5. The description of the early and root cuts that speed up the search.

6. Adaptation of a transposition table to the algorithm so as to im-

prove the search speed using iterative deepening.

7. Experimental results for the game of Bridge.

The paper is organized as follows: the second section deals with

PIMC for computer Bridge and its associated defects. The third sec-

tion defines vectors of outcomes and Pareto fronts. The fourth section

deals with search with strategy fusion and non locality. The fifth sec-

tion gives experimental results.

2 Perfect Information Monte Carlo Sampling

In this section we illustrate the problems of PIMC.

2.1 Double Dummy Solver

A very efficient Double Dummy Solver (DDS) has been written by

Bo Haglund [11]. In our experiments we use it to evaluate double

dummy hands. It makes use of partition search [9] among many other

optimizations to improve the solving speed of the αβ .

2.2 Some Problems of PIMC

PIMC is the state of the art of computer Bridge, it is used for exam-

ple in GIB [10] and in WBRIDGE5 [20] the current computer world

champion. The PIMC algorithm is given in algorithm 1. In this al-

gorithm S is the set of possible worlds and allMoves is the set of

moves to be evaluated. The play function plays a move in a possi-

ble world and returns the corresponding state. The doubleDummy

function evaluates the state using a double dummy solver.

There are multiple problems with PIMC [15]. Here we will illus-

trates some problems for the declarer with a No Trump contract since

our experiments use this restriction.

http://arxiv.org/abs/1911.07960v1
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Algorithm 1 The PIMC algorithm.

1: Function PIMC (allMoves, S)

2: for move ∈ allMoves do

3: score[move]← 0
4: for w ∈ S do

5: s← play (move,w)

6: score[move]← score[move]+ doubleDummy (s)

7: end for

8: end for

9: return argmaxmove(score[move])

♠ K J 10 7

♥ A K Q

♦ A K Q

♣ x x x

N

S

♠ A 9 8 6

♥ x x x

♦ x x x

♣ A K Q

In this hand from [10], PIMC finds that the declarer always makes

all of the four tricks at Spades. This problem is known as strategy

fusion [5]. The reason why PIMC misevaluates the hand is because

it can play different cards in different worlds whereas it should play

the same cards in all the worlds. Frank and Basin solve this prob-

lem with an algorithm they call Vector Minimaxing [6] that plays the

same cards for the Max player in all the worlds. In Bridge terms the

reason why PIMC fails is that the finesse of the Queen of Spades

always works in all worlds given perfect information. This can be

misleading for the bidding phase also since Flat Monte Carlo thinks

it can make four tricks when it has only 50% chances of making them

thus reducing the chances of making the contract to 50% instead of

100%. Another problem with this hand is that the best way of play-

ing is to play other cards before trying the finesse since it can gain

information on the repartition of the Spades. If such information is

available it is best to try the finesse for the side that has the least

Spades. This is known as Discovery Play. The last thing about this

hand is that if South has decided to finesse the Queen of Spades at

East, it should first play the Ace in case the Queen is single.

♠ J 8 7 6

♥—

♦—

♣—

♠ 9 4

♥—

♦—

♣—

N

W E

S

♠ K Q 5

♥—

♦—

♣—

♠ A 10 3 2

♥—

♦—

♣—

This hand from [5] illustrates the problem of non locality. In

Bridge terms when the dummy plays the 6 East plays the King and

the declarer plays the Ace the best play is to finesse the 7 of Spades

which is better than to finesse the Jack. From an algorithmic point of

view non locality can be explained using figure 1 from [7]. It illus-

trates non-locality when searching with strategy fusion for Max and

perfect information for Min. As usual the Max nodes are squares and

the Min nodes are circles. The leaves gives the result of the game in

the three possible worlds. For example the move to the right from

node d reaches a state labeled [1 0 0] which means that the game

is won in world 1 (hence the 1 in the first position), lost in world 2

(hence the 0 in the second position) and also lost in world 3 (hence

the 0 in the third position). The vectors near the internal nodes give

the values that are backed up by the strategy fusion for Max and

perfect information for Min algorithm. We can see that each Max

node is evaluated by choosing the move that gives the maximum av-

erage outcome. For example at node d there are two moves, the left

one leads to [1 0 0] and therefore has an average of 1

3
whereas the

right one leads to [0 1 1] and has an average of 2

3
. So node d backs

up [0 1 1]. However it is not globally optimal. If instead of choos-

ing the right move at node d it chooses the left move it backs up

[1 0 0] and then the b node would have been evaluated better also

with [1 0 0]. It illustrates that choosing the local optimum at node

d prevents from finding the real optimum at node b. At Min nodes

the algorithm chooses for each world the minimal outcome over all

children since it can choose the move it prefers most in each different

world.

Figure 1: Example of a tree with three worlds illustrating non-locality.

a

b [0 0 0]

d [0 1 1]

[1 0 0] [0 1 1]

e [1 0 0]

[0 0 0] [1 0 0]

c [0 0 0]

f [0 0 0]

[0 0 0]

♠ x x x

♥—

♦ K x

♣—

♠ 6 2

♥—

♦ A x

♣ x

N

W E

S

♠ A Q J

♥—

♦ x x

♣—

♠ K

♥—

♦ x x x x

♣—

This hand illustrates that PIMC can drop the King of Spades as

South when West plays the small Clubs because the King is useless

in DDS as it is always taken by the Ace. In a real game the declarer

can play a small Spades from the dummy and it is not clear East will

play the Ace, leaving the possibility to win the trick with the King.
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♠ A K Q

♥ A K Q

♦ K Q J 10

♣ A K J

♠—

♥—

♦—

♣—

N

W E

S

♠—

♥—

♦—

♣—

♠ x x x

♥ x x x

♦ x x x x

♣ x x x

This hand comes from Fred Gitelman and illustrates reasoning on

the cards played by the defense to infer the possible hands. The con-

tract is 6 NT. If West starts with the Ace of Diamonds and then plays a

small Clubs the declarer can infer that West does not have the Queen

of Clubs and choose not to finesse the Queen. GIB for example does

not see it and finesse the Queen.

♠ K Q 9 8 7 6

♥—

♦—

♣—

♠—

♥—

♦—

♣—

N

W E

S

♠—

♥—

♦—

♣—

♠ A 10 5

♥—

♦—

♣—

This hand illustrates that strong Bridge players know how to play

so as to avoid rare negative events. Monte Carlo search does not see

these events if the corresponding worlds are not generated by the

sampling. The Spades are won 100% of the time for a human player.

The only way to lose a trick at Spades is when the Jack is with the

three remaining Spades which is rare. A human player will play the

King to discover if it is the case and then play accordingly doing the

right finesse.

3 Vectors of Outcomes and Pareto Fronts

In this section we define Vectors and Pareto fronts that are used by

the algorithms in the next section.

3.1 Definitions for Vectors

Given n different possible worlds, a vector of size n keeps the status

of the game for each possible world. A zero at index n means that

the game is lost for world number n. A one means the game is won.

Associated to the vector there is another vector of booleans indicating

whether the world is possible in the current state. At the root of the

search all worlds are possible but when an opponent makes a move,

the move is usually only valid in some of the worlds and the valid

worlds are reduced.

The maximum of two vectors is a vector that for each index con-

tains the maximum of the two values at this index in the two vectors.

Similarly for the minimum.

A vector is greater or equal to another vector if for all indices it

contains a value greater or equal to the value contained at this index

in the other vector and if the valid worlds are the same for the two

vectors. A vector dominates another vector if it is greater or equal to

the other vector.

The score of a vector is the average among all possible worlds of

the values contained in the vector.

3.2 Pareto Front

A Pareto front is a set of vectors. It maintains the set of vectors that

are not dominated by other vectors. When a new vector is a candi-

date for insertion in the front the first thing to verify is whether the

candidate vector is dominated by a vector in the front. If it is the case

the candidate vector is not inserted and the front stays the same. If

the candidate vector is not dominated it is inserted in the front and

all the vectors in the front that are dominated by the candidate vector

are removed.

For example consider the Pareto front {[1 0 0], [0 1 1]}. If we add

the vector [0 0 1] to the front, then the front stays unchanged since

[0 0 1] is dominated by [0 1 1]. If we add the vector [1 1 0] then

the vector [1 0 0] is removed from the front since it is dominated

by [1 1 0], and then [1 1 0] is inserted in the front. The new front

becomes {[1 1 0], [0 1 1]}.
It is useful to compare Pareto fronts. A Pareto front is greater or

equal to another Pareto front if for each element of the second Pareto

front there is an element in the first Pareto front which is greater or

equal to the element of the second Pareto front.

4 Search with Strategy Fusion and Non-Locality

In this section we explain in details the search algorithm and its op-

timizations.

4.1 Maximizing the probability of winning

In Bridge the score of a board is calculated from the number of tricks

required by the contract and the number of won tricks. For instance,

let us consider the contract of 3NT used in our experiments where

the minimum number of tricks required is 9. For 9 won tricks, the

score is +400, for 10 won tricks the score is +430 since the bonus

points for one overtrick is only +30 but if the declarer gets only 8

tricks the contract is defeated and the score is then -50. This threshold

has an impact on the card play, where the first goal is to make the

contract and then to try to obtain overtricks if it does not endanger the

contract. In our experiments we maximize the probability of making

the contract which is not optimal but reasonable.

4.2 Search with Strategy Fusion

Let assume that the defense know the cards of the declarer and that

the declarer optimizes against all possible states that corresponds to

his information. The score of a move for the declarer is the score of

the vector that has the best score among the vectors in the Pareto front

of the move. At a Max node the declarer computes after each move

the union of the Pareto fronts of all the moves that have been tried

so far. Min has knowledge of the declarer cards so in each world she

takes the move that minimizes the result of Max. The code for Min

and Max nodes is given in algorithm 2. αµ is a generalization of

PIMC since a search with a depth of one is PIMC.

The parameter M controls the number of Max moves, when

M = 0 the algorithm reaches a leaf and each remaining possible

world is evaluated with a double dummy search. The stop function

3
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is given in algorithm 3. It also stops the search if the contract is al-

ready won no matter what is played after. The parameter state con-

tains the current state where all the moves before have been played

and which does not contain the hidden information. The parameter

Worlds contains the set of all possible worlds compatible with the

moves already played. The Pareto front is first initialized with an

empty set (line 5). If at a min node, the set of all possible moves

in all possible worlds is calculated (lines 7-11). For each move, the

move is played, the possible worlds updated and a recursive call is

performed. The Pareto front resulting from the recursive call is then

combined with the overall front (lines 12-17). We will explain later

the min algorithm. Similar operations are performed for a Max node

except that the combination with the overall front is then done with

the max algorithm (lines 19-28). We explain the max algorithm in

the next section.

Algorithm 2 The αµ search algorithm without cuts and without

transposition table.

1: Function αµ (state,M,Worlds)

2: if stop(state,M,Worlds, result) then

3: return result

4: end if

5: front← ∅
6: if Min node then

7: allMoves← ∅
8: for w ∈ Worlds do

9: l ← legalMoves (w)

10: allMoves = allMoves ∪ l

11: end for

12: for move ∈ allMoves do

13: s← play (move, state)

14: W1 ← {w ∈Worlds : move ∈ w}
15: f ← αµ (s,M,W1)

16: front← min(front, f )

17: end for

18: else

19: for w ∈ Worlds do

20: l ← legalMoves (w)

21: allMoves = allMoves ∪ l

22: end for

23: for move ∈ allMoves do

24: s← play (move, state)

25: W1 ← {w ∈Worlds : move ∈ w}
26: f ← αµ (s,M − 1,W1)

27: front← max(front, f )

28: end for

29: end if

30: return front

4.3 Max nodes

At Max nodes each possible move returns a Pareto front. The overall

Pareto front is the union of all the Pareto fronts of the moves. The

idea is to keep all the possible options for Max, i.e. Max has the

choice between all the vectors of the overall Pareto front. In order to

optimize computations and memory, vectors that are dominated by

another vector in the same Pareto front are removed.

Algorithm 3 The function that stops search.

1: Function stop (state,M,Worlds, result)

2: if declarerT ricks(state) ≥ contract then

3: for w ∈Worlds do

4: result[w]← 1
5: end for

6: return True

7: end if

8: if defenseTricks(state) > 13− contract then

9: for w ∈Worlds do

10: result[w]← 0
11: end for

12: return True

13: end if

14: if M = 0 then

15: for w ∈Worlds do

16: result[w]← doubleDummy (w)

17: end for

18: return True

19: end if

20: return False

4.4 Min nodes

The Min players can choose different moves in different possible

worlds. So they take the minimum outcome over all the possible

moves for a possible world. So when they can choose between two

vectors they take for each index the minimum between the two values

at this index of the two vectors.

Now when Min moves lead to Pareto fronts, the Max player can

choose any member of the Pareto front. For two possible moves of

Min, the Max player can also choose any combination of a vector in

the Pareto front of the first move and of a vector in the Pareto front

of the second move. In order to build the Pareto front at a Min node

we therefore have to compute all the combinations of the vectors in

the Pareto fronts of all the Min moves. For each combination the

minimum outcome is kept so as to produce a unique vector. Then

this vector is inserted in the Pareto front of the Min node.

An example of the product of Pareto fronts is given in figure 2.

We can see in the figure that the left move for Min at node a leads

to a Max node b with two moves. The Pareto front of this Max node

is the union of the two vectors at the leaves: {[0 1 1], [1 1 0]}. The

right move for Min leads to a Max node c with three possible moves.

When adding the vectors to the Pareto front of the Max node c, the

algorithm sees that [1 0 0] is dominated by [1 0 1] and therefore

does not add it to the Pareto front at node c. So the resulting Pareto

front for the Max node c is {[1 1 0], [1 0 1]}. Now to compute the

Pareto front for the root Min node we perform the product of the

two reduced Pareto fronts of the children Max nodes and it gives:

{[0 1 0], [0 0 1], [1 1 0], [1 0 0]}. We then reduce the Pareto front of

the Min node and remove [0 1 0] which is dominated by [1 1 0] and

also remove [1 0 0] which is also dominated by [1 1 0]. Therefore the

resulting Pareto front for the root Min node is {[0 0 1], [1 1 0]}.
We can also explain the behavior at Min nodes on the non-

locality example of figure 1. The Pareto front at Max node d is

{[1 0 0], [0 1 1]}. The Pareto front at Max node e is {[0 0 0], [1 0 0]}.
It is reduced to {[1 0 0]} since [0 0 0] is dominated. Now at node b the

product of the Pareto fronts at nodes d and e gives {[1 0 0], [0 0 0]}
which is also reduced to {[1 0 0]}. The Max player can now see that

the b node is better than the c node, it was not the case for the strategy

fusion algorithm without Pareto fronts.
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Figure 2: Product of Pareto fronts at Min nodes.

a {[0 0 1], [1 1 0]}

b {[0 1 1], [1 1 0]}

[0 1 1] [1 1 0]

c {[1 1 0], [1 0 1]}

[1 1 0] [1 0 1] [1 0 0]

The function to compute the minimum of two Pareto fronts is

given in algorithm 4.

Algorithm 4 The function for joining two Pareto fronts at Min nodes.

1: Function min (front, f )

2: result← ∅
3: for vector ∈ front do

4: for v ∈ f do

5: for w ∈ 0..size(vector) do

6: if vector[w] < v[w] then

7: r[w]← vector[w]
8: else

9: r[w]← v[w]
10: end if

11: end for

12: remove the vectors from result ≤ r

13: if no vector from result ≥ r then

14: result← result ∪ r

15: end if

16: end for

17: end for

18: return result

4.5 Skipping Min nodes

The search one depth deeper at a Min node will always give the same

result as the Pareto front at that node since the Double Dummy Solver

has already searched all worlds with an αβ and that the Min player

can choose the move for each world and therefore will have the same

result as the αβ for each world.

This is why we only keep the number M of Max moves to be

played in the search. The search will never stop after a Min move

since recursive calls at Min node do not decrease M . This is intended

since the results of the search after a Min move are the same as before

the Min move.

4.6 Iterative Deepening and Transposition Table

Iterative deepening starts with one Max move and increases the num-

ber of Max moves at every iteration. The number of Max moves is

the number of Max nodes that have been traversed before reaching

the current state. The results of previous searches for all the nodes

searched are stored in a transposition table.

An entry in the transposition table contains the Pareto front of the

previous search at this node and the best move found by the search.

When a search is finished at a node, the entry in the transposition

table for this node is updated with the new Pareto front and the new

best move.

4.7 Comparing Pareto Fronts

A Pareto front p1 is smaller or equal to another Pareto front p if

p∪p1 = p. When it is the case it is safe to ignore the move associated

to p1 since it adds no options to p. If it is true for the current front

p1 at a Min node it will also be true when searching more this Min

node since p1 can only be reduced to a smaller Pareto front by more

search at a Min node.

An efficient way to compare p to p1 is to ensure that each vector of

p1 is dominated by another vector in p. The corresponding algorithm

is given in algorithm 5.

Algorithm 5 The function to test if a Pareto front is smaller than

another one.

1: Function ≤ (front, f )

2: for vector ∈ front do

3: oneGreaterOrEqual← False

4: for v ∈ f do

5: if vector <= v then

6: oneGreaterOrEqual← True

7: break

8: end if

9: end for

10: if oneGreaterOrEqual = False then

11: return False

12: end if

13: end for

14: return True

4.8 Early Cut

If a Pareto front at a Min node is dominated by the Pareto front of the

upper Max node it can safely be cut since the evaluation is optimistic

for the Max player. The Max player cannot get a better evaluation by

searching more under the Min node and it will always be cut what-

ever the search below the node returns since the search below will

return a Pareto front smaller or equal to the current Pareto front. It

comes from the observation that a world lost at a node is also lost at

all nodes below.

Figure 3 gives an example of an early cut at a Min node. The

root node a is a Max node, the first move played at a returned

{[1 1 0], [0 1 1]}. The second move is then tried leading to node

c and the initial Pareto front calculated with double dummy searches

at node c is [1 1 0]. It is dominated by the Pareto front of node a so

node c can be cut.

Figure 3: Example of an early cut at node c.

a

b {[1 1 0], [0 1 1]}

[1 1 0] [0 1 1]

c [1 1 0]→ cut

5



4.9 Root Cut

If a move at the root of αµ for M Max moves gives the same proba-

bility of winning than the best move of the previous iteration of iter-

ative deepening for M − 1 Max moves, the search can be safely be

stopped since it is not possible to find a better move. A deeper search

will always return a worse probability than the previous search be-

cause of strategy fusion. Therefore if the probability is equal to the

one of the best move of the previous shallower search the probability

cannot be improved and a better move cannot be found so it is safe

to cut.

4.10 αµ

αµ with transposition table and cuts is a search algorithm using

Pareto fronts as evaluations and bounds. The algorithm is given in

algorithm 6.

The evaluation of a state at a leaf node is the double dummy eval-

uation for each possible world. An evaluation for a world is 0 if the

game is lost for the Max player and 1 if the game is won for the Max

player (lines 2-5).

The algorithm starts with getting the entry t of state in the trans-

position table (line 6). The entry contains the last Pareto front found

for this state and the best move found for this state, i.e. the move

associated to the best average.

If the state is associated to a Min node, i.e. a Min player is to play,

the algorithm starts to get the previously calculated Pareto front from

the transposition table (line 8). Then it looks for an early cut (lines

9-11). If the node is not cut it computes the set of all possible moves

over all the valid worlds (lines 12-16). It then moves the move of the

transposition table in front of the possible moves (line 17). After that

it tries all possible moves (line 18). For each possible move it com-

putes the set W1 of worlds still valid after the move and recursively

calls αµ (lines 19-21) . The parameters of the recursive call are s, the

current state, M the number of Max moves to go which is unchanged

since we just played a Min move, W1 the set of valid worlds after

move, and an empty set for alpha to avoid deeper cuts. The front

returned by the recursive call is then combined to the current front

using the min function (line 22). When the search is finished it up-

dates the transposition table and returns the mini Pareto front (lines

24-25).

If the state is associated to a Max node it initializes the resulting

front with an empty set (line 27). Then as in the Min nodes it com-

putes the set of all possible moves and moves the transposition table

move in front of all the possible moves (lines 28-32). Then it tries

all the moves and for each move computes the new set W1 of valid

worlds and recursively calls αµ with M − 1 since a Max move has

just been played and front as alpha since a cut can happen below

when the move does not improve front (lines 33-36). The resulting

front f is combined with front with the max function (line 37). If

the score of the best move (µ(front)) is equal to the score of the

best move of the previous search and the node is the root node then a

Root cut is performed (lines 38-42). When the search is finished the

transposition table is updated and front is returned (lines 44-45).

The search with strategy fusion is always more difficult for the

Max player than the double dummy search where the Max player

can choose different moves in the different possible worlds for the

same state. Therefore if a double dummy search returns a loss in a

possible world, it is sure that the search with αµ will also return a

loss for this world.

If the search is performed until terminal nodes and all possible

worlds are considered then αµ solves the strategy fusion and the non

locality problem for the game where the defense has perfect infor-

mation.

If the search is stopped before terminal nodes and not all possible

worlds are considered then αµ is a heuristic search algorithm.

The algorithm is named αµ since it maximizes the mean and uses

an α bound.

Algorithm 6 The αµ search algorithm with cuts and transposition

table.

1: Function αµ (state,M,Worlds, α)

2: if stop(state,M,Worlds, result) then

3: update the transposition table

4: return result

5: end if

6: t← entry in the transposition table

7: if Min node then

8: mini← ∅
9: if t.front ≤ α then

10: return mini

11: end if

12: allMoves← ∅
13: for w ∈Worlds do

14: l ← legalMoves (w)

15: allMoves = allMoves ∪ l

16: end for

17: move t.move in front of allMoves

18: for move ∈ allMoves do

19: s← play (move, state)

20: W1 ← {w ∈ Worlds : move ∈ w}
21: f ← αµ (s,M,W1, ∅)
22: mini← min(mini, f )

23: end for

24: update the transposition table

25: return mini

26: else

27: front← ∅
28: for w ∈Worlds do

29: l ← legalMoves (w)

30: allMoves = allMoves ∪ l

31: end for

32: move t.move in front of allMoves

33: for move ∈ allMoves do

34: s← play (move, state)

35: W1 ← {w ∈ Worlds : move ∈ w}
36: f ← αµ (s,M − 1,W1, front)

37: front← max(front, f )

38: if root node then

39: if µ(front) = µ of previous search then

40: break

41: end if

42: end if

43: end for

44: update the transposition table

45: return front

46: end if
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4.11 Equivalent Cards and Partitions

Before performing the Iterative Deepening search the program

checks whether it is useful to perform a search. For example if there

is only one possible move which often happens or if there are two

equivalent moves. To detect that two moves of the same color are

equivalent the program normalizes the state using the same idea as

in Partition Search [9]. In the normalized state all the cards in a color

have consecutive values. It is then easy to detect that two cards in the

same hand are equivalent: they have consecutive values.

4.12 Generating Possible Worlds

Before performing the search the program generates the set of pos-

sible worlds. The principle of the generation is to randomly generate

worlds and to retain those that satisfy a set of constraints. The con-

straints are constraints on the initial deal corresponding to the gen-

erated world. The reconstructed initial deal must comply with the

constraints on the contract. The generated world also has to comply

with the known sluffs of the other players.

5 Experimental Results

In our experiments we fix the bids so as to concentrate on the evalua-

tion of the card play. We use the one no trump, pass, three no trump,

pass, pass, pass bid for all experiments.

We use duplicate scoring. It means that the different evaluated pro-

grams will play the same hands against the same opponents. When

αµ is the declarer it will play against two PIMC as the defense. αµ is

a generalization of PIMC since αµ at depth one is PIMC. So in order

to compare αµ as a declarer to PIMC as a declarer we compare αµ

as a declarer to αµ with M = 1 as a declarer.

There are constraints on the hands due to the contract. Initial deals

and possible worlds for PIMC and αµ are generated according to the

constraints. However when using no more constraints many initial

deals are useless for evaluating the program since they are always

won or always lost and that they do not discriminate between pro-

grams since all the programs have the same result. In order to alle-

viate this problem we only keep initial deals where PIMC has more

than 30% and less than 70% winning rate, i.e. the undecided and

balanced deals.

We first test αµ at different depth versus PIMC with a fixed num-

ber of possible worlds. Table 1 gives the results for different runs

of αµ as the declarer with 20 worlds and 40 worlds against PIMC

as the defense with 20 worlds. All results are computed playing the

same 500 initial deals with the same seed for each deal. We see that

looking two or three Max moves ahead can be beneficial. The num-

ber of discrepancies is the number of times αµ chooses a different

move than the move at depth one (i.e. the PIMC move). We note that

it happens relatively rarely. PIMC is already a very strong player as

a declarer so improving on it even slightly is difficult. For 52 cards

and 20 worlds PIMC (αµ with M = 1) scores 60.2% and αµ with

M = 3 scores 62.0%. For 52 cards and 40 worlds PIMC (αµ with

M = 1) scores 62.4% and αµ with M = 3 scores 63.2%. For 36

cards and 20 worlds PIMC (αµ with M = 1) scores 46.4% and αµ

with M = 3 scores 48.2%. We can conclude that αµ improves on

PIMC.

We now compare the times to play moves with and without Trans-

position Tables and cuts. Table 2 gives the average time per move

of different configurations of αµ playing entire games. TT means

Transposition Table, R means Root Cut, E means Early Cut. We

Table 1: Comparison of the scores of different configurations of αµ
on deals with 52 or 36 cards.

Cards M Worlds Discrepancies Score

52 1 20 0 / 13 000 60.2%
52 2 20 169 / 13 000 63.0%
52 3 20 276 / 13 000 62.0%
52 1 40 0 / 13 000 62.4%
52 2 40 213 / 13 000 62.4%
52 3 40 388 / 13 000 63.2%
36 1 20 0 / 13 000 46.4%
36 2 20 124 / 13 000 47.8%
36 3 20 190 / 13 000 48.2%

can observe that a Transposition Table associated to cuts improves

the search time. For M = 1 the search time is 0.096 seconds. For

M = 3 without transposition table and cuts the average search time

per move is 18.678 seconds. When using a transposition table asso-

ciated to early and root cuts it goes down to 1.228 seconds.

Table 2: Comparison of the average time per move of different con-
figurations of αµ on deals with 52 or 36 cards.

Cards M Worlds TT R E Time

52 1 20 0.096
52 2 20 n n n 1.306
52 2 20 y y n 0.389
52 2 20 y n y 0.436
52 2 20 y y y 0.363
52 3 20 n n n 18.678
52 3 20 y y n 4.089
52 3 20 y n y 1.907
52 3 20 y y y 1.228

6 Conclusion and Future Work

We presented the αµ algorithm for Bridge card play. It assumes the

opponents have perfect information. It enables to search a few moves

ahead taking into account the strategy fusion and the non locality

problems. To solve the non locality problem it uses Pareto fronts as

evaluations of states and combines them in an original way at Min

and Max nodes. To solve the strategy fusion problem it plays the

same moves in all the valid worlds during search. Experimental re-

sults for the 3NT contract shows it improves on PIMC.

We also presented the use of a transposition table as well as the

early and the root cut for αµ. When searching three Max moves

ahead it enables the search to be fifteen times faster while returning

the same move as the longer search without the optimizations.

In future work we expect to use partition Search with αµ. We also

plan to take into account that the defense only has incomplete infor-

mation and to take advantage of that for the declarer. We will also

apply the algorithm to the defense play. It should also improve the

algorithm to deal with real scores instead of only win/loss.
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