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Abstract
With the development of the cloud and grid computing, the cloud infrastructures and grids provide a platform for workflow
applications. It is very essential to meet the requirements of users and to complete workflow scheduling efficiently. The
scheduling of the workflow is limited by quality of service (QoS) parameters.Many scheduling algorithms have been proposed
for the execution of workflow applications using QoS parameters. In this study, we improved a scheduling algorithm that
considers workflow applications under budget and deadline constraints. This algorithm provided a simple way to deal with
the deadline and budget constraints. The algorithm was named BDSD and used to find a scheduling that satisfies of deadline
and budget constraints required by a user. The planning success rate (PSR) was utilized to show the effectiveness of the
proposed algorithm. For the simulation experiment, random and real workflow applications were exploited. Experimental
results showed that compared with other algorithms the algorithm had a higher PSR.

Keywords Scheduling · Sub-deadline · Quality of service · Planning success rate · Workflow application

1 Introduction

Studies on the workflow scheduling problem have focused
on heterogeneous computing systems and distributed envi-
ronments, such as grids and clusters. The challenges in the
workflow scheduling problem are the diverse quality of ser-
vice (QoS) requirements. The workflow can be defined by
directional acyclic graph (DAG), which includes a large
number of priority constraints and parallel tasks. Effective
scheduling is very important in executing applications on het-
erogeneous environments.Workflowscheduling that satisfies
QoS parameter has become important in practice computing.
Yu et al. [1] presented several classical workflow schedul-
ing algorithms. The algorithms almost consider a single
objective, such as minimising cost or makespan. Numer-
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ous algorithms consider multiple QoS parameters due to the
increasing QoS reguirements of users. Several scheduling
algorithms adopt methods that consists two QoS parame-
ters at the same time, for example consider time and cost
together; consequently, the problem becomes increasingly
challenging [2]. It has been concluded that the DAG schedul-
ing problem is an NP-hard problem [3]. Scheduling tasks for
any number of processors and scheduling the weights of one
or two units to two processors are proven to beNP-hard prob-
lems [4].

The two primary optimisation problems of minimising
cost under deadline constraints and minimising mak-espan
under budget constraints have also been studied. Scheduling
problems are of different types, such as best-effort, deadline-
constrained, budget-constrained, robust, multi-criteria, data-
intensive, energy-aware and hybrid-resource workflow
scheduling [5]. In a cloud environment, a cloud is distributed
computer cluster, it through the network to the remote user
to provide on-demand computing resources and services [6].
A cloud user can make many cloud service at the same time.
The cloud has the autonomic feature, and the VMs have the
diversity feature. In infrastructure as a service (IaaS) cloud
computing, computing resources are provided to remote
users in the form of leases. Li and Qiu et al. [7] consid-
ered IaaS cloud system and proposed two kinds of online
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dynamic resource allocation algorithm. They adjust the allo-
cation of resources by obtaining the latest information on
the execution of the task, which is a dynamic approach. Qiu
et al. [8] presented a genetics-based optimisation algorithm
for chip multiprocessors in green clouds; the algorithm uses
phase-change memory technique. Gai, Qiu et al. [9] used
a genetic algorithm to develop a multimedia data distribu-
tion of heterogeneous memory in cloud computing based on
cost-aware. Xu et al. [10] adopted the slot extension backfill
strategy to make full use of the time slot amongst tasks but
did not consider the problem of scheduling costs.

Many studies have been conducted on multi-objective
scheduling [11–20]. If there is no suitable processor that sat-
isfies the first constraint of the task being executed, then it
may be select the processor according to the second con-
straint of the task. In [16], the tasks in the DAG are divided
into different levels according to the different sub-deadline
of the task, and then the workflow is scheduled. If the tasks
had the same sub-deadline, then they were in the same level.
In [17], the workflow was grouped into sub workflows, and
deadline was divided into different partitions. In [11], the
sub-deadline value was used with the time quality factor in
the processor selection phase.

Arabnejad et al. [11] proposed a schedule workflow appli-
cation (DBCS) for computational heterogeneity constrained
to two QoS parameters. They determined a schedule that
satisfied the deadline and cost constraint by the user. The
algorithm was the first to implement low-time complexity
scheduling with two QoS parameters. Zhang and Sakellar-
iou [12] proposed a scheduling algorithm,which is optimized
for multi-heterogeneous environment with time constraints
of theworkflow scheduling. Arabnejad andBarbosa [13] also
proposed an algorithm (HBCS) that minimizes the schedul-
ing time of the task and allows the user to execute the cost
at a given cost. This algorithm allows numerous processors
to be considered and selected. Unlike other algorithms, this
algorithm does not use the earliest completion time strategy
to select the processor. For processor selection, the algorithm
uses a function that includes time and cost in order to select
the processor for the current task.

In this study, a DAG scheduling model in linear program-
ming is built. We improve a scheduling algorithm with two
QoS parameters and obtain a performance that is better than
that of other algorithms. The sub-deadline is used to define
task priority, which is the difference of our algorithm from
others. Then, we obtain results for real-world applications
and randomly generate a DAG. The results show that BDSD
algorithm has a low time complexity and obtains a higher
planning success rate than other algorithms, namely, DBCS,
BHEFT and HBCS.

The remainder of this paper is organized as follows: Sec-
tion 2 is devoted to related work. Section 3, presents the
workflow management system and the system model. Sec-

tion 4 describes the BDSD algorithm and gives an example
to describe it. Section 5, provides the results of simulation
experiments to illustrate the advantages of the BDSD algo-
rithm. Our results and future research work are described in
the final section.

2 Related work

For the workflow scheduling problem, it can be divided
into single target, QoS constraint and multi-objective work-
flow scheduling according to the scheduling objective.
QoS-constrained workflow scheduling approximates actual
applications. This problem is generally based on the con-
straints of several objectives to optimise other objectives. In
allworkflowscheduling problems,workflowschedulingwith
deadline constraints and workflow scheduling with budget
constraints are the two most studied scheduling problems.

Workflow scheduling based on deadline constraints
implies that the planner sets the deadline as a constraint.
Most users generally consider the cost in a cloud environ-
ment. The performances and prices of cloud resources are
different. Users wish to spend the minimum cost but do not
want more than a given period. To solve this problem, the
planner is usually under the constraints of cost minimisation.
The general form is as follows:

Min C (1)

s.t. makespan � D (2)

The scheduling strategy of the scheduling problem can be
divided into meta-heuristic and deadline distribution-based
heuristic.

For meta-heuristic methods of workflow scheduling, Yu
and Buyya [21] proposed a genetic algorithm. They also put
forward a fitness function that include cost and time fac-
tor. The function can reduce the cost as much as possible
and does not violate deadline constraints. Wu et al. [22] pre-
sented a workflow scheduling algorithm based on revised
discrete particle swarm optimisation (PSO). Rodrigues [23]
solved the problem of workflow scheduling on the IaaS
cloud by using the meta-heuristic optimisation algorithm of
PSO.

Deadline distribution-based heuristic is divided into three
stages: task sorting, deadline allocation and resource selec-
tion. Compared with the single-objective workflow schedul-
ing algorithm, this strategy increases the deadline allocation
phase. DTL [16], DBL [24] and DET [25] are heuristic
algorithms for the deadline allocation strategy. The DTL
algorithm minimises the user cost and meets the user dead-
line at the same time. This algorithm also rearranges the
unallocated task to adopt delay. DTL assigns tasks as syn-
chronisation or simple tasks. In the process of resource
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allocation, the DTL algorithm uses the Markov decision
process to optimise the task scheduling problem. The DBL
algorithm adopts the bottom-up approach to reverse a task
and allocates the time difference to each layer to increase the
cost optimisation interval of the task. The DET algorithm
divides a task into different paths. In the deadline alloca-
tion phase, the deadline is divided into the mission task, and
the iterative algorithm plays a key role in finding time win-
dows for non-mission tasks without changing the priority
constraints between the tasks. In the processor selection pro-
cess, DET uses dynamic method to find resources.

Another problem is that users wish to complete the work-
flow scheduling as soon as possible. Therefore, the workflow
scheduling completion time becomes an important goal.
Costs become a secondary optimisation goal, as long as the
cost cannot exceed the given budget. This problem generally
minimises the completion time (makespan) under a given
budget, and the general form is as follows:

Min makespan (3)

s.t. C � B (4)

The scheduling strategy of this problem can be divided into
one-time heuristic and back-tracking heuristic.

DBCS [11], BHEFT [12], HBCS [13] and Greedy-
TimeCD [15] are one-time heuristic algorithms. These
algorithms use the idea of HEFT algorithm, and the time
complexity of these algorithms has not changed compared
with HEFT algorithm. The budget of the BHEFT algorithm
is dynamically distributed. The algorithm proposes the cur-
rent task budget CTB and the remaining budget SAB and
allocates the current remaining budget to the unallocated
task according to the AET ratio of the unallocated task. The
HBCS algorithm selects the cost and execution time with the
largest weight of resources. DBCS selects the aggregation
weight in the time factor added sub-term constraints and the
largest weight of the resources. The GreedyTimeCD algo-
rithm statically assigns all tasks with the user-given budget
before scheduling and then selects resources.

Multi-objective workflow scheduling generally considers
multiple goals, and all these goals are important. Many peo-
ple transform multiple objectives into a single objective to
solve the problem. Scheduling methods include aggregation
and Pareto methods.

3 Problem description

3.1 Workflowmanagement system

Users provide the QoS requirements for workflow appli-
cation and pay the service costs for the workflow tasks.
Moreover, resource owners provide the services and obtain

the cost from the users. The planners receive the workflow
and associated constraints. They find the right resources for
all tasks of the workflow and thus create a workflow plan.
Workflow planning is based on the user’s constraints for each
task to select a resource. To submit tasks to resources, the
planner needs to determine the resources and time needed
to run the task on the resources. Therefore, the planner must
study the information of users and resource owners andmake
a reasonable workflow plan. The user is satisfied with the
arrangement under the constraints, and the resource owner
obtains as much revenue as possible.

The planner determines whether the user’s requirements
are met based on the parameters of the existing resource.
These parameters include the performance and quantity of
resources. If the constraints are not satisfied, the planner
can reject the workflow; otherwise, the planner accepts the
workflow. The resource owner hopes to perform every new
workflow and access and execute the resources. In this
study, the resource owner provides resources and wants all
resources to be maximized, which means to acquire as much
revenue as possible. The user gives the workflow with the
budget C and deadline D constraints and expects to schedule
all workflow tasks to the resources. The planner provides the
scheduling algorithm to the user and resource owner.

3.2 Problem definition and systemmodel

Use a directed figure with no cycles (DAG) to represent a
workflow. The DAG can be modelled by G = (V,E), where
V is the set containing n tasks and E represent the set of edges
containing m edges. Edge (i, j) ∈ E is directional, indicating
the order in which the task is executed whichmeans task ni is
executed first than task n j starts. A is a n×n communication
matrix, where Ai j is the data from task ni to task n j . Let tu
is the time to transmit a data unit, the communication time
between tasks ni and task n j is Āi j = Ai j × tu .

In the DAG, the entry task is the task with no a parent
node, the exit task is a task with no a child node. For most of
the task scheduling algorithms, there is only one input and
an output of the task map. So in this article we also assume
that DAG only has an entry task and an exit task. If there are
multiple entry or exit tasks, we add to the graph with zero
weight and zero communication edges. It also ensures that
the figure has a single entry and single exit task.

Let P = {p1, p2 · · · pm} has m processors. In this model,
each resource can serve any task of DAG with every type of
service. W is a n×m computation cost matrix, andwi j is the
execution time of task ni on processor p j . Each processor has
its own price under unit execution time R = {r1, r2 · · · rm},
so the cost of task ni on processor p j is ci j = wi j × r j . We
use makespan to represent the total schedule length of the
DAG, it can denote the completion time of the exit task in the
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DAG. Define the workflow makespan by [14]: makespan =
max

{
AFTnexit

}
, where AFTnexit denotes the actual finish

time of the exit task nexit .
Assume that C(budget cost) and D(deadline) are given,

we wish to decide if there exists a schedule of total cost at
most C such that the completion time of exit task assigned to
processor is at most D. We denote

xi j =
{
1, i f task ni is arranged on processor p j

0, else

ST and AFT denote the start time and the completion time
of task ni on the processor assigned by the scheduling algo-
rithm. For every task ni , we use its sub-deadline to sort the
tasks. This scheduling problem is descried as follows:

(P)
∑m

j=1
xi j = 1, i = 1, 2, . . . n, (5)

max(AFTnexit ) ≤ d, j = 1, 2, . . .m, (6)
∑m

j=1

∑n

i=1
ci jxi j ≤ C, (7)

(STij+wi j )xi j ≤ d, i =1, 2, . . . n, j =1, 2, . . .m, (8)

xi j ∈ {0, 1} (9)

where (5) means every task ni must be assigned on the pro-
cessor; (6)means the completion time of the exit task nomore
than d, where d ≤ D; (7) means the total cost of all tasks on
processors at most C; (8) means the task ni completion time
on the processor no more than d.

4 Proposed budget-deadline constrained
based on sub-deadline scheduling
algorithm

In this section, to find a viable workflow schedule within
the user’s given cost and time limit, the budget deadline
constraints are presented based on the sub-deadline(SDL)
scheduling algorithm. By using the known HEFT algorithm,
the scheduling method is divided into the sort of user tasks
and choice of processor. Based on heuristics of the algorithm,
the BDSD algorithm also consists of two parts: the sort of
tasks and the choice of the processor. The algorithm deter-
mines the priority of the task based on the SDL of the task
in the DAG. The algorithm aims to make the schedule suc-
cessful under the budget and deadline constraints. If the time
and budget constraints are met, it means that the schedule is
successful; otherwise, the schedule is a failure. The BDSD
is shown in Algorithm 1. Before the description of the algo-
rithm, there are some definitions.

Definition 1 [14] Define the Earliest Start Time (EST) of a
task ni on processor p j as

EST
(
ni , p j

)

= max
{
Tavail[ j],maxnk∈pred(ni )

(
AFT (nk) + Āk,i

)}

(10)

Denote the Earliest Finish Time(EFT) of a task ni on proces-
sor p j by

EFT
(
ni , p j

) = EST
(
ni , p j

) + ωi, j (11)

where pred (ni ) represents all predecessor task set of task ni .
Tavail[ j] is the earliest time for processor p j to complete all
previous tasks to prepare for the next task. For task nentry ,
EST

(
nentry, p j

) = 0. If task nk and task ni are assigned
on the same processor, the communication time Āk,i is 0. In
Eq. (10), the inner max part is the time for all data required
by ni to reach processor p j .

4.1 Task sorting

In the HEFT algorithm, the tasks are sorted according to their
priorities by computing the upward rank (ranku) [14]. In the
BDSD algorithm, to sort all tasks SDL was calculated and
defined as follows:

SDL (ni )=minnk∈succ(ni )
[
SDL (nk)− Āi,k−ETmin (nk)

]

(12)

where succ (ni ) represents the set of all successor tasks of
task ni and ETmin (nk) is the minimum execution time for all
processor scheduling task nk . For task nexit , SDL (nexit ) =
D.

In this study, the SDL of each task was calculated. The
values of SDL are sorted in ascending order, and the corre-
sponding task obtains a new sequence.

4.2 Processor selection

To consider how to select the processor for each task, time
and cost related variables were considered.

Definition 2 Define the user remaining budget byrb which
means that the budget can be used for the remaining unsched-
uled tasks:

rb = rb − ci j , (13)

where the initial value rb = C.
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Denote l as the remaining unscheduled task numbers.
Define the expect reasonable cost(erc) for task ni :

ercni = rb

l
. (14)

According to the above variables, some processors that
cost high can be deleted.We can only consider the processors
whose cost satisfies ck,p ≤ erck :

ωk = {
wx,p|∃wx,p, ck,p ≤ erck

}
. (15)

Then, the selection rules can be used to select the best
possible processor. The rules are as follows:

We select the processor with the earliest finish time.

1. If ωk = ∅, we select the processor with the earliest finish
time;

2. Ifωk = ∅, we select the processor with the cheapest cost.

4.3 Detailed description of the BDSD algorithm

Algorithm 1: BDSD scheduling algorithm

Input DAG G, the value given by the user for the budget C and
the deadline D;

1: Calculate all tasks SDL according to Eq. (12)
2: Enter the initial values for rb and l, rb = C , l = n
3: while there is task that can be scheduled do
4: ni = the first task is sorted according to theSDL value
5: Calculate the erc for task ni according to Eq. (14)
6: According to steps 5 and 6, the set ωk for task ni is
given by Eq. (15)

7: for the task ni can choose the processor
8: Calculate the earliest completion time of task ni
which processor in the ωk

9: end for
10: Choice a processor for task ni based on the selection rules
11: Update remaining budget rb according to Eq. (13),
update the l, l = l − 1

12: end while
Return schedule map.

4.4 An example

An illustrative example is provided to better understand the
BDSD algorithm. Figure 1 shows the DAG. The figure shows
the structure of the DAG with 10 task nodes and two tasks
in different processors on the data transfer time. If there are
two tasks on a processor, we assume that their data transfer
is 0. For simplicity, let tu = 1, so the communication time
between tasks ni and task n j is Āi j = Ai j × 1. The task
computation time in each processor is shown in Table 1.
Each processor’s own price under unit execution time is
R = {0.92, 0.29, 0.40}. The computation cost of task ni on

Fig. 1 An example DAG with 10 tasks

Table 1 Computation time of
tasks on processors

ni/Pj P1 P2 P3

n1 22 21 36

n2 22 18 18

n3 32 27 43

n4 7 10 4

n5 29 27 35

n6 26 17 24

n7 14 25 30

n8 29 23 36

n9 15 21 8

n10 13 16 33

processor p j is shown in Table 2. We assume that the user’s
deadline is 200 and the budget is 95, which means that the
user wants to complete the DAG schedule under this condi-
tion.

First, the SDL of the DAG tasks is calculated as defined
in Eq. (12). Table 3 shows the values of the SDL and the
sequence of tasks. The new task sequence is obtained in
ascending order of the SDL values. From Table 3, the new
sequence is as follows: L = {n1, n4, n5, n6, n2, n8, n3, n7,
n9, n10}. By taking the highest priority task in scheduling
sequence L, the erc can be calculated for each task as defined
in Eq. (14). Additionally, the earliest finish time of the current
task is calculated as defined in Eq. (11).
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Table 2 Computation costs of
tasks on processors

ni/Pj P1 P2 P3

n1 20.24 6.09 14.40

n2 20.24 5.22 7.20

n3 29.44 7.83 17.20

n4 6.44 2.90 1.60

n5 26.68 7.83 14.00

n6 23.92 4.93 9.60

n7 12.88 7.25 12.00

n8 26.68 6.67 14.40

n9 13.80 6.09 3.20

n10 11.96 4.64 13.20

We assume that if two tasks are executed on the same
processor, then the computation time of transfer between the
two tasks are 0.

Task n1 starts the first schedule. erc (n1) = 95
10 = 9.5.

Only processor p2 satisfies the condition c12 = 6.09 < 9.5.
Therefore, for task n1 we choose processor p2. The EST of
task n1 on the processor is 0, and the EFT of task n1 on
processor p2 is EFT (n1, p2) = 0 + 21 = 21.

Task n4 has the second priority, so it starts the sec-
ond schedule. erc (n4) = 95−6.09

9 = 9.87. The processors
p1, p2, p3 satisfy the condition c4 j < 9.87. The EST of task
n4 on processors p1, p2, p3 is 0, 21 and 0, respectively. Then,
we calculate the EFT of task n4 and find the minimum EFT,
which is 31, and choose the processor p2.

Task n5 starts the third schedule.erc (n5) = 95−6.09−2.9
8 =

10.75. Processor p2 satisfies the condition c52 < 10.75. EST
of task n5 on processor p2 is 31. Then, EFT of task n5 is
calculated, and the minimum EFT is determined, which is
58, so processor p2 is chosen.

Task n6 starts the fourth schedule. erc (n6) =
95−6.09−2.9−7.83

7 = 11.17. Processors p2 and p3 satisfy the
condition c6 j < 11.17. EST of task n6 on processor p3 is 28.
Then EFT of task n6 is calculated, and the minimum EFT is
determined, which is 52, so processor p3 is chosen.

The remaining tasks in the newlist are calculated and
shown in Table 4. Table 4 shows the results of BDSD on
the example of DAG in Fig. 1. In the Table 4, each task
selects the processor, and the task cost on the selected pro-
cessor is also shown. As shown in Table 4, the total cost of
completing the schedule is 63.21, which is less than 95. The

Table 4 An example to illustrate the steps of BDSD using the workflow
in Fig.1

task erc ωi select EST EFT cost

n1 9.50 ω1,2 ω1,2 0 21 6.09

n4 9.87 ω4,1, ω4,2 ω4,3 ω4,2 21 31 2.90

n5 10.75 ω5,2, ω5,2 31 58 7.83

n6 11.17 ω6,2, ω6,3 ω6,3 28 52 9.60

n2 11.43 ω2,2, ω2,3 ω2,3 52 70 7.20

n8 12.28 ω8,2 ω8,2 73 96 6.67

n3 13.68 ω3,2 ω3,2 96 123 7.83

n7 15.63 ω7,1, ω7,2 ω7,3 ω7,2 123 148 7.25

n9 19.82 ω9,1, ω9,2 ω9,3 ω9,3 115 123 3.20

n10 36.43 ω10,1, ω10,2 ω10,3 ω10,2 148 164 4.64

63.21

makespan of this scheduling is 164, which is less than 200,
so the condition is satisfied.

5 Experimental results and discussion

In this section, we present the PSR comparisons of the BDSD
algorithm with the DBCS [11], BHEFT [12] and HBCS [13]
algorithms. For this purpose, we consider two types of DAGs
for the experiment: one is randomly generated by the DAG
generator workflow, and the other is the actual workflow,
which represents some practical problems. SimGrid [18] pro-
vides a DAG generator, which can use some parameters to
simulate the actual problem into DAG.

5.1 Workflow structure

The DAG can be randomly generated and the generator pro-
gram can acquire from :https://github.com/frs69wq/daggen.
It is required three forms to model a task of computational
complexity, which represent many common application: a.d,
a.d\log d and d3/2, where a is chosen randomly between 26

and 29.
The DAG shape requires a random DAG generator to

define some parameters. n is used to represent the number
of tasks in the DAG, and fat to indicate the height and width
of DAG. The width of the DAG is also the number of tasks
that can be executed at the same time. A small width means

Table 3 The sub-deadline of the
DAG tasks and the task newlist

task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

SDL 75 119 148 111 115 117 178 145 180 200

increase-SDL 75 111 115 117 119 145 148 178 180 200

task- newlist n1 n4 n5 n6 n2 n8 n3 n7 n9 n10
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that the DAG has a low task parallelism, while a large width
means that the DAG has a high task parallelism. The den-
sity is used to indicate the number of edges between the two
levels of the DAG. We know that the density value is low,
indicating that the edge is small, and a large value means
that the DAG has many edges. Regularity is used to repre-
sent the consistency of the number of nodes in each level. If
the regularity is small, it means that a level contains different
tasks. On the contrary, if the regularity is large, it means that
all levels involve the same number of tasks. J means that an
edge can be selected from m to m + J .

In our experiment, we considered the following parame-
ters for random DAG:

n = [10, 20, 30, 50, 100];
J = [1, 3];
regularity = [0.2, 0.3];
fat = [0.1, 0.3];
density = [0.3, 0.8];
CCR = [0.5, 1];

We randomly selected these parameters to generate dif-
ferent DAGs. We also took into account the real situation
of DAGs, such as Montage, Sipht, CyberShake and Epige-
nomics.

To understand the performance of each scheduling algo-
rithm, the experimentwas repeatedmany times, and PSRwas
used to describe the result. If the time and cost constraints
satisfy the conditions, the schedule is successful. If they are
not met, the schedule is a failure. PSR is defined as follows:

PSR = the times of success f ul schedule

number of repeated experiment
× 100

For a DAG, we provide rational values for deadline and bud-
get constraints following the principles. In general, assume
that the task starts at time 0. By using the HEFT algo-
rithm [14], the DAG can obtain makespan M. The deadline
constraint D = M + fd × (2M), where 0 ≤ fd ≤ 1. By
considering budget constraint B, we define it as follows:
B = L + fb × (U − L), where L is the total cost of each
task assigned to the lowest cost processor, U is the total
cost of each task assigned to the highest cost processor and
0 ≤ fb ≤ 1.

5.2 Experimental results

In the experiments, we consider scheduling under different
types of constraints. The results for real-world DAGs and
randomly generated DAGs are shown. In the environment
using three heterogeneous resources for simulation, each one
has a processing capability (a unit of calculation for each unit
of time) randomly acquired from the interval (10, 100). The

Fig. 2 Sipht with 30 nodes, PSR with different constraints

Fig. 3 Inspiral with 30 nodes, PSR with different constraints

bandwidth of each link is randomly selected from the interval
(10, 100), and the resources are connected by heterogeneous
networks. The computation cost of each task is randomly
selected from the interval (1, 100). The definition of CCR is
the ratio of the amount of communication between two tasks
and the amount of computation executed in the DAG.We use
CCR of 0.5 and 1 for simulation.

Use fiveDAGs that correspond to the real-worldworkflow
application:

sipht: 30 tasks;
Inspiral: 30 tasks;
Montage: 50 tasks;
CyberShake: 50 tasks;
Epigenomics: 100 tasks;

Figures 2, 3, 4, 5 and 6 show the results of the real-world
DAGs and obtained PSR values. We consider DAG schedul-
ing under the constraints of different parameters.
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Fig. 4 Montage with 50 nodes, PSR with different constraints

Fig. 5 CyberShake with 50 nodes, PSR with different constraints

Fig. 6 Epigenomics with 100 nodes, PSR with different constraints

The results for Sipht DAG are shown in Fig. 2.We provide
different combinations of cost factor fb and deadline factor
fd . As shown in Fig. 2, when fb and fd are relatively small,
(i.e. the cost and time are relatively tight), PSR of the BDSD
algorithm is relatively high. When fb and fd are relatively
large, (i.e. the cost and time are relatively loose), PSR of the
BDSD algorithm is consistent with the BHEFT and DSCS

Fig. 7 Randomly generated DAG with 10 nodes, PSR with different
constraints

algorithms. Compared with that in other algorithms, PSR in
the HBCS algorithm is lower. The results for the Inspiral
DAG are shown in Fig. 3. The figure shows that the BDSD
algorithm is better than the other algorithms when fb and fd
are relatively small. The results for Montage DAG with 50
nodes are shown in Fig. 4. Figure 5 shows the CyberShake
with 50 nodes, which obtained the PSR. Figure 6 shows the
results of the Epigenomics DAG. The figures show that the
BDSD algorithm achieved the best performance compared
with the other three algorithms, especially when fb = 0.1
and fd = 0.5 (i.e. the budget and deadline constraints are
tight). When fb = 0.5, fd = 0.5, fb = 0.5 and fd = 0.7,
the PSR values of the BDSD, BHEFT and DBCS algorithms
are higher than that of the HBCS algorithm.

Figures 7, 8, 9, 10 and 11 show the results of the randomly
generated DAGs and obtained PSR values. We also consider
six combinations of different types of constraints and five
randomly generated DAGs with 10, 20, 30, 50 and 100 tasks,
where CCR = 0.5. As shown in Fig. 7, when the budget
parameter fb is equal to 0.1 and the deadline parameter fd
is equal to 0.3, the BDSD algorithm showed the best perfor-
mance compared with the other algorithms. However, when
the values of fb and fd increase, BDSD showed the same
level of performance with the other algorithms. The PSR
value of HBCS is lower than that of the other algorithms. In
Figs. 8, 9, 10, and 11, as the number of DAG nodes increases,
the experimental results are the same as those seen in Fig. 7.
Therefore, in the randomly generated DAG experiments, the
BDSD algorithm showed the best performance among the
other algorithms when both budget and deadline constraints
are tight.

Based on all the figures, the BDSD algorithm is better
than the other three algorithms, especially when budget and
deadline constraints are relatively small. With increasing fb
and fd , the PSR values of the BDSD, BHEFT and DBCS
algorithms become large. However, in the HBCS algorithm,
the PSR value is still low.
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Fig. 8 Randomly generated DAG with 20 nodes, PSR with different
constraints

Fig. 9 Randomly generated DAG with 30 nodes, PSR with different
constraints

Fig. 10 Randomly generated DAG with 50 nodes, PSR with different
constraints

Fig. 11 Randomly generated DAG with 100 nodes, PSR with different
constraints

5.3 Time complexity analysis

We assume that a DAG has n tasks, the number of proces-
sors is p, and the time complexity of the HEFT algorithm is
O

(
n2 · p) [14]. The BDSD algorithm includes two stages:

task ordering and processor selection. In consideration of
time complexity, this algorithm selects either the earliest fin-
ish time priority strategy or the cheapest processor. If the
insertion policy is selected to calculate the earliest finish
time amongst the satisfactory processors, then the complex-
ity is O

(
n2 · p∗), where p∗ refers to the processors that

meet the requirements. If the cheapest processor is selected,
then the complexity is O

(
n2 · p). Each calculation can select

only one strategy, so the complexity of BDSD algorithm is
max

{
O

(
n2 · p∗) ,O

(
n2 · p)}.As p∗ is smaller thanp, there-

fore the time complexity of theBDSDalgorithm isO
(
n2 · p).

6 Conclusions

In this paper, we improve a BDSD scheduling algorithm
using sub-deadline for workflow under budget and dead-
line constrained in heterogeneous systems. The scheduling
focuses on satisfying cost and time constraints. The proposed
algorithm has a low-time complexity. We compare the algo-
rithm to other three algorithms, namely, DBCS, BHEFT and
HBCS. The experiments show that BDSD has a high success
rate when the time and cost constraints are tight.

In the future, we intend to solve linear programming and
obtain a feasible solution for the problem. We also plan to
determine a scheduling that minimises makespan under the
condition that the total cost of tasks below C.
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